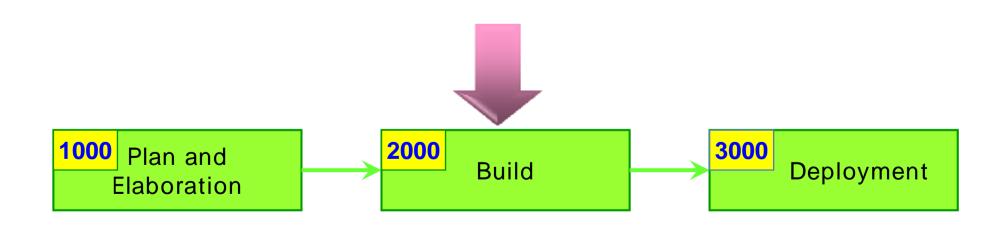
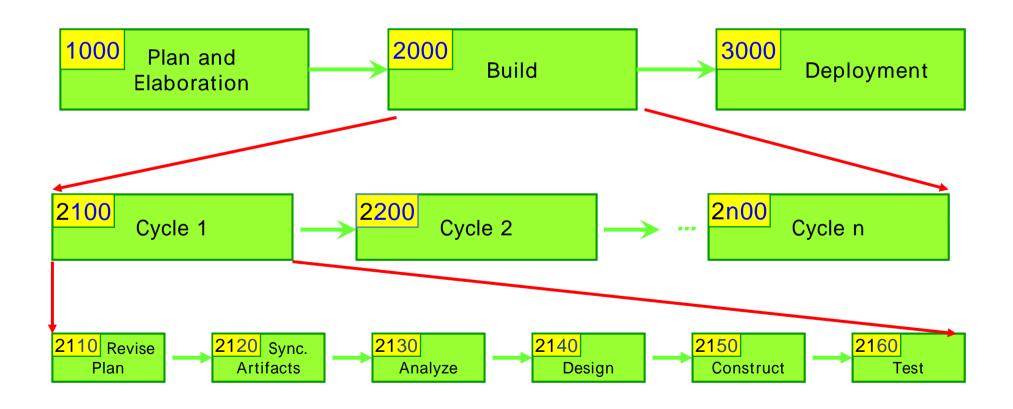
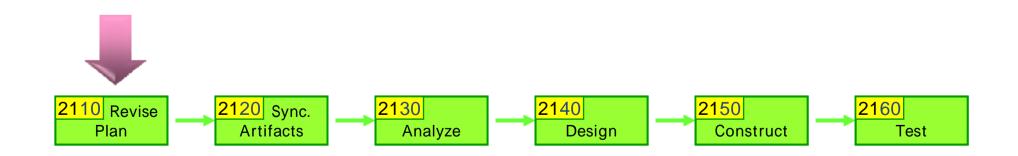
2008 Spring

