
Verification and ValidationVerification and Validation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 1

ObjectivesObjectives

To introduce software verification and validation and
to discuss the distinction between them
To describe the program inspection process and its
role in V & V
T l i t ti l i ifi ti t h iTo explain static analysis as a verification technique
To describe the Cleanroom software development
processprocess

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 2

Topics coveredTopics covered

Verification and validation planning
Software inspectionsSoftware inspections
Automated static analysis
Cleanroom software developmentCleanroom software development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 3

Verification vs validationVerification vs validation

Verification:
"Are we building the product right”.

The software should conform to its
specification.specification.
Validation:

"Are we building the right product”Are we building the right product .
The software should do what the user really
requiresrequires.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 4

The V & V processThe V & V process

Is a whole life-cycle process - V & V must be
applied at each stage in the software
process.
Has two principal objectivesHas two principal objectives
• The discovery of defects in a system;
• The assessment of whether or not the system isThe assessment of whether or not the system is

useful and useable in an operational situation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 5

V& V goalsV& V goals

Verification and validation should establish
confidence that the software is fit for purpose.
This does NOT mean completely free of
defects.defects.
Rather, it must be good enough for its
intended use and the type of use willintended use and the type of use will
determine the degree of confidence that is
neededneeded.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 6

V & V confidenceV & V confidence

Depends on system’s purpose, user
expectations and marketing environment
• Software function

• The level of confidence depends on how critical the
software is to an organisation.software is to an organisation.

• User expectations
• Users may have low expectations of certain kinds of

ftsoftware.
• Marketing environment

• Getting a product to market early may be moreGetting a product to market early may be more
important than finding defects in the program.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 7

Static and dynamic verificationStatic and dynamic verification

Software inspections. Concerned with analysis of
the static system representation to discoverthe static system representation to discover
problems (static verification)
• May be supplement by tool-based document and codeMay be supplement by tool based document and code

analysis

Software testing. Concerned with exercising and
observing product behaviour (dynamic verification)
• The system is executed with test data and its operational

behaviour is observedbehaviour is observed

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 8

Static and dynamic V&VStatic and dynamic V&V

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 9

Program testingProgram testing

Can reveal the presence of errors NOT their
absence.
The only validation technique for non-
functional requirements as the software hasfunctional requirements as the software has
to be executed to see how it behaves.
Should be used in conjunction with staticShould be used in conjunction with static
verification to provide full V&V coverage.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 10

Types of testingTypes of testing

Defect testing
• Tests designed to discover system defects.
• A successful defect test is one which reveals the

presence of defects in a system.
• Covered in Chapter 23Covered in Chapter 23

Validation testing
• Intended to show that the software meets its

requirements.
• A successful test is one that shows that a requirements

has been properly implementedhas been properly implemented.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 11

Testing and debuggingTesting and debugging

Defect testing and debugging are distinct
processes.
Verification and validation is concerned with
establishing the existence of defects in a program.
D b i i d ith l ti dDebugging is concerned with locating and
repairing these errors.
Debugging involves formulating a hypothesisDebugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error.hypotheses to find the system error.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 12

The debugging processThe debugging process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 13

V & V planningV & V planning

Careful planning is required to get the most
out of testing and inspection processes.
Planning should start early in the
development process.
The plan should identify the balance
between static verification and testing.
Test planning is about defining standards for
the testing process rather than describing

d t t tproduct tests.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 14

The V model of developmentThe V-model of development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 15

The structure of a software test planThe structure of a software test plan

The testing process.
Requirements traceability.Requirements traceability.
Tested items.
Testing scheduleTesting schedule.
Test recording procedures.
Hardware and software requirements.
Constraints.Co s a s

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 16

The software test planThe software test plan

The testing process
A description of the major phases of the testing process. These might be
as described earlier in this chapter.

Requirements traceability
Users are most interested in the system meeting its requirements and
testing should be planned so that all requirements are individually tested.

Tested items
The products of the software process that are to be tested should be
specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule.
This, obviously, is linked to the more general project development
schedule.

Test recording procedures
It is not enough simply to run tests. The results of the tests must be
systematically recorded. It must be possible to audit the testing process
to check that it been carried out correctly.

Hardware and software requirementsq
This section should set out software tools required and estimated
hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should
be anticipated in this section.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 17

p

Software inspectionsSoftware inspections

These involve people examining the source
representation with the aim of discovering anomalies

d d f tand defects.
Inspections not require execution of a system so
may be used before implementationmay be used before implementation.
They may be applied to any representation of the
system (requirements design configuration datasystem (requirements, design,configuration data,
test data, etc.).
They have been shown to be an effective techniqueThey have been shown to be an effective technique
for discovering program errors.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 18

Inspection successInspection success

Many different defects may be discovered in
a single inspection. In testing, one
defect ,may mask another so several
executions are required.
The reuse domain and programming
knowledge so reviewers are likely to haveknowledge so reviewers are likely to have
seen the types of error that commonly arise.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 19

