
Software testingSoftware testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 1

ObjectivesObjectives

To discuss the distinctions between
validation testing and defect testing
To describe the principles of system and
component testingcomponent testing
To describe strategies for generating system
test casestest cases
To understand the essential characteristics
of tool used for test automationof tool used for test automation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 2

Topics coveredTopics covered

System testing
Component testingComponent testing
Test case design
Test automationTest automation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 3

The testing processThe testing process

Component testing
• Testing of individual program components;
• Usually the responsibility of the component developer

(except sometimes for critical systems);
• Tests are derived from the developer’s experience.Tests are derived from the developer s experience.

System testing
• Testing of groups of components integrated to create a g g p p g

system or sub-system;
• The responsibility of an independent testing team;

Tests are based on a system specification• Tests are based on a system specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 4

Testing phasesTesting phases

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 5

Defect testingDefect testing

The goal of defect testing is to discover
defects in programs
A successful defect test is a test which
causes a program to behave in ancauses a program to behave in an
anomalous way
Tests show the presence not the absence ofTests show the presence not the absence of
defects

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 6

Testing process goalsTesting process goals

Validation testing
• To demonstrate to the developer and the system

customer that the software meets its requirements;customer that the software meets its requirements;
• A successful test shows that the system operates as

intended.

Defect testing
• To discover faults or defects in the software where its

behaviour is incorrect or not in conformance with its
specification;

• A successful test is a test that makes the system performA successful test is a test that makes the system perform
incorrectly and so exposes a defect in the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 7

The software testing processThe software testing process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 8

Testing policiesTesting policies

Only exhaustive testing can show a program is free
from defects. However, exhaustive testing is
i iblimpossible,
Testing policies define the approach to be used in
selecting system tests:selecting system tests:
• All functions accessed through menus should be tested;
• Combinations of functions accessed through the sameCombinations of functions accessed through the same

menu should be tested;
• Where user input is required, all functions must be tested

with correct and incorrect inputwith correct and incorrect input.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 9

System testingSystem testing

Involves integrating components to create a
system or sub-system.
May involve testing an increment to be
delivered to the customer.
Two phases:
• Integration testing - the test team have access

t th t d Th t i t t dto the system source code. The system is tested
as components are integrated.

• Release testing - the test team test theRelease testing the test team test the
complete system to be delivered as a black-box.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 10

Integration testingIntegration testing

Involves building a system from its
components and testing it for problems that

i f t i t tiarise from component interactions.
Top-down integration
• Develop the skeleton of the system and

populate it with components.
Bottom up integrationBottom-up integration
• Integrate infrastructure components then add

functional componentsfunctional components.
To simplify error localisation, systems should
be incrementally integrated

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 11

be incrementally integrated.

Incremental integration testingIncremental integration testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 12

Testing approachesTesting approaches

Architectural validation
• Top-down integration testing is better at discovering

errors in the system architectureerrors in the system architecture.
System demonstration
• Top-down integration testing allows a limited

demonstration at an early stage in the development.
Test implementation
• Often easier with bottom-up integration testing• Often easier with bottom-up integration testing.

Test observation
• Problems with both approaches. Extra code may be y

required to observe tests.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 13

Release testingRelease testing

The process of testing a release of a system
that will be distributed to customers.
Primary goal is to increase the supplier’s
confidence that the system meets its

i trequirements.
Release testing is usually black-box or
f ti l t tifunctional testing
• Based on the system specification only;

T t d t h k l d f th t• Testers do not have knowledge of the system
implementation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 14

Black box testingBlack-box testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 15

