
System Acceptance and RegressionSystem, Acceptance, and Regression
Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 1

Learning objectivesLearning objectives

• Distinguish system and acceptance testing• Distinguish system and acceptance testing
– How and why they differ from each other and from

unit and integration testingunit and integration testing

• Understand basic approaches for quantitative
assessment (reliability performance)assessment (reliability, performance, ...)

• Understand interplay of validation and
ifi ti f bilit d ibilitverification for usability and accessibility

– How to continuously monitor usability from early
d i t d lidesign to delivery

• Understand basic regression testing approaches

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 2

– Preventing accidental changes

System Acceptance Regression

Test for Correctness Usefulness Accidental Test for ... Correctness,
completion

Usefulness,
satisfaction

Accidental
changes

Test by ... Development
test group

Test group with
users

Development
test grouptest group users test group

Verification Validation Verification

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 3

22.2

System testing
22.2

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 4

System TestingSystem Testing

• Key characteristics: • Key characteristics:
– Comprehensive (the whole system, the whole spec)

Based on specification of observable behavior– Based on specification of observable behavior
Verification against a requirements specification, not
validation, and not opinions

– Independent of design and implementation

Independence: Avoid repeating software design
errors in system test designerrors in system test design

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 5

Independent V&VIndependent V&V

• One strategy for maximizing independence:• One strategy for maximizing independence:
System (and acceptance) test performed by a
different organizationdifferent organization
– Organizationally isolated from developers (no

pressure to say “ok”)pressure to say ok)
– Sometimes outsourced to another company or

agencyagency
• Especially for critical systems
• Outsourcing for independent judgment, not to save money
• May be additional system test, not replacing internal V&V

– Not all outsourced testing is IV&V
• Not independent if controlled by development organization

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 6

Independence without changing staffIndependence without changing staff

• If the development organization controls • If the development organization controls
system testing ...

Perfect independence may be unattainable but we – Perfect independence may be unattainable, but we
can reduce undue influence

Develop system test cases early• Develop system test cases early
– As part of requirements specification, before major

design decisions have been madedesign decisions have been made
• Agile “test first” and conventional “V model” are both

examples of designing system test cases before designing
the implementation

• An opportunity for “design for test”: Structure system for
critical system testing early in projectcritical system testing early in project

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 7

Incremental System TestingIncremental System Testing

• System tests are often used to measure • System tests are often used to measure
progress

System test suite covers all features and scenarios of – System test suite covers all features and scenarios of
use

– As project progresses the system passes more and – As project progresses, the system passes more and
more system tests

• Assumes a “threaded” incremental build plan: • Assumes a threaded incremental build plan:
Features exposed at top level as they are
developeddeveloped

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 8

Global PropertiesGlobal Properties

• Some system properties are inherently global• Some system properties are inherently global
– Performance, latency, reliability, ...

Early and incremental testing is still necessary but – Early and incremental testing is still necessary, but
provide only estimates

A major focus of system testing• A major focus of system testing
– The only opportunity to verify global properties

against actual system specificationsagainst actual system specifications
– Especially to find unanticipated effects, e.g., an

unexpected performance bottleneckunexpected performance bottleneck

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 9

Context-Dependent PropertiesContext-Dependent Properties

• Beyond system global: Some properties depend • Beyond system-global: Some properties depend
on the system context and use

Example: Performance properties depend on – Example: Performance properties depend on
environment and configuration

– Example: Privacy depends both on system and how it – Example: Privacy depends both on system and how it
is used

• Medical records system must protect against unauthorized y p g
use, and authorization must be provided only as needed

– Example: Security depends on threat profiles
• And threats change!

• Testing is just one part of the approach

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 10

Establishing an Operational EnvelopeEstablishing an Operational Envelope

• When a property (e g performance or real• When a property (e.g., performance or real-
time response) is parameterized by use ...

requests per second size of database – requests per second, size of database, ...

• Extensive stress testing is required
– varying parameters within the envelope, near the

bounds, and beyond

G l A ll d d d l f h h • Goal: A well-understood model of how the
property varies with the parameter
– How sensitive is the property to the parameter?
– Where is the “edge of the envelope”?
– What can we expect when the envelope is exceeded?
(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 11

Stress TestingStress Testing

• Often requires extensive simulation of the • Often requires extensive simulation of the
execution environment

With systematic variation: What happens when we – With systematic variation: What happens when we
push the parameters? What if the number of users
or requests is 10 times more, or 1000 times more?or requests is 10 times more, or 1000 times more?

• Often requires more resources (human and
machine) than typical test casesmachine) than typical test cases
– Separate from regular feature tests

Run less often with more manual control– Run less often, with more manual control
– Diagnose deviations from expectation

• Which may include difficult debugging of latent faults! • Which may include difficult debugging of latent faults!

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 12

22.3

Acceptance testing
22.3

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 13

Estimating DependabilityEstimating Dependability

• Measuring quality not searching for faults• Measuring quality, not searching for faults
– Fundamentally different goal than systematic testing

Q tit ti d d bilit l t ti ti l• Quantitative dependability goals are statistical
– Reliability
– Availability
– Mean time to failure
– ...

