
Software RequirementsSoftware Requirements

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 1

ObjectivesObjectives

To introduce the concepts of user and system
requirements
To describe functional and non-functional
requirementsrequirements
To explain how software requirements may be
organised in a requirements documentorganised in a requirements document

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 2

Topics coveredTopics covered

Functional and non-functional requirements
User requirementsUser requirements
System requirements
Interface specificationInterface specification
The software requirements document

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 3

Requirements engineeringRequirements engineering

The process of establishing the services that the
customer requires from a system and the
constraints under which it operates and is
developed.
The requirements themselves are the
descriptions of the system services and desc pt o s o t e syste se ces a d
constraints that are generated during the
requirements engineering process.q g g p

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 4

What is a requirement?What is a requirement?

It may range from a high-level abstract statement
of a service or of a system constraint to a
d t il d th ti l f ti l ifi tidetailed mathematical functional specification.
This is inevitable as requirements may serve a
d l f tidual function
• May be the basis for a bid for a contract - therefore

must be open to interpretation;must be open to interpretation;
• May be the basis for the contract itself - therefore

must be defined in detail;;
• Both these statements may be called requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 5

Requirements abstraction (Davis)Requirements abstraction (Davis)

“If a company wishes to let a contract for a large software development project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the con tract,

뭩offering, perhaps, different ways of meeting the client organisation 뭩needs. Once a
contract has been awarded, the contractor must write a system definition for the client
in more detail so that the client understands and can validate what the software will
d h f h d b ll d h d f hdo. Both o f these documents may be called the requirements document for the
system.”

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 6

Types of requirement
User requirements
• Statements in natural language plus diagrams of the g g p g

services the system provides and its operational
constraints. Written for customers.

System requirements
• A structured document setting out detailed

descriptions of the system’s functions, services and
operational constraints. Defines what should be
implemented so may be part of a contract betweenimplemented so may be part of a contract between
client and contractor.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 7

Definitions and specificationsDefinitions and specifications

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 8

Requirements readersRequirements readers

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 9

Functional and non-functional requirementsFunctional and non-functional requirements

Functional requirements
• Statements of services the system should provide, how the

system should react to particular inputs and how the systemsystem should react to particular inputs and how the system
should behave in particular situations.

Non-functional requirements
• constraints on the services or functions offered by the system

such as timing constraints, constraints on the development
process, standards, etc.

Domain requirements
• Requirements that come from the application domain of the

system and that reflect characteristics of that domainsystem and that reflect characteristics of that domain.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 10

Functional requirementsFunctional requirements

Describe functionality or system services.
Depend on the type of software, expected usersDepend on the type of software, expected users
and the type of system where the software is
used.used.
Functional user requirements may be high-level
statements of what the system should do butstatements of what the system should do but
functional system requirements should describe
the system services in detailthe system services in detail.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 11

The LIBSYS systemThe LIBSYS system

A library system that provides a single interface
to a number of databases of articles in different
libraries.
Users can search for, download and print theseUsers can search for, download and print these
articles for personal study.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 12

Examples of functional requirementsExamples of functional requirements

The user shall be able to search either all of the
initial set of databases or select a subset from it.
The system shall provide appropriate viewers for
the user to read documents in the documentthe user to read documents in the document
store.
E d h ll b ll t d i id tifiEvery order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to

t th t’ t tcopy to the account’s permanent storage area.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 13

Requirements imprecisionRequirements imprecision

Problems arise when requirements are not
precisely stated.
Ambiguous requirements may be interpreted in
different ways by developers and users.different ways by developers and users.
Consider the term ‘appropriate viewers’
• User intention special purpose viewer for each• User intention - special purpose viewer for each

different document type;
• Developer interpretation - Provide a text viewer thatDeveloper interpretation Provide a text viewer that

shows the contents of the document.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 14

Requirements completeness and consistencyRequirements completeness and consistency

In principle, requirements should be both complete and
consistent.
Complete
• They should include descriptions of all facilities

i drequired.
Consistent

f• There should be no conflicts or contradictions in the
descriptions of the system facilities.

