
Critical Systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 1

ObjectivesObjectives

To explain what is meant by a critical system
where system failure can have severe
human or economic consequence.
To explain four dimensions of dependability -To explain four dimensions of dependability
availability, reliability, safety and security.
To explain that to achieve dependabilityTo explain that, to achieve dependability,
you need to avoid mistakes, detect and
remove errors and limit damage caused byremove errors and limit damage caused by
failure.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 2

Topics coveredTopics covered

A simple safety-critical system
System dependability
Availability and reliability
Safety
Security

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 3

Critical SystemsCritical Systems

Safety-critical systems
• Failure results in loss of life, injury or damage to the

environment;environment;
• Chemical plant protection system;

Mission-critical systemsMission-critical systems
• Failure results in failure of some goal-directed activity;
• Spacecraft navigation system;p g y

Business-critical systems
• Failure results in high economic losses;
• Customer accounting system in a bank;

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 4

System dependabilitySystem dependability

For critical systems, it is usually the case that the
most important system property is the dependability
f th tof the system.

The dependability of a system reflects the user’s
degree of trust in that system It reflects the extent ofdegree of trust in that system. It reflects the extent of
the user’s confidence that it will operate as users
expect and that it will not ‘fail’ in normal use.expect and that it will not fail in normal use.
Usefulness and trustworthiness are not the same
thing. A system does not have to be trusted to be g y
useful.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 5

Importance of dependabilityImportance of dependability

Systems that are not dependable and are
unreliable, unsafe or insecure may be
rejected by their users.
The costs of system failure may be veryThe costs of system failure may be very
high.
Undependable systems may causeUndependable systems may cause
information loss with a high consequent
recovery costrecovery cost.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 6

Development methods for critical systemsDevelopment methods for critical systems

The costs of critical system failure are so
high that development methods may be used
that are not cost-effective for other types of
system.
Examples of development methods
• Formal methods of software developmentFormal methods of software development
• Static analysis
• External quality assuranceExternal quality assurance

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 7

Socio-technical critical systemsSocio technical critical systems

Hardware failure
• Hardware fails because of design and

f t i b tmanufacturing errors or because components
have reached the end of their natural life.

Software failureSoftware failure
• Software fails due to errors in its specification,

design or implementation.design or implementation.
Operational failure
• Human operators make mistakes. Now perhapsHuman operators make mistakes. Now perhaps

the largest single cause of system failures.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 8

A software-controlled insulin pumpA software controlled insulin pump

Used by diabetics to simulate the function of
the pancreas which manufactures insulin, an
essential hormone that metabolises blood
glucose.
Measures blood glucose (sugar) using a
micro-sensor and computes the insulin dosemicro sensor and computes the insulin dose
required to metabolise the glucose.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 9

Insulin pump organisationInsulin pump organisation

Needle

Insulin reservoir

Needle
assembly

Pump Clock

Sensor AlarmController

Display1 Display2

Power supply

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 10

Insulin pump data-flowInsulin pump data flow

Blood sugarBlood sugar
Blood

Blood
parameters

Blood sugar

Insulin

Blood sugar
analysis

Blood sugar
sensor

Blood sugar
level

Insulin
requirement
computation

Pump control

Insulin
delivery

controller

Insulin
pump

Insulin

Pump control
commands Insulin

requirement

controller

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 11

Dependability requirementsDependability requirements

The system shall be available to deliver
insulin when required to do so.
The system shall perform reliability and
deliver the correct amount of insulin todeliver the correct amount of insulin to
counteract the current level of blood sugar.
The essential safety requirement is thatThe essential safety requirement is that
excessive doses of insulin should never be
delivered as this is potentially lifedelivered as this is potentially life
threatening.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 12

DependabilityDependability

The dependability of a system equates to its
trustworthiness.
A dependable system is a system that is
trusted by its users.
Principal dimensions of dependability are:
• Availability;
• Reliability;
• Safety;

S it• Security

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 13

Dimensions of dependabilityDimensions of dependability

Dependability

Availability Reliability SecuritySafetyAvailability Reliability SecuritySafety

The ability of the system
to deliver services when

requested

The ability of the system
to deliver services as

specified

The ability of the system
to operate without
catastrophic failure

The ability of the system
to protect itelf against

accidental or deliberate
intrusionintrusion

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 14

Other dependability propertiesOther dependability properties

Repairability
• Reflects the extent to which the system can be repaired in

the event of a failurethe event of a failure
Maintainability
• Reflects the extent to which the system can be adapted to

new requirements;
Survivability
• Reflects the extent to which the system can deliver• Reflects the extent to which the system can deliver

services whilst under hostile attack;
Error tolerance
• Reflects the extent to which user input errors can be

avoided and tolerated.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 15

MaintainabilityMaintainability

A system attribute that is concerned with the ease of
repairing the system after a failure has been
discovered or changing the system to include newdiscovered or changing the system to include new
features
Very important for critical systems as faults are often y p y
introduced into a system because of maintenance
problems
Maintainability is distinct from other dimensions ofMaintainability is distinct from other dimensions of
dependability because it is a static and not a
dynamic system attribute. I do not cover it in this y y
course.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 16