• Requires valid statistical samples from
operational profile
– Fundamentally different from systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 14

Statistical SamplingStatistical Sampling

• We need a valid operational profile (model)• We need a valid operational profile (model)
– Sometimes from an older version of the system

Sometimes from operational environment (e g for – Sometimes from operational environment (e.g., for
an embedded controller)
Sensitivity testing reveals which parameters are – Sensitivity testing reveals which parameters are
most important, and which can be rough guesses

• And a clear precise definition of what is being • And a clear, precise definition of what is being
measured

Failure rate? Per session per hour per operation?– Failure rate? Per session, per hour, per operation?

• And many, many random samples
– Especially for high reliability measures
(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 15

Is Statistical Testing Worthwhile?Is Statistical Testing Worthwhile?

• Necessary for • Necessary for ...
– Critical systems (safety critical, infrastructure, ...)

• But difficult or impossible when ...
– Operational profile is unavailable or just a guess

• Often for new functionality involving human interaction
– But we may factor critical functions from overall use to

obtain a good model of only the critical properties

– Reliability requirement is very high– Reliability requirement is very high
• Required sample size (number of test cases) might require

years of test execution
• Ultra-reliability can seldom be demonstrated by testing

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 16

Process-based MeasuresProcess-based Measures

• Less rigorous than statistical testing• Less rigorous than statistical testing
– Based on similarity with prior projects

S t t ti • System testing process
– Expected history of bugs found and resolved

• Alpha, beta testing
– Alpha testing: Real users, controlled environment
– Beta testing: Real users, real (uncontrolled)

environment
– May statistically sample users rather than uses
– Expected history of bug reports

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 17

22.4

Usability
22.4

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 18

UsabilityUsability

• A usable product • A usable product
– is quickly learned

allows users to work efficiently– allows users to work efficiently
– is pleasant to use

Obj i i i• Objective criteria
– Time and number of operations to perform a task
– Frequency of user error

• blame user errors on the product!

• Plus overall, subjective satisfaction

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 19

Verifying UsabilityVerifying Usability

• Usability rests ultimately on testing with real • Usability rests ultimately on testing with real
users — validation, not verification

Preferably in the usability lab by usability experts– Preferably in the usability lab, by usability experts

• But we can factor usability testing for process
visibility — validation and verification
throughout the project
– Validation establishes criteria to be verified by

testing, analysis, and inspection

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 20

Factoring Usability TestingFactoring Usability Testing
Validation Verification
(usability lab)
• Usability testing

(developers, testers)
• Inspection applies y g

establishes usability
check-lists

p pp
usability check-lists to
specification and design

– Guidelines applicable
across a product line or
domain

• Early usability testing
evaluates “cardboard

• Behavior objectively
verified (e.g., tested)
against interface design prototype” or mock-up

– Produces interface design

against interface design

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 21

Varieties of Usability TestVarieties of Usability Test

• Exploratory testing• Exploratory testing
– Investigate mental model of users

Performed early to guide interface design– Performed early to guide interface design

• Comparison testing
– Evaluate options (specific interface design choices)
– Observe (and measure) interactions with alternative

i t ti ttinteraction patterns

• Usability validation testing
– Assess overall usability (quantitative and qualitative)
– Includes measurement: error rate, time to complete

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 22

Typical Usability Test ProtocolTypical Usability Test Protocol
• Select representative sample of user groupsp p g p

– Typically 3-5 users from each of 1-4 groups
– Questionnaires verify group membershipQuestionnaires verify group membership

• Ask users to perform a representative sequence
of tasksof tasks

• Observe without interference (no helping!)
Th h d t thi f d l i t t h l – The hardest thing for developers is to not help.
Professional usability testers use one-way mirrors.

Meas re (clicks e e mo ement time) and • Measure (clicks, eye movement, time, ...) and
follow up with questionnaire

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 23

Accessibility TestingAccessibility Testing

• Check usability by people with disabilities• Check usability by people with disabilities
– Blind and low vision, deaf, color-blind, ...

U ibilit id li• Use accessibility guidelines
– Direct usability testing with all relevant groups is

ll i ti l h ki li t usually impractical; checking compliance to
guidelines is practical and often reveals problems

Example: W3C Web Content Accessibility • Example: W3C Web Content Accessibility
Guidelines

P b h k d i ll– Parts can be checked automatically
– but manual check is still required

 i th “ lt” t f th i i f l? • e.g., is the “alt” tag of the image meaningful?

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 24

22.5–22.7

Regression Testing
22.5 22.7

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 25

RegressionRegression

• Yesterday it worked today it doesn’t• Yesterday it worked, today it doesn t
– I was fixing X, and accidentally broke Y

That bug was fixed but now it’s back– That bug was fixed, but now it’s back

• Tests must be re-run after any change
– Adding new features
– Changing, adapting software to new conditions
– Fixing other bugs

• Regression testing can be a major cost of
software maintenance
– Sometimes much more than making the change

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 26

Basic Problems of Regression TestBasic Problems of Regression Test

• Maintaining test suite• Maintaining test suite
– If I change feature X, how many test cases must be

revised because they use feature X?revised because they use feature X?
– Which test cases should be removed or replaced?

