
S ft PSoftware Processes

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 1

ObjectivesObjectives

To introduce software process models
To describe three generic process models g
and when they may be used
To describe outline process models for
requirements engineering, software
development, testing and evolution
To explain the Rational Unified Process
model
To introduce CASE technology to support
software process activities

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 2

Topics coveredTopics covered

Software process models
Process iterationProcess iteration
Process activities
The Rational Unified ProcessThe Rational Unified Process
Computer-aided software engineering

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 3

The software processThe software process

A structured set of activities required to develop a
software system
• Specification;
• Design;
• Validation;
• Evolution.

A ft d l i b t tA software process model is an abstract
representation of a process. It presents a
description of a process from some particulardescription of a process from some particular
perspective.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 4

G i ft d lGeneric software process models
The waterfall model
• Separate and distinct phases of specification and

developmentdevelopment.
Evolutionary development
• Specification development and validation areSpecification, development and validation are

interleaved.
Component-based software engineering
• The system is assembled from existing components.

There are many variants of these models e.g.
f l d l t h t f ll likformal development where a waterfall-like process
is used but the specification is a formal
specification that is refined through several stages

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 5

specification that is refined through several stages
to an implementable design.

Waterfall modelWaterfall model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 6

Waterfall model phasesWaterfall model phases

Requirements analysis and definition
System and software designy g
Implementation and unit testing
Integration and system testingIntegration and system testing
Operation and maintenance
The main drawback of the waterfall model isThe main drawback of the waterfall model is
the difficulty of accommodating change after
the process is underway. One phase has tothe process is underway. One phase has to
be complete before moving onto the next
phase.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 7

Waterfall model problemsWaterfall model problems

Inflexible partitioning of the project into distinct
stages makes it difficult to respond to changing

icustomer requirements.
Therefore, this model is only appropriate when the

i t ll d t d d hrequirements are well-understood and changes
will be fairly limited during the design process.
F b i t h t bl i tFew business systems have stable requirements.
The waterfall model is mostly used for large

t i i j t h t isystems engineering projects where a system is
developed at several sites.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 8

Evolutionary developmentEvolutionary development

Exploratory development
• Objective is to work with customers and to j

evolve a final system from an initial outline
specification. Should start with well-understood

i t d dd f trequirements and add new features as
proposed by the customer.

Th t t iThrow-away prototyping
• Objective is to understand the system

i t Sh ld t t ith lrequirements. Should start with poorly
understood requirements to clarify what is really
needed

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 9

needed.

Evolutionary developmentEvolutionary development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 10

E l ti d l tEvolutionary development

Problems
• Lack of process visibility;p y
• Systems are often poorly structured;
• Special skills (e.g. in languages for rapid p (g g g p

prototyping) may be required.
Applicabilitypp y
• For small or medium-size interactive systems;
• For parts of large systems (e.g. the userFor parts of large systems (e.g. the user

interface);
• For short-lifetime systems.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 11

y

Component-based software
engineering

Based on systematic reuse where systems
are integrated from existing components or
COTS (C i l ff th h lf) tCOTS (Commercial-off-the-shelf) systems.
Process stages
• Component analysis;
• Requirements modification;

S t d i ith• System design with reuse;
• Development and integration.

Thi h i b i i i lThis approach is becoming increasingly
used as component standards have
emerged

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 12

emerged.

Reuse-oriented developmentReuse oriented development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 13

Process iterationProcess iteration

System requirements ALWAYS evolve in the
course of a project so process iteration j
where earlier stages are reworked is always
part of the process for large systems.g y
Iteration can be applied to any of the generic
process models.process models.
Two (related) approaches
• Incremental delivery;• Incremental delivery;
• Spiral development.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 14

Incremental deliveryIncremental delivery

Rather than deliver the system as a single delivery,
the development and delivery is broken down into
increments with each increment delivering part ofincrements with each increment delivering part of
the required functionality.
User requirements are prioritised and the highestUser requirements are prioritised and the highest
priority requirements are included in early
incrementsincrements.
Once the development of an increment is started,
the requirements are frozen though requirementsthe requirements are frozen though requirements
for later increments can continue to evolve.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 15

