
Software Reuse

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 1

ObjectivesObjectives

To explain the benefits of software reuse
and some reuse problems
To discuss several different ways to
implement software reuse
To explain how reusable concepts can be
represented as patterns or embedded in

tprogram generators
To discuss COTS reuse
To describe the development of software
product lines

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 2

Topics coveredTopics covered

The reuse landscape
Design patternsDesign patterns
Generator based reuse
Application frameworksApplication frameworks
Application system reuse

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 3

Software reuseSoftware reuse

In most engineering disciplines, systems are
designed by composing existing components g y g g
that have been used in other systems.
Software engineering has been moreSoftware engineering has been more
focused on original development but it is
now recognised that to achieve betternow recognised that to achieve better
software, more quickly and at lower cost, we
need to adopt a design process that is basedneed to adopt a design process that is based
on systematic software reuse.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 4

Reuse-based software
i iengineering

Application system reuse
• The whole of an application system may be reused

ith b i ti it ith t h i t theither by incorporating it without change into other
systems (COTS reuse) or by developing application
families.families.

Component reuse
• Components of an application from sub-systems toComponents of an application from sub systems to

single objects may be reused. Covered in Chapter
19.

Object and function reuse
• Software components that implement a single well-

d fi d bj t f ti b d

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 5

defined object or function may be reused.

Reuse benefits 1Reuse benefits 1

Increased dependability Reused software, that has been tried and tested in working systems,p y , g y ,
should be m ore dependable than new software. The initial use of the
software reveals any design and implementation faults. These are then
fixed, thus reducing the number of failures when the software is reused.

Reduced process risk If software exists there is less uncertainty in the costs of reusing thatReduced process risk If software exists, there is less uncertainty in the costs of reusing that
software than in the costs of development. This is an important factor
for project management as it reduces the margin of error in project cost
estimation. This is particularly true when relatively large software
components such as sub systems are reusedcomponents such as sub-systems are reused.

Effective use of specialists Instead of application specialists doing the same work on different
projects, these specialists can develop reusable software that
encapsulate their knowledge.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 6

Reuse benefits 2Reuse benefits 2

Standards compliance Some standards, such as user interface standards, can be
i l d f d d blimplemented as a set of standard reusable components. For
example, if menus in a user interfaces are implemented using
reusable components, all applications present the same menu
formats to users. The use of standard user interfaces improves
dependability as users are less likely to make mistakes when
presented with a familiar interface.

Accelerated development Bringing a system to market as early as possible is o ften more
important than overall development costs Reusing software canimportant than overall development costs. Reusing software can
speed up system production because both development and
validation time should be reduced.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 7

Reuse problems 1Reuse problems 1

Increased maintenance
costs

If the source code of a reused software system or component is n ot
available then maintenance costs may be increased as the reusedcosts available then maintenance costs may be increased as the reused
elements of the system may become increasingly incompatible with
system changes.

Lack of tool support CASE toolsets may not support development with reuse. It may be
difficult or impossible to integrate these tools with a component
library system. The software process assumed by these tools may not
take reuse into account.

Not invented here Some software engineers sometimes prefer to re write components asNot-invented-here
syndrome

Some software engineers sometimes prefer to re-write components as
they believe that they can improve on the reusable component. This is
partly to do with trust and partly to do with the fact that writing
original software is s een as more challenging than reusing other
peopleÕs softwarepeopleÕs software.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 8

Reuse problems 2Reuse problems 2

Creating and maintaining a Populating a reusable component library and ensuring the softwareCreating and maintaining a
component library

Populating a reusable component library and ensuring the software
developers can use this library can be expensive. Our current techniques
for classifying, cataloguing and retrieving software components are
immature.

Fi di d di d S f h b di d i lib d d dFinding, understanding and
adapting reusable components

Software components have to be discovered in a library, understood and,
sometimes, adapted to work in a n ew environment. Engineers must be
reasonably confident of finding a component in the library before they will
make routinely include a component search as part of their normal
development processdevelopment process.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 9

The reuse landscapeThe reuse landscape

Although reuse is often simply thought of as
the reuse of system components, there are y
many different approaches to reuse that may
be used.
Reuse is possible at a range of levels from
simple functions to complete applicationsimple functions to complete application
systems.
The reuse landscape covers the range ofThe reuse landscape covers the range of
possible reuse techniques.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 10

The reuse landscapeThe reuse landscape

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 11

Reuse approaches 1Reuse approaches 1

Design patterns Generic abstractions that occur across applications are
represented as design patterns that show abstract and concrete
objects and interactionsobjects and interactions.