SurvivabilitySurvivability

The ability of a system to continue to deliver
its services to users in the face of deliberate
or accidental attack
This is an increasingly important attribute forThis is an increasingly important attribute for
distributed systems whose security can be
compromisedcompromised
Survivability subsumes the notion of
resilience - the ability of a system to continueresilience - the ability of a system to continue
in operation in spite of component failures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 17

Dependability vs performanceDependability vs performance

Untrustworthy systems may be rejected by their
users
System failure costs may be very high
It is very difficult to tune systems to make them more
d d bldependable
It may be possible to compensate for poor
performanceperformance
Untrustworthy systems may cause loss of valuable
informationinformation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 18

Dependability costsDependability costs

Dependability costs tend to increase exponentially
as increasing levels of dependability are required
There are two reasons for this
• The use of more expensive development techniques and

hardware that are required to achieve the higher levels ofhardware that are required to achieve the higher levels of
dependability

• The increased testing and system validation that is
required to convince the system client that the required
levels of dependability have been achieved

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 19

Costs of increasing dependabilityCosts of increasing dependability

os
t

C
os

Low Medium High Very
high

Ultra-high

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 20

Dependability

Dependability economicsDependability economics

Because of very high costs of dependability
achievement, it may be more cost effective
t t t t th t d fto accept untrustworthy systems and pay for
failure costs
H thi d d i l d liti lHowever, this depends on social and political
factors. A reputation for products that can’t
be trusted may lose future businessbe trusted may lose future business
Depends on system type - for business
systems in particular modest levels ofsystems in particular, modest levels of
dependability may be adequate

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 21

Availability and reliabilityAvailability and reliability

Reliability
• The probability of failure-free system operation

ifi d ti i i i t fover a specified time in a given environment for
a given purpose

AvailabilityAvailability
• The probability that a system, at a point in time,

will be operational and able to deliver thewill be operational and able to deliver the
requested services

Both of these attributes can be expressed p
quantitatively

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 22

Availability and reliabilityAvailability and reliability

It is sometimes possible to subsume system
availability under system reliability
• Obviously if a system is unavailable it is not

delivering the specified system services
However it is possible to have systems withHowever, it is possible to have systems with
low reliability that must be available. So long
as system failures can be repaired quicklyas system failures can be repaired quickly
and do not damage data, low reliability may
not be a problemnot be a problem
Availability takes repair time into account

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 23

Reliability terminologyReliability terminology

Term Description

System failure An event that occurs at some point in time when
the system does not deliver a service as expected
by its users

System error An erroneous system state that can lead to systemy y y
behaviour that is unexpected by system users.

System fault A characteristic of a software system that can
lead to a system error For example failure tolead to a system error. For example, failure to
initialise a variable could lead to that variable
having the wrong value when it is used.

H H b h i th t lt i th i t d tiHuman error or
mistake

Human behaviour that results in the introduction
of faults into a system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 24

Faults and failuresFaults and failures

Failures are a usually a result of system errors that
are derived from faults in the system
However faults do not necessarily result in systemHowever, faults do not necessarily result in system
errors
• The faulty system state may be transient and ‘corrected’ y y y

before an error arises
Errors do not necessarily lead to system failures
• The error can be corrected by built in error detection and• The error can be corrected by built-in error detection and

recovery
• The failure can be protected against by built-in protection

f iliti Th f l t t tfacilities. These may, for example, protect system
resources from system errors

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 25

Perceptions of reliabilityPerceptions of reliability

The formal definition of reliability does not always
reflect the user’s perception of a system’s reliability
• The assumptions that are made about the environment• The assumptions that are made about the environment

where a system will be used may be incorrect
• Usage of a system in an office environment is likely to be

quite different from usage of the same system in a universityquite different from usage of the same system in a university
environment

• The consequences of system failures affects the
perception of reliabilityperception of reliability
• Unreliable windscreen wipers in a car may be irrelevant in a

dry climate
• Failures that have serious consequences (such as an engineFailures that have serious consequences (such as an engine

breakdown in a car) are given greater weight by users than
failures that are inconvenient

