
Integration and Component basedIntegration and Component-based
Software Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 1

Learning objectivesLearning objectives

• Understand the purpose of integration testing• Understand the purpose of integration testing
– Distinguish typical integration faults from faults that

should be eliminated in unit testingshould be eliminated in unit testing
– Understand the nature of integration faults and how

to prevent as well as detect themto prevent as well as detect them

• Understand strategies for ordering construction
and testingand testing
– Approaches to incremental assembly and testing to

reduce effort and control riskreduce effort and control risk

• Understand special challenges and approaches
for testing component based systems

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 2

for testing component-based systems

What is integration testing?What is integration testing?

Module test Integration test System testModule test Integration test System test

Specification: Module
interface

Interface specs,
module breakdown

Requirements
specification

Visible structure: Coding details Modular structure
(software architecture)

— none —
()

Scaffolding Some Often extensive SomeScaffolding
required:

Some Often extensive Some

Looking for faults Modules Interactions System Looking for faults
in:

Modules Interactions,
compatibility

System
functionality

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 3

Integration versus Unit TestingIntegration versus Unit Testing

• Unit (module) testing is a necessary foundation• Unit (module) testing is a necessary foundation
– Unit level has maximum controllability and visibility

Integration testing can never compensate for – Integration testing can never compensate for
inadequate unit testing

Integration testing may serve as a process check• Integration testing may serve as a process check
– If module faults are revealed in integration testing,

they signal inadequate unit testingthey signal inadequate unit testing
– If integration faults occur in interfaces between

correctly implemented modules the errors can be correctly implemented modules, the errors can be
traced to module breakdown and interface
specificationsp

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 4

Integration Faults

• Inconsistent interpretation of parameters or values
– Example: Mixed units (meters/yards) in Martian Landerp (y)

• Violations of value domains, capacity, or size limits
– Example: Buffer overflow

• Side effects on parameters or resources
– Example: Conflict on (unspecified) temporary file

O itt d i d t d f ti lit• Omitted or misunderstood functionality
– Example: Inconsistent interpretation of web hits

• Nonfunctional properties• Nonfunctional properties
– Example: Unanticipated performance issues

• Dynamic mismatchesDynamic mismatches
– Example: Incompatible polymorphic method calls

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 5

Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)
{ bio filter in ctx t *inctx = f >ctx;{ bio filter in ctx t inctx = f->ctx;

i t l NULL No obvious error but inctx->ssl = NULL;
inctx->filter ctx->pssl = NULL;

No obvious error, but
Apache leaked memory
slowly (in normal use) or

} quickly (if exploited for a
DOS attack)

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 6

Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)
{ bio filter in ctx t *inctx = f >ctx;{ bio filter in ctx t inctx = f->ctx;

SSL_free(inctx -> ssl);
i t l NULL The missing code is for a inctx->ssl = NULL;
inctx->filter ctx->pssl = NULL;

The missing code is for a
structure defined and
created elsewhere,

} accessed through an
opaque pointer.

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 7

Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f)
{ bio filter in ctx t *inctx = f >ctx;{ bio filter in ctx t inctx = f->ctx;

SSL_free(inctx -> ssl);
i t l NULL Almost impossible to find inctx->ssl = NULL;
inctx->filter ctx->pssl = NULL;

Almost impossible to find
with unit testing.
(Inspection and some

} dynamic techniques could
have found it.)

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 8

Maybe you’ve heardMaybe you ve heard ...

• Yes I implemented • Yes, I implemented
module A , but I

didn’t test it didn t test it
thoroughly yet. It
will be tested along will be tested along
with module A when
that’s ready that s ready.

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 10

TranslationTranslation...

• Yes I implemented • I didn’t think at all • Yes, I implemented
module A , but I

didn’t test it

• I didn t think at all
about the strategy
for testing I didn’t didn t test it

thoroughly yet. It
will be tested along

for testing. I didn t
design module A for
testability and I will be tested along

with module A when
that’s ready

testability and I
didn’t think about
the best order to that s ready. the best order to
build and test
modules A and B modules A and B .

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 11

Integration Plan + Test PlanIntegration Plan + Test Plan

• Integration test
plan drives and is plan drives and is
driven by the
project “build plan”

...

...

project build plan
– A key feature of the

system architecture
Build Plan Test Plan

System Architecture

system architecture
and project plan...