Inspections and testingInspections and testing

Inspections and testing are complementary and not
opposing verification techniques.
Both should be used during the V & V process.
Inspections can check conformance with a

ifi ti b t t f ith thspecification but not conformance with the
customer’s real requirements.
Inspections cannot check non functionalInspections cannot check non-functional
characteristics such as performance, usability, etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 20

Program inspectionsProgram inspections

Formalised approach to document reviews
Intended explicitly for defect detection (notIntended explicitly for defect detection (not
correction).
Defects may be logical errors anomalies inDefects may be logical errors, anomalies in
the code that might indicate an erroneous
condition (e g an uninitialised variable) orcondition (e.g. an uninitialised variable) or
non-compliance with standards.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 21

Inspection pre conditionsInspection pre-conditions

A precise specification must be available.
Team members must be familiar with the
organisation standards.
Syntactically correct code or other system

t ti t b il blrepresentations must be available.
An error checklist should be prepared.
Management must accept that inspection will
increase costs early in the software process.
M t h ld t i ti f t ffManagement should not use inspections for staff
appraisal ie finding out who makes mistakes.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 22

The inspection processThe inspection process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 23

Inspection procedureInspection procedure

System overview presented to inspection
team.
Code and associated documents are
distributed to inspection team in advance.
Inspection takes place and discovered errors
are noted.
Modifications are made to repair discovered
errors.
Re-inspection may or may not be required.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 24

Inspection rolesInspection roles

Author or owner The programmer or designer responsible for
producing the program or document. Responsible
for fixing defects discovered during the inspectionfor fixing defects discovered during the inspection
process.

Inspector Finds errors, omissions and inconsistencies in
programs and documents. May also identifyp g y y
broader issues that are outside the scope of the
inspection team.

Reader Presents the code or document at an inspection
meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspection.Chairman or moderator Manages the process and facilitates the inspection.
Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,
checklist updating, standards development etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 25

Inspection checklistsInspection checklists

Checklist of common errors should be used to
drive the inspection.
Error checklists are programming language
dependent and reflect the characteristic errors that
are likely to arise in the languageare likely to arise in the language.
In general, the 'weaker' the type checking, the larger
the checklistthe checklist.
Examples: Initialisation, Constant naming, loop
termination, array bounds, etc.termination, array bounds, etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 26

Inspection checks 1Inspection checks 1

Data faults Are all program variables initialised before their values are
used?
Have all constants been named?
Should the upper bound of arrays be equal to the size of the
array or Size -1?
If character strings are used, is a de limiter explicitly
assigned?
Is there any possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct?
Is each loop certain to terminate?
Are compound statements correctly bracketed?Are compound statements correctly bracketed?
In case statements, are all possible cases accounted for?
If a break is required after each case in case statements, has
it been included?

Input/output faults Are all input variables used?
Are all output variables assigned a value before they are
output?
Can unexpected inputs cause corruption?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 27

Inspection checks 2Inspection checks 2

Interface faults Do all function and method calls have the correct number
of parameters?p
Do formal and actual parameter types match?
Are the parameters in the right order?
If components access shared memory, do they have the
same model of the shared memory structure?same model of the shared memory structure?

Storage
management faults

If a linked structure is modified, have all links been
correctly reassigned?
If dynamic storage is used has space been allocatedIf dynamic storage is used, has space been allocated
correctly?
Is space explicitly de-allocated after it is no longer
required?

Exception
management faults

Have all possible error conditions been taken into account?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 28

Inspection rateInspection rate

500 statements/hour during overview.
125 source statement/hour during individual125 source statement/hour during individual
preparation.
90-125 statements/hour can be inspected90-125 statements/hour can be inspected.
Inspection is therefore an expensive process.
Inspecting 500 lines costs about 40
man/hours effort - about £2800 at UK rates.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 29

Automated static analysisAutomated static analysis

Static analysers are software tools for source
text processing.
They parse the program text and try to
discover potentially erroneous conditions anddiscover potentially erroneous conditions and
bring these to the attention of the V & V team.
They are very effective as an aid toThey are very effective as an aid to
inspections - they are a supplement to but
not a replacement for inspectionsnot a replacement for inspections.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 30

Static analysis checksStatic analysis checks

Fault class Static analysis check

Data faults Variables used before initialisation
Variables declared but never usedVariables declared but never used
Variables assigned twice but never used between
assignments
Possible array bound violations
Undeclared variablesUndeclared variables

Control faults Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no interveningInput/output faults Variables output twice with no intervening
assignment

Interface faults Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage management
faults

Unassigned pointers
Pointer arithmetic

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 31

faults Pointer arithmetic

Stages of static analysisStages of static analysis

Control flow analysis. Checks for loops with
multiple exit or entry points, finds unreachable

d tcode, etc.
Data use analysis. Detects uninitialised
variables variables written twice without anvariables, variables written twice without an
intervening assignment, variables which are
declared but never used, etc.dec a ed but e e used, etc
Interface analysis. Checks the consistency of
routine and procedure declarations and their p
use

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 32

Stages of static analysisStages of static analysis

Information flow analysis. Identifies the
dependencies of output variables. Does not
detect anomalies itself but highlights
information for code inspection or review
Path analysis. Identifies paths through the
program and sets out the statements p og a a d sets out t e state e ts
executed in that path. Again, potentially
useful in the review processuse u e e e p ocess
Both these stages generate vast amounts of
information They must be used with care

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 33

information. They must be used with care.