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 26

Reliability achievementReliability achievement

Fault avoidance
• Development technique are used that either minimise the

possibility of mistakes or trap mistakes before they resultpossibility of mistakes or trap mistakes before they result
in the introduction of system faults

Fault detection and removal
• Verification and validation techniques that increase the

probability of detecting and correcting errors before the
system goes into service are used

Fault tolerance
• Run-time techniques are used to ensure that system

faults do not result in system errors and/or that systemfaults do not result in system errors and/or that system
errors do not lead to system failures

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 27

Reliability modellingReliability modelling

You can model a system as an input-output
mapping where some inputs will result in

t terroneous outputs
The reliability of the system is the probability
th t ti l i t ill li i th t fthat a particular input will lie in the set of
inputs that cause erroneous outputs
Diff t l ill th t iDifferent people will use the system in
different ways so this probability is not a
static system attribute but depends on thestatic system attribute but depends on the
system’s environment

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 28

Input/output mappingInput/output mapping

IeInput set

Inputs causing
erroneous outputs

Program

Erroneous

OeOutput set

Erroneous
outputs

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 29

Reliability perceptionReliability perception

Possible
inputsinputs

User ErroneousUser
1

Erroneous
inputs

User
3

User
2

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 30

Reliability improvementReliability improvement

Removing X% of the faults in a system will not
necessarily improve the reliability by X%. A study at
IBM h d th t i 60% f d t d f tIBM showed that removing 60% of product defects
resulted in a 3% improvement in reliability
Program defects may be in rarely executed sectionsProgram defects may be in rarely executed sections
of the code so may never be encountered by users.
Removing these does not affect the perceivedRemoving these does not affect the perceived
reliability
A program with known faults may therefore still be p g y
seen as reliable by its users

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 31

SafetySafety

Safety is a property of a system that reflects the
system’s ability to operate, normally or abnormally,

ith t d f i h i j d th dwithout danger of causing human injury or death and
without damage to the system’s environment
It is increasingly important to consider softwareIt is increasingly important to consider software
safety as more and more devices incorporate
software-based control systemssoftware based control systems
Safety requirements are exclusive requirements i.e.
they exclude undesirable situations rather than y
specify required system services

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 32

Safety criticalitySafety criticality

Primary safety-critical systems
• Embedded software systems whose failure can cause the

associated hardware to fail and directly threaten peopleassociated hardware to fail and directly threaten people.

Secondary safety-critical systems
• Systems whose failure results in faults in other systems• Systems whose failure results in faults in other systems

which can threaten people

Discussion here focuses on primary safety-critical p y y
systems
• Secondary safety-critical systems can only be considered

ff b ion a one-off basis

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 33

Safety and reliabilitySafety and reliability

Safety and reliability are related but distinct
• In general, reliability and availability are

b t t ffi i t diti fnecessary but not sufficient conditions for
system safety

Reliability is concerned with conformance toReliability is concerned with conformance to
a given specification and delivery of service
Safety is concerned with ensuring systemSafety is concerned with ensuring system
cannot cause damage irrespective of
whetherwhether
or not it conforms to its specification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 34

U f li bl tUnsafe reliable systems

Specification errors
• If the system specification is incorrect then the y p

system can behave as specified but still cause
an accident

Hardware failures generating spurious inputs
• Hard to anticipate in the specification

Context-sensitive commands i.e. issuing the
right command at the wrong timeg g
• Often the result of operator error

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 35

Safety terminologySafety terminology

Term Definition

Accident (or
mishap)

An unplanned event or sequence of events which results in human death or injury,
damage to property or to the environment. A computer-controlled machine injuring its
operator is an example of an accident.

Hazard A condition with the potential for causing or contributing to an accident. A failure of
the sensor that detects an obstacle in front of a machine is an example of a hazard.

D A f h l l i f i h D f lDamage A measure of the loss resulting from a mishap. Damage can range from many people
killed as a result of an acc ident to minor injury or property damage.

Hazard
severity

An assessment of the worst possible damage that could result from a particular
hazard. Hazard severity can range from catastrophic where many people are killed toy y g p y p p
minor where only minor damage results.

Hazard
probability

The probability of the events occurring which create a hazard. Probability values tend
to be arbitrary but range from probable (say 1/100 chance of a hazard occurring) to
implausible (no conceivable situations are likely where the hazard could occur)implausible (no conceivable situations are likely where the hazard could occur).