Incremental developmentIncremental development

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 16

Incremental development
advantages

Customer value can be delivered with each
increment so system functionality is y y
available earlier.
Early increments act as a prototype to helpEarly increments act as a prototype to help
elicit requirements for later increments.
Lower risk of overall project failureLower risk of overall project failure.
The highest priority system services tend to
recei e the most testingreceive the most testing.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 17

Extreme programmingExtreme programming

An approach to development based on the
development and delivery of very small y y
increments of functionality.
Relies on constant code improvement, userRelies on constant code improvement, user
involvement in the development team and
pairwise programming.pairwise programming.
Covered in Chapter 17

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 18

Spiral developmentSpiral development

Process is represented as a spiral rather
than as a sequence of activities with
backtracking.
Each loop in the spiral represents a phase inEach loop in the spiral represents a phase in
the process.
No fixed phases such as specification orNo fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is requireddepending on what is required.
Risks are explicitly assessed and resolved
thro gho t the process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 19

throughout the process.

S i l d l f th ftSpiral model of the software process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 20

Spiral model sectorsSpiral model sectors

Objective setting
• Specific objectives for the phase are identified.

Ri k t d d tiRisk assessment and reduction
• Risks are assessed and activities put in place to

reduce the key risksreduce the key risks.
Development and validation
• A development model for the system is chosen p y

which can be any of the generic models.
Planning
• The project is reviewed and the next phase of the

spiral is planned.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 21

Process activitiesProcess activities

Software specification
Software design and implementationSoftware design and implementation
Software validation
Soft are e ol tionSoftware evolution

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 22

Software specificationSoftware specification

The process of establishing what services
are required and the constraints on the
system’s operation and development.
Requirements engineering processRequirements engineering process
• Feasibility study;
• Requirements elicitation and analysis;Requirements elicitation and analysis;
• Requirements specification;
• Requirements validation• Requirements validation.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 23

The requirements engineering processThe requirements engineering process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 24

Software design and implementationSoftware design and implementation

The process of converting the system
specification into an executable system.
Software design
• Design a software structure that realises the

ifi tispecification;
Implementation
• Translate this structure into an executable

program;
The activities of design and implementationThe activities of design and implementation
are closely related and may be inter-leaved.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 25

Design process activitiesDesign process activities

Architectural design
Abstract specificationAbstract specification
Interface design
Component designComponent design
Data structure design
Algorithm design

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 26

The software design processThe software design process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 27

Structured methodsStructured methods

Systematic approaches to developing a
software design.
The design is usually documented as a set
of graphical models.
Possible models
• Object model;
• Sequence model;
• State transition model;
• Structural model;
• Data-flow model.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 28

Programming and debuggingProgramming and debugging

Translating a design into a program and
removing errors from that program.g g
Programming is a personal activity - there is
no generic programming process.no generic programming process.
Programmers carry out some program
testing to discover faults in the program andtesting to discover faults in the program and
remove these faults in the debugging
processprocess.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 29

The debugging processThe debugging process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 30

Software validationSoftware validation

Verification and validation (V & V) is
intended to show that a system conforms to
it ifi ti d t th i tits specification and meets the requirements
of the system customer.
I l h ki d i dInvolves checking and review processes and
system testing.
S t t ti i l ti thSystem testing involves executing the
system with test cases that are derived from
the specification of the real data to bethe specification of the real data to be
processed by the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 31

The testing processThe testing process

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 32

Testing stagesTesting stages

Component or unit testingComponent or unit testing
• Individual components are tested independently;
• Components may be functions or objects or• Components may be functions or objects or

coherent groupings of these entities.
System testingSystem testing
• Testing of the system as a whole. Testing of

emergent properties is particularly important.g p p p y p
Acceptance testing
• Testing with customer data to check that the g

system meets the customer’s needs.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 33

Testing phasesTesting phases

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 34

Software evolutionSoftware evolution

Software is inherently flexible and can
change. g
As requirements change through changing
business circumstances, the software thatbusiness circumstances, the software that
supports the business must also evolve and
change.change.
Although there has been a demarcation
between development and evolutionbetween development and evolution
(maintenance) this is increasingly irrelevant
as fewer and fewer systems are completely

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 35

as fewer and fewer systems are completely
new.

