
Component-based softwareComponent based software
engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 1

ObjectivesObjectives

To explain that CBSE is concerned with
developing standardised components and

i th i t li ticomposing these into applications
To describe components and component

d lmodels
To show the principal activities in the CBSE
process
To discuss approaches to component

iti d bl th t icomposition and problems that may arise

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 2

Topics coveredTopics covered

Components and component models
The CBSE processThe CBSE process
Component composition

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 3

Component-based developmentComponent based development

Component-based software engineering
(CBSE) is an approach to software
d l t th t li ftdevelopment that relies on software reuse.
It emerged from the failure of object-oriented
d l t t t ff tidevelopment to support effective reuse.
Single object classes are too detailed and
specificspecific.
Components are more abstract than object
classes and can be considered to be standclasses and can be considered to be stand-
alone service providers.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 4

CBSE essentialsCBSE essentials

Independent components specified by their
interfaces.
Component standards to facilitate
component integration.component integration.
Middleware that provides support for
component inter-operabilitycomponent inter-operability.
A development process that is geared to
reusereuse.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 5

CBSE and design principlesCBSE and design principles

Apart from the benefits of reuse, CBSE is
based on sound software engineering design

i i lprinciples:
• Components are independent so do not

interfere with each other;interfere with each other;
• Component implementations are hidden;
• Communication is through well-definedCommunication is through well defined

interfaces;
• Component platforms are shared and reduce

development costs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 6

CBSE problemsCBSE problems

Component trustworthiness - how can a component
with no available source code be trusted?
Component certification - who will certify the quality
of components?
E t t di ti h thEmergent property prediction - how can the
emergent properties of component compositions be
predicted?predicted?
Requirements trade-offs - how do we do trade-off
analysis between the features of one componentanalysis between the features of one component
and another?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 7

ComponentsComponents

Components provide a service without
regard to where the component is executing

it i lor its programming language
• A component is an independent executable

entity that can be made up of one or moreentity that can be made up of one or more
executable objects;

• The component interface is published and all p p
interactions are through the published interface;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 8

Component definitionsComponent definitions

Councill and Heinmann:
• A software component is a software element that

conforms to a component model and can beconforms to a component model and can be
independently deployed and composed without
modification according to a composition standard.

Szyperski:
• A software component is a unit of composition with

contract all specified interfaces and e plicit conte tcontractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition by
third-parties.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 9

Component as a service providerComponent as a service provider

The component is an independent,
executable entity. It does not have to be
compiled before it is used with other
components.
The services offered by a component are
made available through an interface and allmade available through an interface and all
component interactions take place through
that interface.t at te ace

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 10

Component characteristics 1Component characteristics 1

Standardised Component standardisation means that a component that is
used in a CBSE process has to conform to some standardised

t d l Thi d l d fi tcomponent model. This model may define component
interfaces, component meta-data, documentation, composition
and deployment.

Independen t A component should be independen t Š it should be possible toIndependen t A component should be independen t Š it should be possible to
compose and deploy it without having to use other specific
components. In situations where the component needs
externally provided services, these should be explicitly set out
in a ŌrequiresÕ interface specification.

Composable For a component to be composable, all external interactions
must take place through publicly defined interfaces. In
addition, it must provide external access to information about
itself such as its methods and attributes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 11

Component characteristics 2Component characteristics 2

Deployable To be deployable, a component has to be se lf-contained and
must be able to operate as a stand-alone entity on some
component platform that implements the component model.
This usually means that the component is a binary componentThis usually means that the component is a binary component
that does not have to be compiled before it is deployed.

Documented Components have to be fully documented so that potential
users of the component can decide whether or not they meetusers of the component can decide whether or not they meet
their needs. The syntax and, ideally, the semantics of all
component interfaces have to be specified.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 12

Component interfacesComponent interfaces

Provides interface
• Defines the services that are provided by the p y

component to other components.
Requires interfaceq
• Defines the services that specifies what

services must be made available for the
component to execute as specified.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 13

Component interfacesComponent interfaces

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 14

A data collector componentA data collector component

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 15

Components and objectsComponents and objects

Components are deployable entities.
Components do not define types.Components do not define types.
Component implementations are opaque.
Components are language independentComponents are language-independent.
Components are standardised.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 16

Component modelsComponent models

A component model is a definition of standards for
component implementation, documentation and
d l tdeployment.
Examples of component models

EJB d l (E t i J B)• EJB model (Enterprise Java Beans)
• COM+ model (.NET model)
• Corba Component ModelCorba Component Model

The component model specifies how interfaces
should be defined and the elements that should be
included in an interface definition.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 17

