
Integration and Component basedIntegration and Component-based 
Software Testing
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Learning objectivesLearning objectives

• Understand the purpose of integration testing• Understand the purpose of integration testing
– Distinguish typical integration faults from faults that 

should be eliminated in unit testingshould be eliminated in unit testing
– Understand the nature of integration faults and how 

to prevent as well as detect themto prevent as well as detect them

• Understand strategies for ordering construction 
and testingand testing
– Approaches to incremental assembly and testing to 

reduce effort and control riskreduce effort and control risk

• Understand special challenges and approaches 
for testing component based systems
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What is integration testing?What is integration testing?

Module test Integration test System testModule test Integration test System test

Specification: Module 
interface

Interface specs, 
module breakdown

Requirements 
specification

Visible structure: Coding details Modular structure 
(software architecture)

— none —
( )

Scaffolding Some Often extensive SomeScaffolding 
required:

Some Often extensive Some

Looking for faults Modules Interactions  System Looking for faults 
in:

Modules Interactions, 
compatibility

System 
functionality
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Integration versus Unit TestingIntegration versus Unit Testing

• Unit (module) testing is a necessary foundation• Unit (module) testing is a necessary foundation
– Unit level has maximum controllability and visibility

Integration testing can never compensate for – Integration testing can never compensate for 
inadequate unit testing

Integration testing may serve as a process check• Integration testing may serve as a process check
– If module faults are revealed in integration testing, 

they signal inadequate unit testingthey signal inadequate unit testing
– If integration faults occur in interfaces between 

correctly implemented modules  the errors can be correctly implemented modules, the errors can be 
traced to module breakdown and interface 
specificationsp
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Integration Faults

• Inconsistent interpretation of parameters or values
– Example:  Mixed units (meters/yards) in Martian Landerp ( y )

• Violations of value domains, capacity, or size limits
– Example: Buffer overflow

• Side effects on parameters or resources
– Example: Conflict on (unspecified) temporary file

O itt d  i d t d f ti lit• Omitted or misunderstood functionality
– Example: Inconsistent interpretation of web hits

• Nonfunctional properties• Nonfunctional properties
– Example: Unanticipated performance issues

• Dynamic mismatchesDynamic mismatches
– Example: Incompatible polymorphic method calls
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Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) 
{   bio filter in ctx t *inctx = f >ctx;{   bio filter in ctx t inctx = f->ctx;

i t l  NULL  No obvious error  but inctx->ssl = NULL; 
inctx->filter ctx->pssl = NULL; 

No obvious error, but 
Apache leaked memory 
slowly (in normal use) or 

} quickly (if exploited for a 
DOS attack)
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Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) 
{   bio filter in ctx t *inctx = f >ctx;{   bio filter in ctx t inctx = f->ctx;

SSL_free(inctx -> ssl);
i t l  NULL  The missing code is for a inctx->ssl = NULL; 
inctx->filter ctx->pssl = NULL; 

The missing code is for a 
structure defined and 
created elsewhere, 

} accessed through an 
opaque pointer.
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Example: A Memory LeakExample: A Memory Leak

Apache web server, version 2.0.48Apache web server, version 2.0.48
Response to normal page request on secure (https) port

static void ssl io filter disable(ap filter t *f) 
{   bio filter in ctx t *inctx = f >ctx;{   bio filter in ctx t inctx = f->ctx;

SSL_free(inctx -> ssl);
i t l  NULL  Almost impossible to find inctx->ssl = NULL; 
inctx->filter ctx->pssl = NULL; 

Almost impossible to find 
with unit testing.  
(Inspection and some 

} dynamic techniques could 
have found it.)
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Maybe you’ve heardMaybe you ve heard ... 

• Yes  I implemented • Yes, I implemented 
module A , but I 

didn’t test it didn t test it 
thoroughly yet.  It 
will be tested along will be tested along 
with module A when 
that’s ready   that s ready.  
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TranslationTranslation... 

• Yes  I implemented • I didn’t think at all • Yes, I implemented 
module A , but I 

didn’t test it 

• I didn t think at all 
about the strategy
for testing   I didn’t didn t test it 

thoroughly yet.  It 
will be tested along 

for testing.  I didn t 
design module A for 
testability and I will be tested along 

with module A when 
that’s ready   

testability and I 
didn’t think about 
the best order to that s ready.  the best order to 
build and test 
modules A and B     modules A and B .    
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Integration Plan + Test PlanIntegration Plan + Test Plan

• Integration test 
plan drives and is plan drives and is 
driven by the 
project “build plan”

...