Testing guidelinesTesting guidelines

Testing guidelines are hints for the testing
team to help them choose tests that will

l d f t i th treveal defects in the system
• Choose inputs that force the system to generate

all error messages;all error messages;
• Design inputs that cause buffers to overflow;
• Repeat the same input or input series severalRepeat the same input or input series several

times;
• Force invalid outputs to be generated;
• Force computation results to be too large or too

small.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 16

Testing scenarioTesting scenario

A d i S l d i d i A i Hi d h b k d iA student in Scotland is studying American History and has been asked to write a paper
on ŌFrontier mentality in the American West from 1840 to 1880Õ. To do this, she needs to
find sources from a range of libraries. She logs on to the LIBSYS system and uses the
search facility to discover if she can acce ss original documents from that time Shesearch facility to discover if she can acce ss original documents from that time. She
discovers sources in various US university libraries and down loads copies of some of
these. However, for one document, she needs to have confirmation from her university
that she is a genuine student and that use is for non-commercial purposes. The s tudent
then uses the facility in LIBSYS that can request such permission and registers her
request. If granted, the document will be downloaded to the registered libraryÕs server
and printed for her. She receives a message from LIBSYS telling her that she will receive

il h th i t d d t i il bl f ll tian e-mail message when th e printed document is available for collection.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 17

System testsSystem tests

1. Test the login mechanism using correct and incorrect logins to check
that valid users are accepted and invalid users are rejectedthat valid users are accepted and invalid users are rejected.

2. Test the search facility using different queries against known sources to
check that the search mechanism is actually finding documents.

3. Test the system presentation facility to check that information about
documents is displayed properly.

4 T t th h i t t i i f d l di4. Test the mechanism to request permission for downloading.

5. Test the e-mail response indicating that the downloaded document is
available.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 18

Use casesUse cases

Use cases can be a basis for deriving the
tests for a system. They help identify
operations to be tested and help design the
required test cases.
From an associated sequence diagram, the
inputs and outputs to be created for the testsinputs and outputs to be created for the tests
can be identified.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 19

Collect weather data sequence chartCollect weather data sequence chart

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 20

Performance testingPerformance testing

Part of release testing may involve testing
the emergent properties of a system, such
as performance and reliability.
Performance tests usually involve planning aPerformance tests usually involve planning a
series of tests where the load is steadily
increased until the system performanceincreased until the system performance
becomes unacceptable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 21

Stress testingStress testing

Exercises the system beyond its maximum design
load. Stressing the system often causes defects to

t li htcome to light.
Stressing the system test failure behaviour..
Systems should not fail catastrophically StressSystems should not fail catastrophically. Stress
testing checks for unacceptable loss of service or
data.data.
Stress testing is particularly relevant to distributed
systems that can exhibit severe degradation as a y g
network becomes overloaded.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 22

Component testingComponent testing

Component or unit testing is the process of
testing individual components in isolation.
It is a defect testing process.
Components may be:Components may be:
• Individual functions or methods within an object;
• Object classes with several attributes and• Object classes with several attributes and

methods;
• Composite components with defined interfaces• Composite components with defined interfaces

used to access their functionality.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 23

Object class testingObject class testing

Complete test coverage of a class involves
• Testing all operations associated with an object;g p j
• Setting and interrogating all object attributes;
• Exercising the object in all possible states.g j p

Inheritance makes it more difficult to design
object class tests as the information to beobject class tests as the information to be
tested is not localised.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 24

Weather station object interfaceWeather station object interface

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 25

Weather station testingWeather station testing

Need to define test cases for reportWeather,
calibrate, test, startup and shutdown.
Using a state model, identify sequences of
state transitions to be tested and the eventstate transitions to be tested and the event
sequences to cause these transitions
For example:For example:
• Waiting -> Calibrating -> Testing -> Transmitting

-> Waiting> Waiting

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 26

Interface testingInterface testing

Objectives are to detect faults due to
interface errors or invalid assumptions about
interfaces.
Particularly important for object-orientedParticularly important for object oriented
development as objects are defined by their
interfaces.te aces

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 27

Interface testingInterface testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 28

Interface typesInterface types

Parameter interfaces
• Data passed from one procedure to another.

Shared memory interfaces
• Block of memory is shared between procedures or

functionsfunctions.