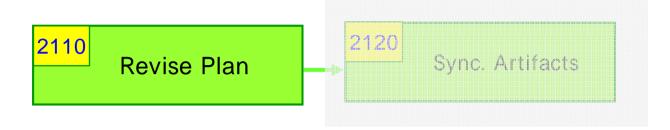

Software Special Development 1

Lesson 3

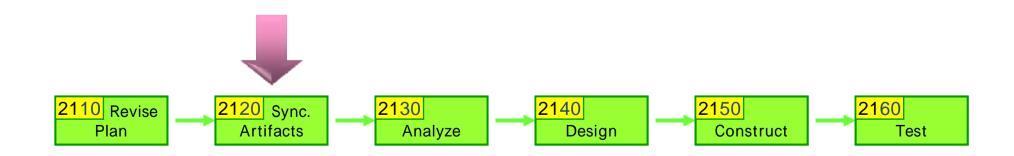

- OSP Stage 2000
- OSP Stage 2030 Analyze

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr


Stage 2000. Build


6 Phases of 'Build' Stage

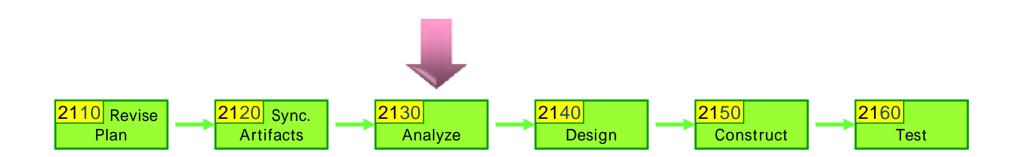
Phase 2010. Revise Plan


Phase 2010. Revise Plan

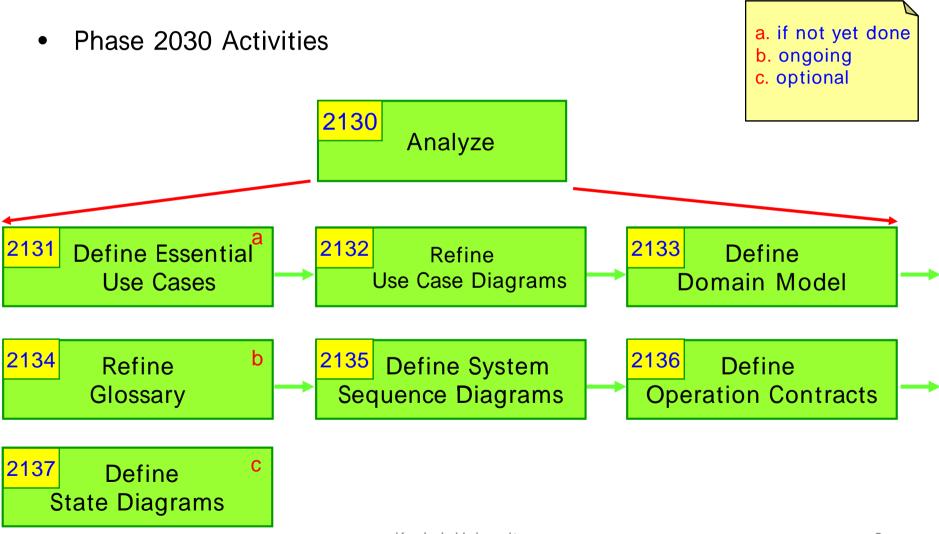
Description

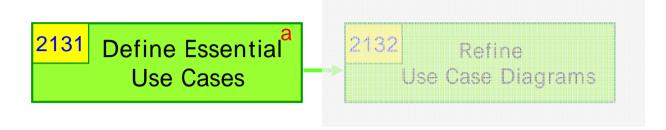
- Correct and enhance the project plan and requirement definition based on the intermediate deliverables
- Input : intermediate deliverables
- Output: A refined project plan, a refined requirement specification
- Steps

Phase 2020. Synchronize Artifacts



Phase 2020. Synchronize Artifacts




- Description
 - Configure and manage various types of artifacts (Project Repository)
 - Control versions and variations
 - Input :
 - Output :
- Steps

Phase 2030. Analyze

Phase 2030. Analyze

Description

- Add event flows to business use case(high-level) descriptions
- Input: business use case descriptions (activity 1006)
- Output : An essential use case descriptions
- Standard applied : expanded use case format

Expanded Use Case Format

– Use case: Use Case Name

– Actors: Actor Name

Purpose: The purpose of Use Case

Overview: The overview of Use Case

Type: Primary, Secondary, or Optional

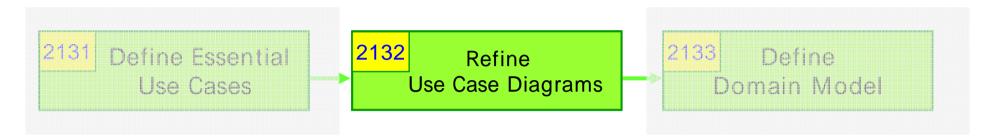
Cross References:
 System functions in Req. Spec

– Pre-Requisites:

– Typical Courses of Events:

Alternative Courses of Events:

– Exceptional Courses of Events:


Step

- 1. Select each use case from business use cases
- 2. Identify system functions related to the selected use case from requirements specification
- 3. Identify related use cases to the selected use case from business use cases
- 4. Identify courses of events for each use case from the requirements specification
 - Typical courses of events (main event flow)
 - Alternative courses of events
 - Exceptional courses of events
- 5. Write essential use cases based on typical and alternative courses of events flows by applying expanded use case format.

Example: "Buy Items"

Use Case	Buy Items	
Actor	Customer, Cashier	
Purpose	Capture a sale and its payment	
Overview	A Customer arrives at a checkout with items to purchase. The Cashier records the items and collects a payment, which may be authorized. On completion, the Customer leaves with the items.	
Туре	Primary and Essential	
Cross Reference	Functions: R1.1, R1.2, R1.3, R1.7, R1.9, R2.1, R2.2, R2.3, R2.4 Use Cases: Log In use case	
Pre-Requisites	N/A	
Typical Courses of Events	 (A): Actor, (S): System (A) This use case begins when a customer arrives at the POST to checkout with items to purchase. (A) The Cashier records each item.(E1) (S) Determines the item price and adds the item information to the running sales transaction. (A) On completion of item entry, the cashier indicates to the POST that item entry is complete. (S) Calculates and presents the sale total. (A) The Cashier tells the customer the total. 	
Alternative Courses of Events		
Exceptional Courses of Events	E1: If invalid item identifier entered, indicate error.	