I ti it i i ibl t d l t dIn practice, it is impossible to produce a complete and
consistent requirements document.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 15

Non functional requirementsNon-functional requirements

These define system properties and constraints
e.g. reliability, response time and storage

i t C t i t I/O d irequirements. Constraints are I/O device
capability, system representations, etc.
P i t l b ifi dProcess requirements may also be specified
mandating a particular CASE system,
programming language or development methodprogramming language or development method.
Non-functional requirements may be more critical
than functional requirements If these are not metthan functional requirements. If these are not met,
the system is useless.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 16

Non functional classificationsNon-functional classifications

Product requirements
• Requirements which specify that the delivered product must

behave in a particular way e g execution speed reliability etcbehave in a particular way e.g. execution speed, reliability, etc.

Organisational requirements
• Requirements which are a consequence of organisational• Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,
implementation requirements, etc.

External requirements
• Requirements which arise from factors which are external to the

system and its development process e g interoperabilitysystem and its development process e.g. interoperability
requirements, legislative requirements, etc.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 17

Non functional requirement typesNon-functional requirement types

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 18

N f ti l i t lNon-functional requirements examples
Product requirement
8.1 The user interface for LIBSYS shall be implemented as simple HTML

without frames or Java appletswithout frames or Java applets.

Organisational requirement
9.3.2 The system development process and deliverable documents shall 9 3 e syste de e op e t p ocess a d de e ab e docu e ts s a

conform to the process and deliverables defined in XYZCo-SP-
STAN-95.

E t l i tExternal requirement
7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to thecustomers apart from their name and reference number to the
operators of the system.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 19

Goals and requirementsGoals and requirements

Non-functional requirements may be very difficult to state
precisely and imprecise requirements may be difficult to

ifverify.
Goal

A l i t ti f th h f• A general intention of the user such as ease of use.

Verifiable non-functional requirement
• A statement using some measure that can be objectively tested• A statement using some measure that can be objectively tested.

Goals are helpful to developers as they convey the
intentions of the system users.intentions of the system users.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 20

ExamplesExamples

A system goal
• The system should be easy to use by experienced controllers

and should be organised in such a way that user errors areand should be organised in such a way that user errors are
minimised.

A verifiable non-functional requirementA verifiable non functional requirement
• Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this training,
th b f d b i d h llthe average number of errors made by experienced users shall
not exceed two per day.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 21

Requirements measuresRequirements measures

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size M Bytes
Number of ROM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
P b bilit f il bilitProbability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
N b f

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 22

Number of target systems

Requirements interactionRequirements interaction

Conflicts between different non-functional
requirements are common in complex systems.
Spacecraft system
• To minimise weight, the number of separate chips in

th t h ld b i i i dthe system should be minimised.
• To minimise power consumption, lower power chips

should be usedshould be used.
• However, using low power chips may mean that

more chips have to be used. Which is the most p
critical requirement?

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 23

Domain requirementsDomain requirements

Derived from the application domain and
describe system characteristics and features that
reflect the domain.
Domain requirements be new functionalDomain requirements be new functional
requirements, constraints on existing
requirements or define specific computations.requirements or define specific computations.
If domain requirements are not satisfied, the
system may be unworkablesystem may be unworkable.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 24

Library system domain requirementsLibrary system domain requirements

There shall be a standard user interface to all
databases which shall be based on the Z39.50
t d dstandard.

Because of copyright restrictions, some
documents must be deleted immediately on
arrival. Depending on the user’s requirements,
th d t ill ith b i t d l llthese documents will either be printed locally on
the system server for manually forwarding to the
user or routed to a network printeruser or routed to a network printer.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 25

Train protection systemTrain protection system

The deceleration of the train shall be computed
as:
• Dtrain = Dcontrol + Dgradientg

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of 9.81ms2g p
/alpha are known for different types of train.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 26

Domain requirements problemsDomain requirements problems

Understandability
• Requirements are expressed in the language of the q p g g

application domain;
• This is often not understood by software engineers

developing the system.
Implicitness
• Domain specialists understand the area so well that

they do not think of making the domain requirements
explicit.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 27

User requirementsUser requirements

Should describe functional and non-functional
requirements in such a way that they are
understandable by system users who don’t have
detailed technical knowledge.
User requirements are defined using natural
language, tables and diagrams as these can belanguage, tables and diagrams as these can be
understood by all users.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 28

Problems with natural languageProblems with natural language

Lack of clarity
• Precision is difficult without making the document g

difficult to read.
Requirements confusionq
• Functional and non-functional requirements tend to

be mixed-up.
Requirements amalgamation
• Several different requirements may be expressedSeveral different requirements may be expressed

together.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 29

LIBSYS requirementLIBSYS requirement

4..5 LIBSYS shall provide a financial accounting
system that maintains records of all payments
made by users of the system. System managers
may configure this system so that regular users
may receive discounted rates.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 30