Which test cases should be added?Which test cases should be added?

• Cost of re-testing
Often proportional to product size not change size– Often proportional to product size, not change size

– Big problem if testing requires manual effort
• Possible problem even for automated testing when the test • Possible problem even for automated testing, when the test

suite and test execution time grows beyond a few hours

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 27

Test Case MaintenanceTest Case Maintenance

• Some maintenance is inevitable• Some maintenance is inevitable
– If feature X has changed, test cases for feature X

will require updatingwill require updating

• Some maintenance should be avoided
E l T i i l h t i t f fil – Example: Trivial changes to user interface or file
format should not invalidate large numbers of test
casescases

• Test suites should be modular!
Avoid unnecessary dependence– Avoid unnecessary dependence

– Generating concrete test cases from test case
specifications can helpspecifications can help

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 28

Obsolete and RedundantObsolete and Redundant

• Obsolete: A test case that is not longer valid• Obsolete: A test case that is not longer valid
– Tests features that have been modified, substituted,

or removedor removed
– Should be removed from the test suite

Redundant: A test case that does not differ • Redundant: A test case that does not differ
significantly from others

U lik l t fi d f lt i d b i il t t – Unlikely to find a fault missed by similar test cases
– Has some cost in re-execution

H (b) i h ff – Has some (maybe more) cost in human effort to
maintain
May or may not be removed depending on costs– May or may not be removed, depending on costs

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 29

Selecting and Prioritizing Regression
Test Cases

• Should we re run the whole regression test • Should we re-run the whole regression test
suite? If so, in what order?

Maybe you don’t care If you can re rerun – Maybe you don’t care. If you can re-rerun
everything automatically over lunch break, do it.

– Sometimes you do care – Sometimes you do care ...

• Selection matters when
T t i t t – Test cases are expensive to execute

• Because they require special equipment, or long run-times,
or cannot be fully automatedor cannot be fully automated

• Prioritization matters when
– A very large test suite cannot be executed every day– A very large test suite cannot be executed every day

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 30

Code-based Regression Test SelectionCode-based Regression Test Selection

• Observation: A test case can’t find a fault in • Observation: A test case can t find a fault in
code it doesn’t execute

In a large system many parts of the code are

QuickTime?and a
None decompressor

are needed to see this picture.

– In a large system, many parts of the code are
untouched by many test cases

So: Only execute test cases that execute
QuickTime?and a

N d

QuickTime?and a
None decompressor

are needed to see this picture.

• So: Only execute test cases that execute
changed or new code

None decompressor
are needed to see this picture.

Executed by

 test case

New or changed

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 31

Control-flow and Data-flow Regression
Test Selection

• Same basic idea as code based selection• Same basic idea as code-based selection
– Re-run test cases only if they include changed

elementselements
– Elements may be modified control flow nodes and

edges, or definition-use (DU) pairs in data flowedges, or definition use (DU) pairs in data flow

• To automate selection:
Tools record elements touched by each test case– Tools record elements touched by each test case

• Stored in database of regression test cases

– Tools note changes in programTools note changes in program
– Check test-case database for overlap

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 32

Specification-based Regression Test
Selection

• Like code based and structural regression test • Like code-based and structural regression test
case selection

Pick test cases that test new and changed – Pick test cases that test new and changed
functionality

Difference: No guarantee of independence• Difference: No guarantee of independence
– A test case that isn’t “for” changed or added feature

X might find a bug in feature X anywayX might find a bug in feature X anyway

• Typical approach: Specification-based
prioritizationprioritization
– Execute all test cases, but start with those that

related to changed and added featuresrelated to changed and added features

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 33

Prioritized Rotating SelectionPrioritized Rotating Selection

• Basic idea: • Basic idea:
– Execute all test cases, eventually

Execute some sooner than others– Execute some sooner than others

• Possible priority schemes:
– Round robin: Priority to least-recently-run test cases
– Track record: Priority to test cases that have

d t t d f lt b fdetected faults before
• They probably execute code with a high fault density

Structural: Priority for executing elements that have – Structural: Priority for executing elements that have
not been recently executed

• Can be coarse-grained: Features, methods, files, ... Can be coarse grained: Features, methods, files, ...

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 34

SummarySummary

• System testing is verification• System testing is verification
– System consistent with specification?

Especially for global properties (performance – Especially for global properties (performance,
reliability)

Acceptance testing is validation• Acceptance testing is validation
– Includes user testing and checks for usability

b l d b l b h• Usability and accessibility require both
– Usability testing establishes objective criteria to

if h h d lverify throughout development

• Regression testing repeated after each change

(c) 2007 Mauro Pezzè & Michal Young Ch 22, slide 35

– After initial delivery, as software evolves