System Architecture

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 12

Big Bang Integration TestBig Bang Integration Test

An extreme and desperate approach: An extreme and desperate approach:

Test only after integrating all modules

+Does not require scaffolding
• The only excuse, and a bad one

- Minimum observability, diagnosability, efficacy,
feedback

- High cost of repairg p
• Recall: Cost of repairing a fault rises as a function of

time between error and repair

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 13

p

Structural and Functional StrategiesStructural and Functional Strategies

• Structural orientation:• Structural orientation:
Modules constructed, integrated and tested
based on a hierarchical project structurebased on a hierarchical project structure
– Top-down, Bottom-up, Sandwich, Backbone

F ti l i t ti• Functional orientation:
Modules integrated according to application
h t i ti f tcharacteristics or features
– Threads, Critical module

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 14

Top downTop down .

Top

stub A stub B stub Cstub stub B stub C

W ki f th t l l (i t f “ ” Working from the top level (in terms of “use”
or “include” relation) toward the bottom.
No drivers required if program tested from No drivers required if program tested from
top-level interface (e.g. GUI, CLI, web app,
etc.)

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 15

Top downTop down ..

Top

A stub B stub Cstub B stub C

stub Ystub X

Write stubs of called or
used modules at each
step in constructionstep in construction

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 16

Top downTop down ...

Top

A B CB C

stub Ystub X

As modules replace
stubs, more
functionality is functionality is
testable

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 17

Top down completeTop down ... complete

Top

A B CB C

 until the program is

YX

... until the program is
complete, and all
functionality can be y
tested

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 18

Bottom UpBottom Up .

Driver Starting at the leaves of the
“uses” hierarchy, we never
need stubs

X

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 19

Bottom UpBottom Up ..

Driver Driver but we must Driver ... but we must
construct drivers for
each module (as in

YX

(
unit testing) ...

Y

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 20

Bottom UpBottom Up ...

Driver

A
 i t di t ... an intermediate

module replaces a
driver and needs its

YX

driver, and needs its
own driver ...

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 21

Bottom UpBottom Up

Driver DriverDriver Driver

A BB

YX

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 22

Bottom UpBottom Up

Driver Driver Driver

A B C

YX

... so we may have
several working
subsystems YX subsystems ...

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 23

Bottom Up (complete)Bottom Up (complete)

Top

A B CB C

YX

... that are eventually
integrated into a
i l tsingle system.

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 24

SandwichSandwich .

Top (parts)

QuickTime?and a
None decompressor

are needed to see this picture.

Stub CC

Y

Working from the
extremes (top and
bottom) toward center bottom) toward center,
we may use fewer
drivers and stubs

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 25

drivers and stubs

SandwichSandwich ..

Top (more)

QuickTime?and a
None decompressor

are needed to see this picture.

A CC

YX

Sandwich integration
is flexible and
adaptable but adaptable, but
complex to plan

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 26

ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A CC

A “thread” is a portion of several

X

p
modules that together provide a
user-visible program feature.

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 27

ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A B CB C

I t ti

YX

Integrating one
thread, then another,
etc we maximize etc., we maximize
visibility for the user

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 28

ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A B CB C

YX

As in sandwich
integration testing, we
can minimize stubs can minimize stubs
and drivers, but the
integration plan may

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 29

integration plan may
be complex

Critical ModulesCritical Modules

• Strategy: Start with riskiest modules• Strategy: Start with riskiest modules
– Risk assessment is necessary first step

May include technical risks (is X feasible?) process – May include technical risks (is X feasible?), process
risks (is schedule for X realistic?), other risks

May resemble thread or sandwich process in • May resemble thread or sandwich process in
tactics for flexible build order

E t ti t f d l t t t – E.g., constructing parts of one module to test
functionality in another

K i t i i k i t d • Key point is risk-oriented process
– Integration testing as a risk-reduction activity,

designed to deliver any bad news as early as possibledesigned to deliver any bad news as early as possible

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 30

Choosing a StrategyChoosing a Strategy

• Functional strategies require more planning• Functional strategies require more planning
– Structural strategies (bottom up, top down,

sandwich) are simpler) p
– But thread and critical modules testing provide

better process visibility, especially in complex
tsystems

• Possible to combine
T d b tt d i h bl – Top-down, bottom-up, or sandwich are reasonable
for relatively small components and subsystems