Elements of a component modelElements of a component model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 18

Middleware supportMiddleware support

Component models are the basis for middleware
that provides support for executing components.
Component model implementations provide:Component model implementations provide:
• Platform services that allow components written

according to the model to communicate;
• Horizontal services that are application-independent

services used by different components.
To use services provided by a model componentsTo use services provided by a model, components
are deployed in a container. This is a set of
interfaces used to access the service
i l t tiimplementations.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 19

Component model servicesComponent model services

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 20

Component development for reuseComponent development for reuse

Components developed for a specific
application usually have to be generalised to

k th blmake them reusable.
A component is most likely to be reusable if it

i t d ith t bl d i b t tiassociated with a stable domain abstraction
(business object).
F l i h it l t bl d iFor example, in a hospital stable domain
abstractions are associated with the
fundamental purpose nurses patientsfundamental purpose - nurses, patients,
treatments, etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 21

Component development for reuseComponent development for reuse

Components for reuse may be specially constructed by
generalising existing components.
Component reusabilityComponent reusability
• Should reflect stable domain abstractions;
• Should hide state representation;

Sh ld b i d d t ibl• Should be as independent as possible;
• Should publish exceptions through the component

interface.
There is a trade-off between reusability and usability
• The more general the interface, the greater the reusability

but it is then more complex and hence less usablebut it is then more complex and hence less usable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 22

Changes for reusabilityChanges for reusability

Remove application-specific methods.
Change names to make them general.Change names to make them general.
Add methods to broaden coverage.
Make exception handling consistentMake exception handling consistent.
Add a configuration interface for component
adaptation.
Integrate required components to reduce
dependencies.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 23

Legacy system componentsLegacy system components

Existing legacy systems that fulfil a useful
business function can be re-packaged as
components for reuse.
This involves writing a wrapper componentThis involves writing a wrapper component
that implements provides and requires
interfaces then accesses the legacy system.interfaces then accesses the legacy system.
Although costly, this can be much less
expensive than rewriting the legacy systemexpensive than rewriting the legacy system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 24

Reusable componentsReusable components

The development cost of reusable
components may be higher than the cost of
specific equivalents. This extra reusability
enhancement cost should be an organization
rather than a project cost.
Generic components may be less Ge e c co po e ts ay be ess
space-efficient and may have longer
execution times than their specific e ecu o es a e spec c
equivalents.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 25

The CBSE processThe CBSE process

When reusing components, it is essential to
make trade-offs between ideal requirements

d th i t ll id d band the services actually provided by
available components.
Thi i lThis involves:
• Developing outline requirements;

S hi f t th dif i• Searching for components then modifying
requirements according to available functionality.

• Searching again to find if there are betterSearching again to find if there are better
components that meet the revised requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 26

The CBSE processThe CBSE process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 27

The component identification processThe component identification process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 28

Component identification issuesComponent identification issues

Trust. You need to be able to trust the supplier of a
component. At best, an untrusted component may
not operate as advertised; at worst it can breachnot operate as advertised; at worst, it can breach
your security.
Requirements. Different groups of components will q g p p
satisfy different requirements.
Validation.

Th t ifi ti t b d t il d h• The component specification may not be detailed enough
to allow comprehensive tests to be developed.

• Components may have unwanted functionality. How can
you test this will not interfere with your application?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 29

Ariane launcher failureAriane launcher failure

In 1996, the 1st test flight of the Ariane 5 rocket
ended in disaster when the launcher went out of

t l 37 d ft t k ffcontrol 37 seconds after take off.
The problem was due to a reused component from a
previous version of the launcher (the Inertialprevious version of the launcher (the Inertial
Navigation System) that failed because assumptions
made when that component was developed did notmade when that component was developed did not
hold for Ariane 5.
The functionality that failed in this component was y p
not required in Ariane 5.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 30

Component compositionComponent composition

The process of assembling components to
create a system.
Composition involves integrating
components with each other and with thecomponents with each other and with the
component infrastructure.
Normally you have to write ‘glue code’ toNormally you have to write glue code to
integrate components.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 31

Types of compositionTypes of composition

Sequential composition where the composed
components are executed in sequence. This
involves composing the provides interfaces of eachinvolves composing the provides interfaces of each
component.
Hierarchical composition where one component calls p p
on the services of another. The provides interface of
one component is composed with the requires
interface of anotherinterface of another.
Additive composition where the interfaces of two
components are put together to create a new p p g
component.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 32

Types of compositionTypes of composition

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 33

Interface incompatibilityInterface incompatibility

Parameter incompatibility where operations
have the same name but are of different
types.
Operation incompatibility where the namesOperation incompatibility where the names
of operations in the composed interfaces are
different.different.
Operation incompleteness where the
provides interface of one component is aprovides interface of one component is a
subset of the requires interface of another.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 34