Component-based
development

Systems are developed by integrating components
(collections of objects) that conform to component-model
standards This is covered in Chapter 19standards. This is covered in Chapter 19.

Application
frameworks

Collections of abstract and concrete classes that can be
adapted and extended to create application systems.

L t L t (Ch t 2) th t b Ō dÕ bLegacy system
wrapping

Legacy systems (see Chapter 2) that can be ŌwrappedÕ by
defining a set of interfaces and providing access to these
legacy systems through these interfaces.

Service oriented Systems are developed by linking shared services that may beService-oriented
systems

Systems are developed by linking shared services that may be
externally provided.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 12

Reuse approaches 2Reuse approaches 2

Application product
lines

An application type is generalised around a common
architecture so that it can be adapted in different ways for
different customersdifferent customers.

COTS integration Systems are developed by integrating existing application
systems.

Configurable vertical A generic system is designed so that it can be configured toConfigurable vertical
applications

A generic system is designed so that it can be configured to
the needs of specific system customers.

Program libraries Class and function libraries implementing commonly-used
abstractions are available for reuse.

Program generators A generator system embeds knowledge of a particular types
of application and can generate systems or system fragments
in that domain.

Aspect-oriented
software development

Shared components are woven into an application at different
places when the program is compiled.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 13

Reuse planning factorsReuse planning factors

The development schedule for the software.
The expected software lifetime.The expected software lifetime.
The background, skills and experience of the
development teamdevelopment team.
The criticality of the software and its non-
f nctional req irementsfunctional requirements.
The application domain.
The execution platform for the software.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 14

Concept reuseConcept reuse

When you reuse program or design
components, you have to follow the design
decisions made by the original developer of thedecisions made by the original developer of the
component.
This may limit the opportunities for reuseThis may limit the opportunities for reuse.
However, a more abstract form of reuse is
concept reuse when a particular approach isconcept reuse when a particular approach is
described in an implementation independent
way and an implementation is then developed.
The two main approaches to concept reuse are:
• Design patterns;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 15

• Generative programming.

Design patternsDesign patterns

A design pattern is a way of reusing abstract
knowledge about a problem and its solution.g
A pattern is a description of the problem and
the essence of its solution.the essence of its solution.
It should be sufficiently abstract to be reused
in different settingsin different settings.
Patterns often rely on object characteristics
s ch as inheritance and pol morphismsuch as inheritance and polymorphism.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 16

Pattern elementsPattern elements

Name
• A meaningful pattern identifier.g p

Problem description.
Solution descriptionSolution description.
• Not a concrete design but a template for a

design solution that can be instantiated indesign solution that can be instantiated in
different ways.

ConsequencesConsequences
• The results and trade-offs of applying the

pattern

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 17

pattern.

Multiple displaysMultiple displays

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 18

The Observer patternThe Observer pattern

Name
• Observer.

DescriptionDescription
• Separates the display of object state from the object itself.

Problem description
• Used when multiple displays of state are needed.

Solution description
• See slide with UML description.See slide with UML description.

Consequences
• Optimisations to enhance display performance are impractical.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 19

The Observer patternThe Observer pattern

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 20

Generator based reuseGenerator-based reuse

Program generators involve the reuse of
standard patterns and algorithms.
These are embedded in the generator and
parameterised by user commands. A

i th t ti ll t dprogram is then automatically generated.
Generator-based reuse is possible when
d i b t ti d th i i tdomain abstractions and their mapping to
executable code can be identified.
A d i ifi l i d tA domain specific language is used to
compose and control these abstractions.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 21

Types of program generatorTypes of program generator

Types of program generator
• Application generators for business data processing;

P d l i l l t f l• Parser and lexical analyser generators for language
processing;