...

project build plan
– A key feature of the 

system architecture 
Build Plan Test Plan

System Architecture

system architecture 
and project plan...

System Architecture
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Big Bang Integration TestBig Bang Integration Test

An extreme and desperate approach: An extreme and desperate approach: 

Test only after integrating all modules

+Does not require scaffolding
• The only excuse, and a bad one

- Minimum observability, diagnosability, efficacy, 
feedback

- High cost of repairg p
• Recall: Cost of repairing a fault rises as a function of 

time between error and repair 
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Structural and Functional StrategiesStructural and Functional Strategies

• Structural orientation:• Structural orientation:
Modules constructed, integrated and tested 
based on a hierarchical project structurebased on a hierarchical project structure
– Top-down, Bottom-up, Sandwich, Backbone 

F ti l i t ti• Functional orientation:
Modules integrated according to application 
h t i ti   f tcharacteristics or features
– Threads, Critical module
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Top downTop down .

Top

stub A stub B stub Cstub stub B stub C

W ki  f  th  t  l l (i  t  f “ ” Working from the top level (in terms of “use” 
or “include” relation) toward the bottom.
No drivers required if program tested from No drivers required if program tested from 
top-level interface (e.g. GUI, CLI, web app, 
etc.)
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Top downTop down ..

Top

A stub B stub Cstub B stub C

stub Ystub X

Write stubs of called or 
used modules at each 
step in constructionstep in construction
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Top downTop down ...

Top

A B CB C

stub Ystub X

As modules replace 
stubs, more 
functionality is functionality is 
testable
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Top down completeTop down ... complete

Top

A B CB C

 until the program is 

YX

... until the program is 
complete, and all 
functionality can be y
tested
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Bottom UpBottom Up .

Driver Starting at the leaves of the 
“uses” hierarchy, we never 
need stubs

X
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Bottom UpBottom Up ..

Driver Driver  but we must Driver ... but we must 
construct drivers for 
each module (as in 

YX

(
unit testing) ... 

Y
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Bottom UpBottom Up ...

Driver

A
  i t di t  ... an intermediate 

module replaces a 
driver  and needs its 

YX

driver, and needs its 
own driver ... 
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Bottom UpBottom Up ....

Driver DriverDriver Driver

A BB

YX
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Bottom UpBottom Up .....

Driver Driver Driver

A B C

YX

... so we may have 
several working 
subsystems  YX subsystems ... 
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Bottom Up (complete)Bottom Up (complete)

Top

A B CB C

YX

... that are eventually 
integrated into a 
i l  tsingle system.
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SandwichSandwich .

Top (parts)

QuickTime?and a
None decompressor

are needed to see this picture.

Stub CC

Y

Working from the 
extremes (top and 
bottom) toward center  bottom) toward center, 
we may use fewer 
drivers and stubs
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SandwichSandwich ..

Top (more)

QuickTime?and a
None decompressor

are needed to see this picture.

A CC

YX

Sandwich integration 
is flexible and 
adaptable  but adaptable, but 
complex to plan
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ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A CC

A “thread” is a portion of several 

X

p
modules that together provide a 
user-visible program feature.

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 27



ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A B CB C

I t ti   

YX

Integrating one 
thread, then another, 
etc  we maximize etc., we maximize 
visibility for the user
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ThreadThread ...

Top

QuickTime?and a
None decompressor

are needed to see this picture.

A B CB C

YX

As in sandwich 
integration testing, we 
can minimize stubs can minimize stubs 
and drivers, but the 
integration plan may 
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Critical ModulesCritical Modules

• Strategy: Start with riskiest modules• Strategy: Start with riskiest modules
– Risk assessment is necessary first step

May include technical risks (is X feasible?)  process – May include technical risks (is X feasible?), process 
risks (is schedule for X realistic?), other risks

May resemble thread or sandwich process in • May resemble thread or sandwich process in 
tactics for flexible build order

E  t ti  t  f  d l  t  t t – E.g., constructing parts of one module to test 
functionality in another

K  i t i  i k i t d • Key point is risk-oriented process
– Integration testing as a risk-reduction activity, 

designed to deliver any bad news as early as possibledesigned to deliver any bad news as early as possible
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Choosing a StrategyChoosing a Strategy