Risk This is a measure of the probability that the system will cause an acc ident. The risk is
assessed by considering the hazard probability, the hazard severity and the probability
that a hazard will result in an accident.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 36

Safety achievementSafety achievement

Hazard avoidance
• The system is designed so that some classes of hazard

simply cannot arisesimply cannot arise.

Hazard detection and removal
• The system is designed so that hazards are detected and• The system is designed so that hazards are detected and

removed before they result in an accident

Damage limitationg
• The system includes protection features that minimise the

damage that may result from an accident

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 37

Normal accidentsNormal accidents

Accidents in complex systems rarely have a single
cause as these systems are designed to be resilient
to a single point of failureto a single point of failure
• Designing systems so that a single point of failure does

not cause an accident is a fundamental principle of safe
systems designsystems design

Almost all accidents are a result of combinations of
malfunctions
It is probably the case that anticipating all problem
combinations, especially, in software controlled

t i i ibl hi i l t f tsystems is impossible so achieving complete safety
is impossible

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 38

SecuritySecurity

The security of a system is a system
property that reflects the system’s ability to

t t it lf f id t l d lib tprotect itself from accidental or deliberate
external attack
S it i b i i i l i t tSecurity is becoming increasingly important
as systems are networked so that external
access to the system through the Internet isaccess to the system through the Internet is
possible
Security is an essential pre requisite forSecurity is an essential pre-requisite for
availability, reliability and safety

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 39

Fundamental securityFundamental security

If a system is a networked system and is
insecure then statements about its reliability
and its safety are unreliable
These statements depend on the executingThese statements depend on the executing
system and the developed system being the
same. However, intrusion can change thesame. However, intrusion can change the
executing system and/or its data
Therefore the reliability and safetyTherefore, the reliability and safety
assurance is no longer valid

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 40

Security terminologySecurity terminology

Term Definition

Exposure Possible loss or harm in a computing system. This can be loss or
d d b l f i d ff if idamage to data or can be a loss of time and effort if recovery is
necessary after a security breach.

Vulnerability A weakness in a computer-based system that may be exploited to
cause loss or harmcause loss or harm.

Attack An exploitation of a system vulnerability. Generally, this is from
outside the system and is a deliberate attempt to cause some damage.

Th Ci h h i l l h YThreats Circumstances that have potential to cause loss or harm. You can
think of these as a sys tem vulnerability that is subjected to an attack.

Control A protective measure that reduces a system vulnerability. Encryption
would be an example of a control that reduced a vulnerability of awould be an example of a control that reduced a vulnerability of a
weak access control system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 41

Damage from insecurityDamage from insecurity

Denial of service
• The system is forced into a state where normal services

are unavailable or where service provision is significantlyare unavailable or where service provision is significantly
degraded

Corruption of programs or dataCorruption of programs or data
• The programs or data in the system may be modified in

an unauthorised way

Disclosure of confidential information
• Information that is managed by the system may be

exposed to people who are not authorised to read or useexposed to people who are not authorised to read or use
that information

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 42

Security assuranceSecurity assurance

Vulnerability avoidance
• The system is designed so that vulnerabilities do not

occur For example if there is no external networkoccur. For example, if there is no external network
connection then external attack is impossible

Attack detection and elimination
• The system is designed so that attacks on vulnerabilities

are detected and neutralised before they result in an
exposure. For example, virus checkers find and remove
i b f th i f t tviruses before they infect a system

Exposure limitation
• The system is designed so that the adverseThe system is designed so that the adverse

consequences of a successful attack are minimised. For
example, a backup policy allows damaged information to
be restored

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 43

be esto ed

Key pointsKey points

A critical system is a system where failure can lead
to high economic loss, physical damage or threats to
lifelife.
The dependability in a system reflects the user’s
trust in that systemy
The availability of a system is the probability that it
will be available to deliver services when requested
Th li bili f i h b bili hThe reliability of a system is the probability that
system services will be delivered as specified
Reliability and availability are generally seen asReliability and availability are generally seen as
necessary but not sufficient conditions for safety and
security

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 44

Key pointsKey points

Reliability is related to the probability of an error
occurring in operational use. A system with known
faults may be reliablefaults may be reliable
Safety is a system attribute that reflects the system’s
ability to operate without threatening people or the y p g p p
environment
Security is a system attribute that reflects the
system’s ability to protect itself from external attacksystem s ability to protect itself from external attack
Dependability improvement requires a socio-
technical approach to design where you consider thetechnical approach to design where you consider the
humans as well as the hardware and software

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 3
Slide 45