Activity 2032. Refine Use Case Diagrams

Description

- Validate and modify the 'Business Use-Case Diagram'
- Input: business use case model, essential use case descriptions
- Output : A refined use case diagram
- Standard applied : UML's use case diagram

Step

- Review business use case diagrams according to essential use case descriptions
- 2. Refine use case diagrams by adding or refining use cases and relationships

Description

- Define domain concept model by reviewing input artifacts
- Input : essential use case descriptions, business concept model
- Output : A conceptual class diagram
- Standard applied : UML's use case diagram

What is domain model?

- A representation of conceptual classes identified from a real world
- Illustrates meaningful conceptual classes in a problem domain.
- Conceptual models
- Widely used as a source of inspiration for designing software objects.

Step

- List concepts(domain class) from use cases or business concept model
 - Guideline 1
 - Identify concepts by making a list of candidate concepts from the 'Concept Category List'
 - Guideline 2
 - Identity the noun and noun phrases in expanded use cases description and consider them as candidate concepts or attributes

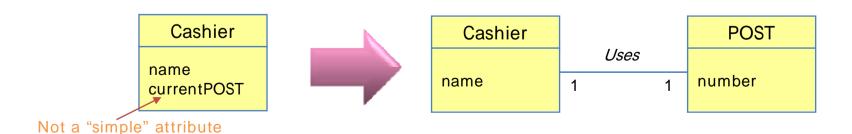
- By using guideline 1
 - 'Concept Category List' may contain many common categories that are usually worth to consider

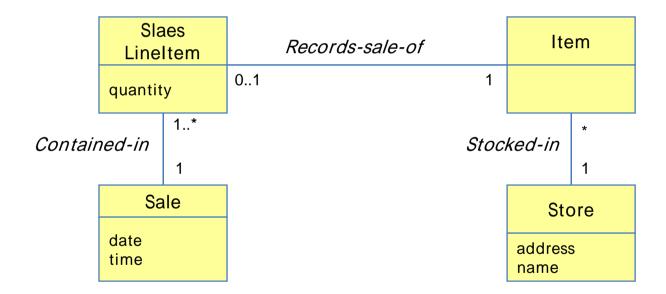
Concept Category	Examples
Physical or tangible objects	POST
Specifications, designs, or descriptions of things	Product Specification
Places	Store
Transactions	Sale Payment
Transaction line items	Sales Line Item
Roles of people	Cashier
Containers of other things	Store
Things in a container	Item
Other computer or electro-mechanical systems external to our system	Credit Card Authorization System

- By using guideline 2
 - The fully dressed use cases are an excellent description
 - Scenario of the use case or use case descriptions can be used.

- 2. Assign class names into concepts
 - Use the existing names in the domain
 - Do not add things that are not there
- 3. Identify associations according to association categories

Association Category	Identified Associations
A is a physical part of B	Drawer – POST
A is a logical part of B	SalesLineItem – Sale
A is physically contained in/on B	POST – Store Item – Shelf
A is logically contained in B	ItemDescription – Catalog
A is a description for B	ItemDescription – Item
A is a line item of a transaction or report B	SalesLineItem - Sale
A is known/logged/recorded/reported/captured in B	Sale - POST
A is a member of B	Cashier –Store
A is an organizational submit of B	Department - Store

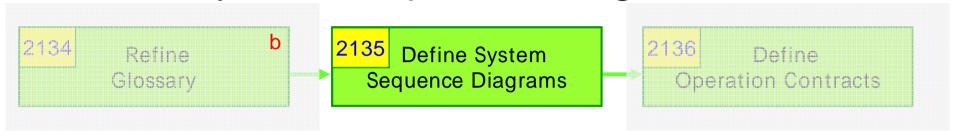

- 4. Assign priorities into identified associations
 - High priority association categories are
 - A is a physical or logical part of B.
 - A is physically or logically contained in/on B.
 - A is recorded in B.
 - Should avoid showing redundant or derivable associations
- 5. Assign names into associations
 - "Type Name" "Verb Phrase" "Type Name"
 - Association names should start with a capital letter.


6. Add multiplicity into the ends of an association

- 7. Identify attributes by reading
 - requirement specifications, current use cases under consideration, simplification, clarification, and assumption documents
 - Attributes should be simple attributes or pure data values
 - Boolean, Date, Number, String, Time
 - Address, Color, Geometrics(Point, Rectangle,...), Phone Number, Social Security Number, Universal Product Code(UPC), ZIP or postal codes, Enumerated types.