Procedural interfaces
• Sub-system encapsulates a set of procedures to be calledSub system encapsulates a set of procedures to be called

by other sub-systems.

Message passing interfaces
• Sub-systems request services from other sub-system.s

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 29

Interface errorsInterface errors

Interface misuse
• A calling component calls another component and makes

an error in its use of its interface e g parameters in thean error in its use of its interface e.g. parameters in the
wrong order.

Interface misunderstandingInterface misunderstanding
• A calling component embeds assumptions about the

behaviour of the called component which are incorrect.

Timing errors
• The called and the calling component operate at different

speeds and out of date information is accessedspeeds and out-of-date information is accessed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 30

Interface testing guidelinesInterface testing guidelines

Design tests so that parameters to a called
procedure are at the extreme ends of their ranges.
Always test pointer parameters with null pointers.
Design tests which cause the component to fail.
Use stress testing in message passing systems.
In shared memory systems, vary the order in which
components are activated.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 31

Test case designTest case design

Involves designing the test cases (inputs and
outputs) used to test the system.
The goal of test case design is to create a
set of tests that are effective in validation and
d f t t tidefect testing.
Design approaches:
• Requirements-based testing;
• Partition testing;

St t l t ti• Structural testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 32

Requirements based testingRequirements based testing

A general principle of requirements
engineering is that requirements should be
testable.
Requirements-based testing is a validationRequirements based testing is a validation
testing technique where you consider each
requirement and derive a set of tests for thatrequirement and derive a set of tests for that
requirement.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 33

LIBSYS requirementsLIBSYS requirements

Th h ll b bl t h ith ll f th i iti l t f d t b l tThe user shall be able to search either all of the initial set of databases or select a
subset from it.

The system shall provide appropriate viewers for the user to read documents in the
document store.

Every order shall be allocated a unique identifier (ORDER_ID) that the user shall
be able to copy to the accountÕs permanent storage area.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 34

LIBSYS testsLIBSYS tests

• Initiate user search for searches for items that are known to
be present and known not to be present, where the set of
databases includes 1 databasedatabases includes 1 database.

• Initiate user searches for items that are known to be present
and known not to be present, where the set of databases
includes 2 databases

• Initiate user searches for items that are known to be present
and known not to be present where the set of databases
includes more than 2 databases.

• Select one database from the set of databases and initiate
user searches for items that are known to be present and
known not to be present.
S l h d b f h f d b• Select more than one database from the set of databases
and initiate searches for items that are known to be present
and known not to be present.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 35

Partition testingPartition testing

Input data and output results often fall into
different classes where all members of a
class are related.
Each of these classes is an equivalenceEach of these classes is an equivalence
partition or domain where the program
behaves in an equivalent way for each classbehaves in an equivalent way for each class
member.
Test cases should be chosen from eachTest cases should be chosen from each
partition.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 36

Equivalence partitioningEquivalence partitioning

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 37

Equivalence partitionsEquivalence partitions

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 38

Search routine specificationSearch routine specification

procedure Search (Key : ELEM ; T: SEQ of ELEM;
Found : in out BOOLEAN; L: in out ELEM_INDEX) ;

Pre-condition
-- the sequence has at least one element
T’FIRST <= T’LASTT FIRST <= T LAST

Post-condition
-- the element is found and is referenced by L
(Found and T (L) = Key)(Found and T (L) Key)

or
-- the element is not in the array
(not Found and(
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 39

Search routine input partitionsSearch routine - input partitions

Inputs which conform to the pre-conditions.
Inputs where a pre-condition does not hold.Inputs where a pre condition does not hold.
Inputs where the key element is a member of
the arraythe array.
Inputs where the key element is not a
member of the arraymember of the array.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 40

Testing guidelines (sequences)Testing guidelines (sequences)