System evolutionSystem evolution

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 36

The Rational Unified ProcessThe Rational Unified Process

A modern process model derived from the
work on the UML and associated process.
Normally described from 3 perspectives
• A dynamic perspective that shows phases overA dynamic perspective that shows phases over

time;
• A static perspective that shows process p p p

activities;
• A practive perspective that suggests good p p p gg g

practice.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 37

RUP phase modelRUP phase model

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 38

RUP phasesRUP phases

Inception
• Establish the business case for the system.y

Elaboration
• Develop an understanding of the problemDevelop an understanding of the problem

domain and the system architecture.
ConstructionConstruction
• System design, programming and testing.

TransitionTransition
• Deploy the system in its operating environment.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 39

RUP good practiceRUP good practice

Develop software iteratively
Manage requirementsManage requirements
Use component-based architectures
Vis all model soft areVisually model software
Verify software quality
Control changes to software

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 40

Static workflowsStatic workflows

Workflow Description

Business modelling The business processes are modelled using business use cases.

Requirements Actors who interact with the system are identified and use cases are
d l d t d l th t i tdeveloped to model the system requirements.

Analysis and design A design model is created and documented using architectural
models, component models, object models and sequence models.

Implementation The components in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design
models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with
implementation. System testing follows the completion of the
i l t tiimplementation.

Deployment A product release is created, distributed to users and installed in their
workplace.

Configuration and This supporting workflow managed changes to the system (see
change management Chapter 29).

Project management This supporting workflow manages the system development (see
Chapter 5).

Environment This workflow is concerned with making appropriate software tools

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 41

g pp p
available to the software development team.

Computer-aided software
engineering

Computer-aided software engineering (CASE) is
software to support software development and

l ievolution processes.
Activity automation
• Graphical editors for system model development;
• Data dictionary to manage design entities;

G hi l UI b ild f i t f t ti• Graphical UI builder for user interface construction;
• Debuggers to support program fault finding;

Automated translators to generate new versions of a• Automated translators to generate new versions of a
program.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 42

Case technologyCase technology

Case technology has led to significant
improvements in the software process.
However, these are not the order of
magnitude improvements that were once g
predicted
• Software engineering requires creative thought g g q g

- this is not readily automated;
• Software engineering is a team activity and, for

large projects, much time is spent in team
interactions. CASE technology does not really
support these

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 43

support these.

CASE classificationCASE classification

Classification helps us understand the different
types of CASE tools and their support for process

i i iactivities.
Functional perspective
• Tools are classified according to their specific

function.
P tiProcess perspective
• Tools are classified according to process activities

that are supportedthat are supported.
Integration perspective
• Tools are classified according to their organisation

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 44

• Tools are classified according to their organisation
into integrated units.

Functional tool classificationFunctional tool classification

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers interpretersLanguage processing tools Compilers, interpreters

Program analysis tools Cross reference generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 45

Activity-based tool classificationActivity based tool classification

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 46

CASE integrationCASE integration

Tools
• Support individual process tasks such as design

i t h ki t t diti tconsistency checking, text editing, etc.
Workbenches

S f• Support a process phase such as specification
or design, Normally include a number of
integrated tools.integrated tools.

Environments
• Support all or a substantial part of an entireSupport all or a substantial part of an entire

software process. Normally include several
integrated workbenches.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 47

T l kb h i tTools, workbenches, environments

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 48

Key pointsKey points

Software processes are the activities involved in
producing and evolving a software system.
S ft d l b t tSoftware process models are abstract
representations of these processes.
General activities are specification design andGeneral activities are specification, design and
implementation, validation and evolution.
Generic process models describe the organisationGeneric process models describe the organisation
of software processes. Examples include the
waterfall model, evolutionary development and

t b d ft i icomponent-based software engineering.
Iterative process models describe the software
process as a cycle of activities

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 49

process as a cycle of activities.

Key pointsKey points

Requirements engineering is the process of
developing a software specification.
D i d i l t ti t fDesign and implementation processes transform
the specification to an executable program.
Validation involves checking that the systemValidation involves checking that the system
meets to its specification and user needs.
Evolution is concerned with modifying the systemEvolution is concerned with modifying the system
after it is in use.
The Rational Unified Process is a generic process
model that separates activities from phases.
CASE technology supports software process
acti ities

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4
Slide 50

activities.