Incompatible componentsIncompatible components

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 35

Adaptor componentsAdaptor components

Address the problem of component
incompatibility by reconciling the interfaces
of the components that are composed.
Different types of adaptor are requiredDifferent types of adaptor are required
depending on the type of composition.
An addressFinder and a mapper componentAn addressFinder and a mapper component
may be composed through an adaptor that
strips the postal code from an address andstrips the postal code from an address and
passes this to the mapper component.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 36

Composition through an adaptorComposition through an adaptor

The component postCodeStripper is the
adaptor that facilitates the sequential
composition of addressFinder and mapper
components.

dd dd Fi d l ti (h b)address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000)mapper.displayMap(postCode, 10000)

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 37

Adaptor for data collectorAdaptor for data collector

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 38

Interface semanticsInterface semantics

You have to rely on component
documentation to decide if interfaces that are
syntactically compatible are actually
compatible.
Consider an interface for a PhotoLibrary
component:component:

public void addItem (Identifier pid ; Photograph p; CatalogEntry photodesc) ;
bli Ph t h t i (Id tifi id)public Photograph retrieve (Identifier pid) ;

public CatalogEntry catEntry (Identifier pid) ;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 39

Photo library compositionPhoto library composition

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 40

Photo Library documentationPhoto Library documentation

“This method adds a photograph to the library
d i h h h id ifi dand associates the photograph identifier and

catalogue descriptor with the photograph.”

“what happens if the photograph identifier is
already associated with a photograph in the y p g p
library?”
“is the photograph descriptor associated with
th t l t ll th h t hthe catalogue entry as well as the photograph
i.e. if I delete the photograph, do I also delete
the catalogue information?”

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 41

the catalogue information?

The Object Constraint LanguageThe Object Constraint Language

The Object Constraint Language (OCL) has
been designed to define constraints that are
associated with UML models.
It is based around the notion of pre and postIt is based around the notion of pre and post
condition specification - similar to the
approach used in Z as described in Chapterapproach used in Z as described in Chapter
10.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 42

Formal description of photo libraryFormal description of photo library

-- The context keyword names the component to which the conditions apply
context addItem

Th diti if h t t b t b f ti f ddIt-- The preconditions specify what must be true before execution of addItem
pre: PhotoLibrary.libSize() > 0

PhotoLibrary.retrieve(pid) = null

Th t diti if h t i t ft ti-- The postconditions specify what is true after execution
post: libSize () = libSize()@pre + 1

PhotoLibrary.retrieve(pid) = p
PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) <> null ;y ()

post: PhotoLibrary.retrieve(pid) = null
PhotoLibrary.catEntry(pid) = PhotoLibrary.catEntry(pid)@pre
PhotoLibrary.libSize() = libSize()@pre - 1

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 43

y () ()@p

Photo library conditionsPhoto library conditions

As specified, the OCL associated with the Photo
Library component states that:
• There must not be a photograph in the library with the

same identifier as the photograph to be entered;
• The library must exist - assume that creating a libraryThe library must exist assume that creating a library

adds a single item to it;
• Each new entry increases the size of the library by 1;

f f• If you retrieve using the same identifier then you get back
the photo that you added;

• If you look up the catalogue using that identifier, then you y p g g , y
get back the catalogue entry that you made.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 44

Composition trade-offsComposition trade offs

When composing components, you may find
conflicts between functional and non-functional

i t d fli t b t th d frequirements, and conflicts between the need for
rapid delivery and system evolution.
You need to make decisions such as:You need to make decisions such as:
• What composition of components is effective for

delivering the functional requirements?g q
• What composition of components allows for future change?
• What will be the emergent properties of the composed

system?system?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 45

Data collection and report generationData collection and report generation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 46

Key pointsKey points

CBSE is a reuse-based approach to defining and
implementing loosely coupled components into
systemssystems.
A component is a software unit whose functionality
and dependencies are completely defined by its p p y y
interfaces.
A component model defines a set of standards that
component providers and composers should followcomponent providers and composers should follow.
During the CBSE process, the processes of
requirements engineering and system design arerequirements engineering and system design are
interleaved.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 47

Key pointsKey points

Component composition is the process of
‘wiring’ components together to create a

tsystem.
When composing reusable components, you

ll h t it d t t ilnormally have to write adaptors to reconcile
different component interfaces.
Wh h i iti h tWhen choosing compositions, you have to
consider required functionality, non-
functional requirements and systemfunctional requirements and system
evolution.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 19
Slide 48