Test software with sequences which have
only a single value.
Use sequences of different sizes in different
tests.tests.
Derive tests so that the first, middle and last
elements of the sequence are accessedelements of the sequence are accessed.
Test with sequences of zero length.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 41

Search routine input partitionsSearch routine - input partitions

Sequence Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequenceMore than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found L)Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 42

Structural testingStructural testing

Sometime called white-box testing.
Derivation of test cases according toDerivation of test cases according to
program structure. Knowledge of the
program is used to identify additional testprogram is used to identify additional test
cases.
Objective is to exercise all programObjective is to exercise all program
statements (not all path combinations).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 43

Structural testingStructural testing

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 44

Bi h i titiBinary search - equiv. partitions
Pre-conditions satisfied, key element in array.
Pre-conditions satisfied, key element not in
array.
Pre-conditions unsatisfied, key element in array.
Pre-conditions unsatisfied, key element not in array.
Input array has a single value.
Input array has an even number of values.
Input array has an odd number of values.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 45

Binary search equiv partitionsBinary search equiv. partitions

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 46

Binary search test casesBinary search - test cases

Input array (T) Key (Key) Output (Found L)Input array (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17 21 23 29 17 true 117, 21, 23, 29 17 true, 1
9, 16, 18, 30, 31, 41, 45 45 true, 7
17, 18, 21, 23, 29, 38, 41 23 true, 4
17 18 21 23 29 33 38 21 true 317, 18, 21, 23, 29, 33, 38 21 true, 3
12, 18, 21, 23, 32 23 true, 4
21, 23, 29, 33, 38 25 false, ??

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 47

Path testingPath testing

The objective of path testing is to ensure that
the set of test cases is such that each path
th h th i t d t l tthrough the program is executed at least
once.
Th t ti i t f th t ti iThe starting point for path testing is a
program flow graph that shows nodes
representing program decisions and arcsrepresenting program decisions and arcs
representing the flow of control.
Statements with conditions are thereforeStatements with conditions are therefore
nodes in the flow graph.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 48

Binary search flow graphBinary search flow graph

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 49

Independent pathsIndependent paths

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 141, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
1 2 3 4 6 7 2 11 13 51, 2, 3, 4, 6, 7, 2, 11, 13, 5, …
Test cases should be derived so that all of
these paths are executed
A dynamic program analyser may be used to
check that paths have been executed

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 50

Test automationTest automation

Testing is an expensive process phase. Testing
workbenches provide a range of tools to reduce the
ti i d d t t l t ti ttime required and total testing costs.
Systems such as Junit support the automatic
execution of testsexecution of tests.
Most testing workbenches are open systems
because testing needs are organisation-specificbecause testing needs are organisation-specific.
They are sometimes difficult to integrate with closed
design and analysis workbenches.design and analysis workbenches.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 51

A testing workbenchA testing workbench

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 52

Testing workbench adaptationTesting workbench adaptation

Scripts may be developed for user interface
simulators and patterns for test data
generators.
Test outputs may have to be preparedTest outputs may have to be prepared
manually for comparison.
Special-purpose file comparators may beSpecial-purpose file comparators may be
developed.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 53

Key pointsKey points

Testing can show the presence of faults in a system;
it cannot prove there are no remaining faults.
Component developers are responsible for
component testing; system testing is the
responsibility of a separate teamresponsibility of a separate team.
Integration testing is testing increments of the
system; release testing involves testing a system tosystem; release testing involves testing a system to
be released to a customer.
Use experience and guidelines to design test casesUse experience and guidelines to design test cases
in defect testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 54

Key pointsKey points

Interface testing is designed to discover defects in
the interfaces of composite components.
E i l titi i i f di i t tEquivalence partitioning is a way of discovering test
cases - all cases in a partition should behave in the
same waysame way.
Structural analysis relies on analysing a program
and deriving tests from this analysis.and deriving tests from this analysis.
Test automation reduces testing costs by supporting
the test process with a range of software tools.p g

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23
Slide 55