– Combinations of thread and critical modules Combinations of thread and critical modules
integration testing are often preferred for larger
subsystems

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 31

Working Definition of ComponentWorking Definition of Component

• Reusable unit of deployment and composition• Reusable unit of deployment and composition
– Deployed and integrated multiple times

Integrated by different teams (usually)– Integrated by different teams (usually)
• Component producer is distinct from component user

Characterized by an interface or contract• Characterized by an interface or contract
• Describes access points, parameters, and all functional and

non-functional behavior and conditions for using the non functional behavior and conditions for using the
component

• No other access (e.g., source code) is usually available

• Often larger grain than objects or packages
– Example: A complete database system may be a

component
(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 33

Components — Related ConceptsComponents — Related Concepts

• Framework• Framework
• Skeleton or micro-architecture of an application
• May be packaged and reused as a component, with “hooks” May be packaged and reused as a component, with hooks

or “slots” in the interface contract

• Design patternsg p
• Logical design fragments
• Frameworks often implement patterns, but patterns are not

f k F k t tt frameworks. Frameworks are concrete, patterns are
abstract

• Component-based system• Component-based system
• A system composed primarily by assembling components,

often “Commercial off-the-shelf” (COTS) components
• Usually includes application-specific “glue code”

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 34

Component Interface ContractsComponent Interface Contracts

• Application programming interface (API) is • Application programming interface (API) is
distinct from implementation

Example: DOM interface for XML is distinct from – Example: DOM interface for XML is distinct from
many possible implementations, from different
sourcessources

• Interface includes everything that must be
known to use the componentknown to use the component
– More than just method signatures, exceptions, etc

May include non functional characteristics like – May include non-functional characteristics like
performance, capacity, security

– May include dependence on other componentsMay include dependence on other components

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 35

Challenges in Testing ComponentsChallenges in Testing Components

• The component builder’s challenge: • The component builder s challenge:
– Impossible to know all the ways a component may be

usedused
– Difficult to recognize and specify all potentially

important properties and dependenciesimportant properties and dependencies

The component user’s challenge: • The component user’s challenge:
– No visibility “inside” the component

Of diffi l j d i bili f i l – Often difficult to judge suitability for a particular
use and context

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 36

Testing a Component: Producer ViewTesting a Component: Producer View

• First: Thorough unit and subsystem testing• First: Thorough unit and subsystem testing
– Includes thorough functional testing based on

application program interface (API)application program interface (API)
– Rule of thumb: Reusable component requires at

least twice the effort in design, implementation, least twice the effort in design, implementation,
and testing as a subsystem constructed for a single
use (often more)

• Second: Thorough acceptance testing
– Based on scenarios of expected useased o sce a os o e pected use
– Includes stress and capacity testing

• Find and document the limits of applicability pp y

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 37

Testing a Component: User ViewTesting a Component: User View

• Not primarily to find faults in the component• Not primarily to find faults in the component
• Major question: Is the component suitable for

thi li ti ?this application?
– Primary risk is not fitting the application context:

U i i d d d i i i h i• Unanticipated dependence or interactions with environment
• Performance or capacity limits
• Missing functionality misunderstood API• Missing functionality, misunderstood API

– Risk high when using component for first time

• Reducing risk: Trial integration early• Reducing risk: Trial integration early
– Often worthwhile to build driver to test model

scenarios long before actual integrationscenarios, long before actual integration

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 38

Adapting and Testing a ComponentAdapting and Testing a Component

QuickTime?and a
None decompressor

are needed to see this picture.

Application

p

Adaptor

ComponentComponent

• Applications often access components through
an adaptor, which can also be used by a test
driver
(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 39

SummarySummary

• Integration testing focuses on interactions• Integration testing focuses on interactions
– Must be built on foundation of thorough unit testing

Integration faults often traceable to incomplete or – Integration faults often traceable to incomplete or
misunderstood interface specifications

• Prefer prevention to detection and make detection easier • Prefer prevention to detection, and make detection easier
by imposing design constraints

• Strategies tied to project build orderg p j
– Order construction, integration, and testing to

reduce cost or risk

• Reusable components require special care
– For component builder, and for component user

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 40

For component builder, and for component user