8. Draw them in a conceptual class diagram

Activity 2034. Refine Glossary

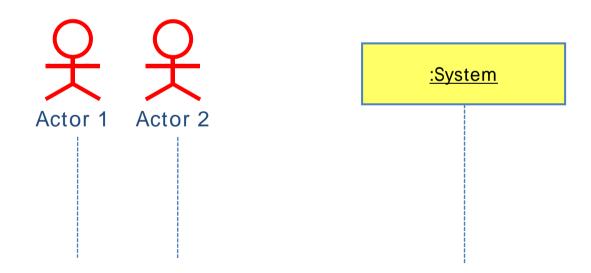

Description

- Lists and refines all the terms in order to improve communication and reduce the risk of misunderstanding
- Input: term dictionary, essential use case descriptions, conceptual class diagram
- Output : A refined term dictionary

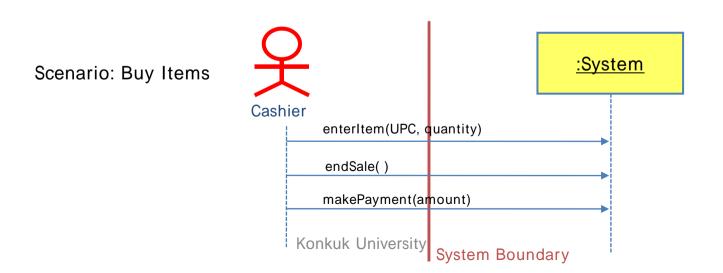
Step

- 1. Refine terms defined in the Plan and Elaborate Phase(use cases, attributes, concept, etc.) during development cycle.
- 2. Record terms as following format:

Term	Category	Comments
Payment	Concept (Class)	a cash payment



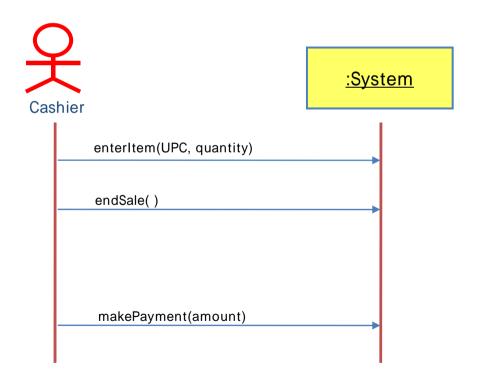
Description


- Illustrates events from actors to systems.
- To investigate the system to build
- Input : essential use case descriptions, use case diagram
- Output : A sequence diagram

- What is a system sequence diagram(SSD)?
 - A picture that shows the events that external actors generate, their orders, and inter-system events
 - All systems are treated as a black box
 - The emphasis of the diagram is events that cross the system boundary from actors to systems
 - SSDs should be defined for
 - Main success scenarios
 - Frequent, complex, or alternative scenarios

- Step
 - 1. Draw a black box representing the system based on a use case
 - 2. Identify each actor that directly operate on the system from the typical(normal) course of events in a use case
 - Draw a line for each actor

- 3. Determine system boundary
 - Hardware/software boundary of a device or computer system
 - Department of an organization or Entire organization
 - Identify the system(external) events that each actor generates by according to typical course of events in a use case
 - Name system events
 - Should be expressed at the level of intent rather than of the physics
 - Name a system event with a verb and an objective like "enterItem"



4. Include the use case text which corresponds to system event to the left of the system sequence diagram

USE CASE: Buy Items

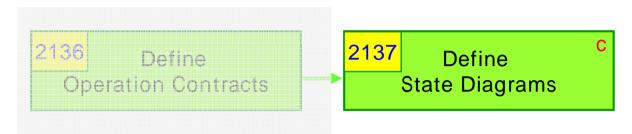
Typical Course of Events

- 1. This use case begins when a Customer arrives at the POST to checkout with items to purchase.
- 2. The Cashier records the universal product code(UPC) from each item. If there is more than one of the same item, the Cashier can enter the quantity as well.
- 3. System determines the item price and adds the item information to the running sales transaction. The description and price of the current item are displayed.

Description

- Define contracts for system operations
- Input : system sequence diagram, conceptual class diagram
- Output : Operation Contracts

What is a contract?