• Code generators in CASE tools.g
Generator-based reuse is very cost-effective but
its applicability is limited to a relatively small

fnumber of application domains.
It is easier for end-users to develop programs
using generators compared to other componentusing generators compared to other component-
based approaches to reuse.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 22

R th h tiReuse through program generation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 23

Aspect-oriented developmentAspect oriented development

Aspect-oriented development addresses a major
software engineering problem - the separation of
concerns.
Concerns are often not simply associated with

li ti f ti lit b t ttiapplication functionality but are cross-cutting - e.g.
all components may monitor their own operation,
all components may have to maintain securityall components may have to maintain security,
etc.
Cross cutting concerns are implemented asCross-cutting concerns are implemented as
aspects and are dynamically woven into a
program. The concern code is reuse and the new

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 24

program. The concern code is reuse and the new
system is generated by the aspect weaver.

Aspect-oriented developmentAspect oriented development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 25

Application frameworksApplication frameworks

Frameworks are a sub-system design made
up of a collection of abstract and concrete
classes and the interfaces between them.
The sub-system is implemented by addingThe sub system is implemented by adding
components to fill in parts of the design and
by instantiating the abstract classes in theby instantiating the abstract classes in the
framework.
Frameworks are moderately large entitiesFrameworks are moderately large entities
that can be reused.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 26

Framework classesFramework classes

System infrastructure frameworks
• Support the development of system

i f t t h i tiinfrastructures such as communications, user
interfaces and compilers.

Middleware integration frameworksMiddleware integration frameworks
• Standards and classes that support component

communication and information exchange.communication and information exchange.
Enterprise application frameworks
• Support the development of specific types ofSupport the development of specific types of

application such as telecommunications or
financial systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 27

Extending frameworksExtending frameworks

Frameworks are generic and are extended to
create a more specific application or sub-system.
Extending the framework involves
• Adding concrete classes that inherit operations from

b l i h f kabstract classes in the framework;
• Adding methods that are called in response to

events that are recognised by the frameworkevents that are recognised by the framework.
Problem with frameworks is their complexity which
means that it takes a long time to use themmeans that it takes a long time to use them
effectively.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 28

Model-view controllerModel view controller

System infrastructure framework for GUI
design.g
Allows for multiple presentations of an object
and separate interactions with theseand separate interactions with these
presentations.
MVC framework involves the instantiation ofMVC framework involves the instantiation of
a number of patterns (as discussed earlier
under concept reuse)under concept reuse).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 29

Model-view-controllerModel view controller

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 30

Application system reuseApplication system reuse

Involves the reuse of entire application
systems either by configuring a system y y g g y
for an environment or by integrating
two or more systems to create a new y
application.
Two approaches covered here:Two approaches covered here:
• COTS product integration;

Prod ct line de elopment• Product line development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 31

COTS product reuseCOTS product reuse

COTS - Commercial Off-The-Shelf systems.
COTS systems are usually complete y y
application systems that offer an API
(Application Programming Interface).
Building large systems by integrating COTS
systems is now a viable development
t t f t f t hstrategy for some types of system such as

E-commerce systems.
Th k b fit i f t li tiThe key benefit is faster application
development and, usually, lower
development costs

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 32

development costs.

COTS design choicesCOTS design choices

Which COTS products offer the most appropriate
functionality?

There ma be se eral similar prod cts that ma be• There may be several similar products that may be
used.

How will data be exchanged?How will data be exchanged?
• Individual products use their own data structures

and formats.
What features of the product will actually be
used?
• Most products have more functionality than is• Most products have more functionality than is

needed. You should try to deny access to unused
functionality.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 33

E-procurement systemE procurement system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 34

COTS products reusedCOTS products reused

On the client, standard e-mail and web
browsing programs are used.g g
On the server, an e-commerce platform has
to be integrated with an existing orderingto be integrated with an existing ordering
system.
• This involves writing an adaptor so that theyThis involves writing an adaptor so that they

can exchange data.
• An e-mail system is also integrated to generate y g g

e-mail for clients. This also requires an adaptor
to receive data from the ordering and invoicing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 35

system.

