Systems and Software Verification

Chapter 10. Fairness Properties

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr

10. Fairness Properties

- Fairness Property
 - Under certain conditions, an event will occur (or will fail to occur) infinitely often
 - Examples:
 - (F1) " The gate will be raised infinitely often"
 - (F2) " If access to a critical section is infinitely often requested, then access will be granted infinitely often "
 - repeated liveness or repeated reachability
- Organization of Chapter 10
 - Fairness in Temporal Logic
 - Fairness and Nondeterminism
 - Fairness Properties and Fairness Hypothesis
 - Strong Fairness and Weak Fairness
 - Fairness in the Model or in the Property?

10.1 Fairness in Temporal Logic

• GF *P*

- " We meet a state in which P holds infinitely often "
- There is no last state in which P holds.
- Fairness properties cannot be expressed in pure CTL
 - (F1) " The gate will be raised infinitely often"
 → A (GF gate_raised)
 - (F2) " If access to a critical section is infinitely often requested, then access will be granted infinitely often "

```
\rightarrow A ( GF crit_req \Rightarrow FG crit_in )
```

- FCTL or ECTL+
 - CTL + fairness
 - O($|A| \times |\phi|^2$)
 - Many tools (like SMV) considers the fairness hypotheses as part of model than choosing FCTL

10.2 Fairness and Nondeterminism

- In practice,
 - Fairness properties are used to describe the form of some nondeterministic sequences
 - "When a nondeterministic choice occurs at some point, it is often assumed to be fair "
 - For example,
 - A die with six faces
 - Its behavior is fair, if it fulfills the property: A (GF 1 \land GF 2 \land GF 3 \land GF 4 \land GF 5 \land GF 6)

Fairness properties can be viewed as an abstraction of probabilistic properties.

10.3 Fairness Properties and Fairness Hypotheses

- Fairness properties are very often used as hypotheses.
- An example:
 - Classical alternating bit protocol
 - A: a transmitter
 - B: a receiver
 - AB: a line for messages
 - BA: a line for message acknowledgements
 - Messages can be lost → non-deterministic behavior of AB and BA
 - Liveness property: " Any emitted message is eventually received "
 - G (emitted \Rightarrow F received)
 - Fail !!!
 - The model allows to systematically lose all messages.
 - Our original intension: "unreliable" line, not the whole lose → Fairness hypothesis!!!
 - A (GF $\neg loss \Rightarrow G$ (emitted \Rightarrow F received)) <u>fairness hypothesis</u> <u>liveness property</u>
 - Repeated liveness property: "If infinitely many messages are emitted, then infinitely many messages will be transmitted"

repeated liveness property

A (GF ¬loss ⇒ (GF emitted ⇒ GF received))
 fairness hypothesis repeated liveness hypothesis

10.4 Strong Fairness and Weak Fairness

- Fairness property
 - " If P is continually requested, then P will be granted (infinitely often) "
- Weak fairness
 - Assume that P is requested without interruption
 - (FG $request_P$) \Rightarrow F P
 - (FG $request_P$) \Rightarrow GF P
- Strong fairness
 - Assume that P is requested in an infinitely repeated manner, possibly with interruptions
 - (GF $request_P$) \Rightarrow F P
 - (GF $request_P$) ⇒ GF P
- No difference when using them for model checking of finite systems

10.5 Fairness in the Model or in the Property?

- The best way is
 - Model = automaton + fairness hypotheses
 - Since the second can change independently from the first
 - like SMV model checker