- A document that describes what an operation commits to achieve
- Written for each system operation to describe its behavior
- System Operation Contract : Describes changes in states of overall system when a system operation is invoked

- Step
 - 1. Identify system operations from system sequence diagrams
 - A system operation: an operation of the system that executes in response to a system event in sequence diagram.
 - 2. Fill in operation name sections with contract's names
 - Name: enterItem(upc: number, quantity: integer)
 - 3. Fill in responsibilities sections
 - Responsibilities: Enter sale of an item and add it to the sale. Display the item description and price.
 - 4. Fill in post-condition sections
 - Post-conditions are declarations about the system state that are true when the operation has finished.
 - 5. Fill in pre-condition sections
 - Pre-conditions define assumptions about the state of the system at the beginning of the operation.
 - 6. Fill in other (optional) sections

Operation Contracts Format

Name	Name of operation, and parameters	
Responsibilities	An informal description of the responsibilities that the operation must fill	
Туре	Name of type(concept, software class, interface)	
Cross References	System function reference numbers, use cases, etc.	
Notes	Design notes, algorithms, and so on.	
Exceptions	Exceptional cases	
Output	Non-UI outputs, such as messages or records that are sent outside of the system	
Pre-conditions	Assumptions that the state of the system before execution of the operation	
Post-conditions	The state of the system after completion of the operation	

Contracts and Other Artifacts Operation: endSale Pre-conditions: Post-conditions: :System Operation: enterItem USE CASE: Buy Items Cashier System Pre-conditions: Typical Course of Events Post-conditions: enterItem(UPC, quantity) endSale() 1. This use case begins. enterItem() endSale() makePayment() Operation: 3. ... makePayment(amount) makePayment Pre-conditions: Post-conditions: System **Use-Case** System Sequence Contracts Diagram **Operations**

Description

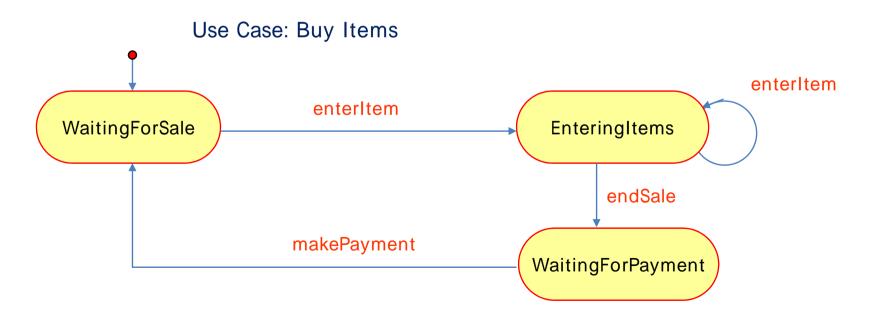
- Describes all possible states of the system, use cases, or objects
- Input : essential use case diagram, conceptual class diagram
- Output : A state diagrams

Three kinds of State diagrams:

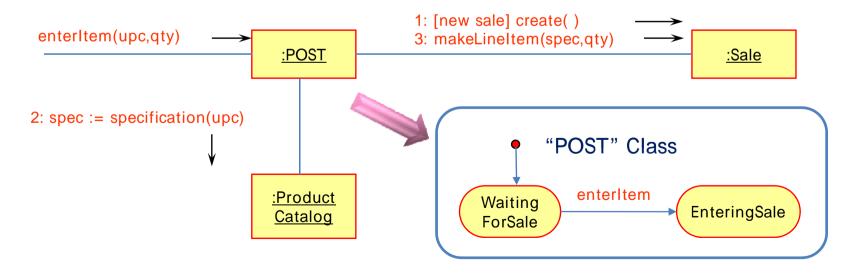
- 1. Use case state diagram
- 2. System state diagram
- 3. Class state diagram

Event

- A significant or noteworthy occurrence
- Ex) a telephone receiver is taken off the hook


State

- Condition of an object at a moment in time
- Ex) a telephone is in the state of being "idle" after the receiver is placed on the hook and until it is taken off the hook


Transition

- A relationship between two states that indicates that when an event occurs and the object moves from one state to another
- Ex) when the event "off hook" occurs, transition occurs from the "idle" to "active" state

- Use Case State Diagram
 - A state diagram that depicts the overall system events and their sequence within a use case

- Class State Diagram
 - A state diagram that depicts state changes of a class across all the use cases
 - Identify a class from interaction diagram
 - A union of all the use case state diagrams

- System State Diagram
 - Identify system events from system sequence diagram
 - Determine sequence of system events
 - Assign system events into transition of state diagram
 - This is an optional activity

Summary

- What is the objective of OSP stage 2000?
 - Can you picture the flow of stage 2000?
 - Can you picture the flow of stage 2030 Analyze?
 - Can you clarify the difference between 2030 Analyze and 1000 activities?