COTS system integration problemsCOTS system integration problems

Lack of control over functionality and performance
• COTS systems may be less effective than they

appear
Problems with COTS system inter-operability
• Different COTS systems may make different

assumptions that means integration is difficult
No control over system evolutionNo control over system evolution
• COTS vendors not system users control evolution

Support from COTS vendorsSupport from COTS vendors
• COTS vendors may not offer support over the

lifetime of the product

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 36

lifetime of the product

Software product linesSoftware product lines

Software product lines or application families
are applications with generic functionality that
can be adapted and configured for use in a
specific context.
Adaptation may involve:
• Component and system configuration;
• Adding new components to the system;
• Selecting from a library of existing components;

f• Modifying components to meet new requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 37

COTS product specialisationCOTS product specialisation

Platform specialisation
• Different versions of the application are developed

for different platformsfor different platforms.
Environment specialisation
• Different versions of the application are created toDifferent versions of the application are created to

handle different operating environments e.g.
different types of communication equipment.

F ti l i li tiFunctional specialisation
• Different versions of the application are created for

customers with different requirements.customers with different requirements.
Process specialisation
• Different versions of the application are created to

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 38

pp
support different business processes.

COTS configurationCOTS configuration

Deployment time configuration
• A generic system is configured by embedding g y g y g

knowledge of the customer’s requirements and
business processes. The software itself is not
h dchanged.

Design time configuration
• A common generic code is adapted and

changed according to the requirements of
ti l tparticular customers.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 39

ERP system organisationERP system organisation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 40

ERP systemsERP systems

An Enterprise Resource Planning (ERP)
system is a generic system that supports

b i hcommon business processes such as
ordering and invoicing, manufacturing, etc.
Th id l d i lThese are very widely used in large
companies - they represent probably the
most common form of software reusemost common form of software reuse.
The generic core is adapted by including
modules and by incorporating knowledge ofmodules and by incorporating knowledge of
business processes and rules.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 41

Design time configurationDesign time configuration

Software product lines that are configured at
design time are instantiations of generic g g
application architectures as discussed in
Chapter 13.
Generic products usually emerge after
experience with specific products.experience with specific products.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 42

Product line architecturesProduct line architectures

Architectures must be structured in such a
way to separate different sub-systems and to y y
allow them to be modified.
The architecture should also separateThe architecture should also separate
entities and their descriptions and the higher
levels in the system access entities throughlevels in the system access entities through
descriptions rather than directly.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 43

A resource management systemA resource management system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 44

Vehicle despatchingVehicle despatching

A specialised resource management system where the
aim is to allocate resources (vehicles) to handle incidents.
Ad t ti i l dAdaptations include:
• At the UI level, there are components for operator display and

communications;
• At the I/O management level, there are components that handle

authentication, reporting and route planning;
• At the resource management level, there are components forAt the resource management level, there are components for

vehicle location and despatch, managing vehicle status and
incident logging;

• The database includes equipment vehicle and map databasesThe database includes equipment, vehicle and map databases.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 45

A despatching systemA despatching system

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 46

Product instance developmentProduct instance development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 47

Product instance developmentProduct instance development

Elicit stakeholder requirements
• Use existing family member as a prototype

Ch l t fit f il bChoose closest-fit family member
• Find the family member that best meets the

requirementsrequirements
Re-negotiate requirements
• Adapt requirements as necessary to capabilities of p q y p

the software
Adapt existing system
• Develop new modules and make changes for family

member
Deliver new family member

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 48

Deliver new family member
• Document key features for further member

development

Key pointsKey points

Advantages of reuse are lower costs, faster
software development and lower risks.
D i tt hi h l l b t ti th tDesign patterns are high-level abstractions that
document successful design solutions.
Program generators are also concerned withProgram generators are also concerned with
software reuse - the reusable concepts are
embedded in a generator system.
Application frameworks are collections of concrete
and abstract objects that are designed for reuse
th h i li tithrough specialisation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 49

Key pointsKey points

COTS product reuse is concerned with the reuse
of large, off-the-shelf systems.
Problems with COTS reuse include lack of control
over functionality, performance, and evolution and

bl ith i t tiproblems with inter-operation.
ERP systems are created by configuring a generic

t ith i f ti b t t ’system with information about a customer’s
business.
S ft d t li l t d li tiSoftware product lines are related applications
developed around a common core of shared
functionality

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 18
Slide 50

functionality.