LINT static analysisLINT static analysis

138% more lint_ex.c
#include <stdio.h>
printarray (Anarray)
 int Anarray;
{ printf(“%d?Anarray); }

main ()
{
int Anarray[5]; int i; char c; int Anarray[5]; int i; char c;
 printarray (Anarray, i, c);
 printarray (Anarray) ;
}

139% cc lint_ex.c
140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set
lint_ex.c(10): warning: i may be used before set
printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)
printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)

i tf t l hi h i l i d

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 34

printf returns value which is always ignored

Use of static analysisUse of static analysis

Particularly valuable when a language such
as C is used which has weak typing and
hence many errors are undetected by the
compiler,
Less cost-effective for languages like Java
that have strong type checking and canthat have strong type checking and can
therefore detect many errors during
compilation.co p at o

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 35

Verification and formal methodsVerification and formal methods

Formal methods can be used when a
mathematical specification of the system is
produced.
They are the ultimate static verificationThey are the ultimate static verification
technique.
They involve detailed mathematical analysisThey involve detailed mathematical analysis
of the specification and may develop formal
arguments that a program conforms to itsarguments that a program conforms to its
mathematical specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 36

Arguments for formal methodsArguments for formal methods

Producing a mathematical specification
requires a detailed analysis of the
requirements and this is likely to uncover
errors.
They can detect implementation errors
before testing when the program is analysedbefore testing when the program is analysed
alongside the specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 37

Arguments against formal methodsArguments against formal methods

Require specialised notations that cannot be
understood by domain experts.
Very expensive to develop a specification
and even more expensive to show that aand even more expensive to show that a
program meets that specification.
It may be possible to reach the same level ofIt may be possible to reach the same level of
confidence in a program more cheaply using
other V & V techniquesother V & V techniques.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 38

Cleanroom software developmentCleanroom software development

The name is derived from the 'Cleanroom'
process in semiconductor fabrication. The
hil h i d f t id th thphilosophy is defect avoidance rather than

defect removal.
This software development process is based on:This software development process is based on:
• Incremental development;
• Formal specification;Formal specification;
• Static verification using correctness arguments;
• Statistical testing to determine program reliability.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 39

The Cleanroom processThe Cleanroom process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 40

Cleanroom process characteristicsCleanroom process characteristics

Formal specification using a state transition
model.
Incremental development where the
customer prioritises increments.
Structured programming - limited control and
abstraction constructs are used in the
program.
Static verification using rigorous inspections.
Statistical testing of the system (covered in
Ch. 24).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 41

Formal specification and inspectionsFormal specification and inspections

The state based model is a system
specification and the inspection process
checks the program against this mode.l
The programming approach is defined soThe programming approach is defined so
that the correspondence between the model
and the system is clear.and the system is clear.
Mathematical arguments (not proofs) are
used to increase confidence in the inspectionused to increase confidence in the inspection
process.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 42

Cleanroom process teamsCleanroom process teams

Specification team. Responsible for developing
and maintaining the system specification.
Development team. Responsible for
developing and verifying the software. The
software is NOT executed or even compiledsoftware is NOT executed or even compiled
during this process.
Certification team Responsible for developingCertification team. Responsible for developing
a set of statistical tests to exercise the software
after development. Reliability growth models p y g
used to determine when reliability is acceptable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 43

Cleanroom process evaluationCleanroom process evaluation

The results of using the Cleanroom process have
been very impressive with few discovered faults in
delivered systemsdelivered systems.
Independent assessment shows that the
process is no more expensive than other p p
approaches.
There were fewer errors than in a 'traditional'
development processdevelopment process.
However, the process is not widely used. It is not
clear how this approach can be transferredclear how this approach can be transferred
to an environment with less skilled or less
motivated software engineers.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 44

Key pointsKey points

Verification and validation are not the same
thing. Verification shows conformance with
specification; validation shows that the
program meets the customer’s needs.
Test plans should be drawn up to guide the
testing process.test g p ocess
Static verification techniques involve
examination and analysis of the program forexamination and analysis of the program for
error detection.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 45

Key pointsKey points

Program inspections are very effective in
discovering errors.
Program code in inspections is systematicallyProgram code in inspections is systematically
checked by a small team to locate software faults.
Static analysis tools can discover programStatic analysis tools can discover program
anomalies which may be an indication of faults in the
code.

CThe Cleanroom development process depends on
incremental development, static verification and
statistical testing.statistical testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22
Slide 46