• Functional strategies require more planning• Functional strategies require more planning
– Structural strategies (bottom up, top down, 

sandwich) are simpler) p
– But thread and critical modules testing provide 

better process visibility, especially in complex 
tsystems

• Possible to combine
T d  b tt   d i h  bl  – Top-down, bottom-up, or sandwich are reasonable 
for relatively small components and subsystems

– Combinations of thread and critical modules Combinations of thread and critical modules 
integration testing are often preferred for larger 
subsystems
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Working Definition of ComponentWorking Definition of Component

• Reusable unit of deployment and composition• Reusable unit of deployment and composition
– Deployed and integrated multiple times

Integrated by different teams (usually)– Integrated by different teams (usually)
• Component producer is distinct from component user

Characterized by an interface or contract• Characterized by an interface or contract
• Describes access points, parameters, and all functional and 

non-functional behavior and conditions for using the non functional behavior and conditions for using the 
component

• No other access (e.g., source code) is usually available

• Often larger grain than objects or packages
– Example: A complete database system may be a 

component
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Components — Related ConceptsComponents — Related Concepts

• Framework• Framework
• Skeleton or micro-architecture of an application
• May be packaged and reused as a component, with “hooks” May be packaged and reused as a component, with hooks  

or “slots” in the interface contract

• Design patternsg p
• Logical design fragments
• Frameworks often implement patterns, but patterns are not 

f k   F k   t  tt   frameworks.  Frameworks are concrete, patterns are 
abstract

• Component-based system• Component-based system
• A system composed primarily by assembling components, 

often “Commercial off-the-shelf” (COTS) components 
• Usually includes application-specific “glue code”
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Component Interface ContractsComponent Interface Contracts

• Application programming interface (API) is • Application programming interface (API) is 
distinct from implementation

Example: DOM interface for XML is distinct from – Example: DOM interface for XML is distinct from 
many possible implementations, from different 
sourcessources

• Interface includes everything that must be 
known to use the componentknown to use the component
– More than just method signatures, exceptions, etc

May include non functional characteristics like – May include non-functional characteristics like 
performance, capacity, security

– May include dependence on other componentsMay include dependence on other components

(c) 2007 Mauro Pezzè & Michal Young Ch 21, slide 35



Challenges in Testing ComponentsChallenges in Testing Components

• The component builder’s challenge: • The component builder s challenge: 
– Impossible to know all the ways a component may be 

usedused
– Difficult to recognize and specify all potentially 

important properties and dependenciesimportant properties and dependencies

The component user’s challenge: • The component user’s challenge: 
– No visibility “inside” the component

Of  diffi l   j d  i bili  f   i l  – Often difficult to judge suitability for a particular 
use and context
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Testing a Component: Producer ViewTesting a Component: Producer View

• First: Thorough unit and subsystem testing• First: Thorough unit and subsystem testing
– Includes thorough functional testing based on 

application program interface (API)application program interface (API)
– Rule of thumb: Reusable component requires at 

least twice the effort in design, implementation, least twice the effort in design, implementation, 
and testing as a subsystem constructed for a single 
use (often more)

• Second: Thorough acceptance testing
– Based on scenarios of expected useased o  sce a os o  e pected use
– Includes stress and capacity testing

• Find and document the limits of applicability pp y
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Testing a Component: User ViewTesting a Component: User View

• Not primarily to find faults in the component• Not primarily to find faults in the component
• Major question: Is the component suitable for 

thi li ti ?this application?
– Primary risk is not fitting the application context: 

U i i d d d   i i  i h i• Unanticipated dependence or interactions with environment
• Performance or capacity limits
• Missing functionality  misunderstood API• Missing functionality, misunderstood API

– Risk high when using component for first time

• Reducing risk: Trial integration early• Reducing risk: Trial integration early
– Often worthwhile to build driver to test model 

scenarios  long before actual integrationscenarios, long before actual integration
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Adapting and Testing a ComponentAdapting and Testing a Component

QuickTime?and a
None decompressor

are needed to see this picture.

Application

p

Adaptor

ComponentComponent

• Applications often access components through 
an adaptor, which can also be used by a test 
driver
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SummarySummary

• Integration testing focuses on interactions• Integration testing focuses on interactions
– Must be built on foundation of thorough unit testing

Integration faults often traceable to incomplete or – Integration faults often traceable to incomplete or 
misunderstood interface specifications

• Prefer prevention to detection  and make detection easier • Prefer prevention to detection, and make detection easier 
by imposing design constraints

• Strategies tied to project build orderg p j
– Order construction, integration, and testing to 

reduce cost or risk

• Reusable components require special care
– For component builder, and for component user
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