Editor grid requirementEditor grid requirement

2.6 Grid facilities To assist in the positioning of entities on a diag
th t id i ith ti t i h ithe user may turn on a grid in either centimetres or inches, via an
option on the control panel. Initially, the grid is off. The grid may
turned on and off at any time during an editing session and canturned on and off at any time during an editing session and can
toggled between inches and centimetres at any time. A grid optio
will be provided on the reduce-to-fit view but the number of gridp g
lines shown will be reduced to avoid filling the smaller diagram
with grid lines.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 31

Requirement problemsRequirement problems

Database requirements includes both conceptual and
detailed information
• Describes the concept of a financial accounting system that is• Describes the concept of a financial accounting system that is

to be included in LIBSYS;
• However, it also includes the detail that managers can

configure this system this is unnecessary at this levelconfigure this system - this is unnecessary at this level.
Grid requirement mixes three different kinds of
requirementq
• Conceptual functional requirement (the need for a grid);
• Non-functional requirement (grid units);

N f ti l UI i t (id it hi)• Non-functional UI requirement (grid switching).

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 32

Structured presentationStructured presentation

2 6 1 Grid facilities2.6.1 Grid facilities
The editor shall provide a grid facility where a m atrix of horizontal and
vertical lines provide a background to the editor window. This grid shall be a
passive grid where the alignment of entities is the user's responsibility.passive grid where the alignment of entities is the user s responsibility.
Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise The user is the best person to decide where entitiesthe positioning is imprecise. The user is the best person to decide where entities
should be positioned.
Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6
Source: Ray Wilson, Glasgow OfficeSource: Ray Wilson, Glasgow Office

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 33

Guidelines for writing requirementsGuidelines for writing requirements

Invent a standard format and use it for all
requirements.
Use language in a consistent way. Use shall for
mandatory requirements, should for desirablemandatory requirements, should for desirable
requirements.
Use text highlighting to identify key parts of theUse text highlighting to identify key parts of the
requirement.
Avoid the use of computer jargonAvoid the use of computer jargon.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 34

System requirementsSystem requirements

More detailed specifications of system functions,
services and constraints than user requirements.
They are intended to be a basis for designing the
system.
They may be incorporated into the system
contract.
System requirements may be defined or
illustrated using system models discussed in
Ch t 8Chapter 8.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 35

Requirements and designRequirements and design

In principle, requirements should state what the
system should do and the design should
d ib h it d thidescribe how it does this.
In practice, requirements and design are
i blinseparable
• A system architecture may be designed to structure

the requirements;the requirements;
• The system may inter-operate with other systems

that generate design requirements;g g q ;
• The use of a specific design may be a domain

requirement.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 36

Problems with NL specificationProblems with NL specification

Ambiguity
• The readers and writers of the requirement must

i t t th d i th NL iinterpret the same words in the same way. NL is
naturally ambiguous so this is very difficult.

Over flexibilityOver-flexibility
• The same thing may be said in a number of different

ways in the specification.ways in the specification.
Lack of modularisation
• NL structures are inadequate to structure systemNL structures are inadequate to structure system

requirements.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 37

Alternatives to NL specificationAlternatives to NL specification

Notation Description

Structured natural
language

This approach depends on defining standard forms or templates to express the
requirements specificationlanguage requirements specification.

Design
description
languages

This approach uses a language like a programming language but with more abstract
features to specify the requirements by defining an operational model of the system.
This approach is not now widely used although it can be useful for interfacelanguages This approach is not now widely used although it can be useful for interface
specifications.

Graphical
notations

A graphical language, supplemented by text annotations is used to define the
functional requirements for the system. An early example of such a graphicalnotations functional requirements for the system. An early example of such a graphical
language was SADT. Now, use-case descriptions and sequence d iagrams are
commonly used .

Mathematical These are notations based on mathematical concepts such as finite-state machines or
specifications

p
sets. These unambiguous specifications reduce the arguments between customer and
contractor about system functionality. However, most customers don’t understand
formal specifications and are reluctant to accept it as a system contract.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 38

Structured language specificationsStructured language specifications

The freedom of the requirements writer is limited
by a predefined template for requirements.
All requirements are written in a standard way.
The terminology used in the description may be
limited.
The advantage is that the most of the
expressiveness of natural language is
maintained but a degree of uniformity is imposed

th ifi tion the specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 39

Form based specificationsForm-based specifications

Definition of the function or entity.
Description of inputs and where they come from.Description of inputs and where they come from.
Description of outputs and where they go to.
Indication of other entities requiredIndication of other entities required.
Pre and post conditions (if appropriate).
The side effects (if any) of the function.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 40

Form based node specificationForm-based node specification

Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: Safe sugar level
Description Computes the dose of insulin to be delivered when the current measured sugar level is in

th f b t 3 d 7 itthe safe zone between 3 and 7 units.
Inputs Current sugar reading (r2), the previous two readings (r0 and r1)
Source Current sugar reading from sensor. Other readings from memory.
Outputs CompDose Š the dose in insulin to be deliveredOutputs CompDose Š the dose in insulin to be delivered
Destination Main control loop
Action: CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of

increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is
computed by dividing the difference between the current sugar level and the previous level by 4 andcomputed by dividing the difference between the current sugar level and the previous level by 4 and
rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can
be delivered.

Requires Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin..
Post-condition r0 is replaced by r1 then r1 is replaced by r2
Side-effects None

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 41

Tabular specificationTabular specification

Used to supplement natural language.
Particularly useful when you have to define aParticularly useful when you have to define a
number of possible alternative courses of action.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 42

Tabular specificationTabular specification

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of
increase decreasing ((r2-r1)<(r1-r0))

CompDose = 0

Sugar level increasing and rate of CompDose = round ((r2 r1)/4)Sugar level increasing and rate of
increase stable or increasing. ((r2-r1) �
(r1-r0))

CompDose = round ((r2-r1)/4)
If rounded result = 0 then
CompDose = MinimumDose

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 43

Graphical modelsGraphical models

Graphical models are most useful when you
need to show how state changes or where you
need to describe a sequence of actions.
Different graphical models are explained inDifferent graphical models are explained in
Chapter 8.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 44

Sequence diagramsSequence diagrams

These show the sequence of events that take
place during some user interaction with a

tsystem.
You read them from top to bottom to see the

d f th ti th t t k lorder of the actions that take place.
Cash withdrawal from an ATM
• Validate card;
• Handle request;

C l t t ti• Complete transaction.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 45

Sequence diagram of ATM withdrawalSequence diagram of ATM withdrawal

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 46

Interface specificationInterface specification

Most systems must operate with other systems
and the operating interfaces must be specified as

t f th i tpart of the requirements.
Three types of interface may have to be defined
• Procedural interfaces;
• Data structures that are exchanged;

D t t ti• Data representations.
Formal notations are an effective technique for
interface specificationinterface specification.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 47

PDL interface descriptionPDL interface description

interface PrintServer {

// defines an abstract printer server
// requires: interface Printer, interface PrintDoc
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter

void initialize (Printer p) ;
void print (Printer p, PrintDoc d) ;
void displayPrintQueue (Printer p) ;p y (p) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;

} //PrintServer

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 48

The requirements documentThe requirements document

The requirements document is the official
statement of what is required of the system
developers.
Should include both a definition of userShould include both a definition of user
requirements and a specification of the system
requirements.equ e e ts
It is NOT a design document. As far as possible,
it should set of WHAT the system should doit should set of WHAT the system should do
rather than HOW it should do it

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 49

Users of a requirements documentUsers of a requirements document

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 50

IEEE requirements standardIEEE requirements standard

Defines a generic structure for a requirements
document that must be instantiated for each
specific system.
• Introduction.
• General description.
• Specific requirements.p q
• Appendices.
• Index.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 51

Requirements document structureRequirements document structure

Preface
Introduction
GlGlossary
User requirements definition
S t hit tSystem architecture
System requirements specification
System modelsSystem models
System evolution
AppendicesAppendices
Index

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 52

Key pointsKey points

Requirements set out what the system should do and
define constraints on its operation and implementation.
Functional requirements set out services the system
should provide.
N f ti l i t t i th t b iNon-functional requirements constrain the system being
developed or the development process.
User requirements are high level statements of what theUser requirements are high-level statements of what the
system should do. User requirements should be written
using natural language, tables and diagrams.using natural language, tables and diagrams.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 53

Key pointsKey points

System requirements are intended toSystem requirements are intended to
communicate the functions that the system
should provide.p
A software requirements document is an agreed
statement of the system requirements.y q
The IEEE standard is a useful starting point for
defining more detailed specific requirements g p q
standards.

©Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 54

