Systems and Software Verification

Chapter 2. Temporal Logic

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

Ver. 2.0 http://dslab.konkuk.ac.kr

’-) T 'aY a2l aYe
<. ICITPU

O
Q
0

e Motivation:

— The elevator example includes two properties
* "Any elevator request must ultimately be satisfied”
» "The elevator never traverses a floor for which a request is pending without satisfying this request”

— = Dynamic behavior of the system

— In a first order logic,

e Vt,Vn(app(n,t) = dt’>t:serv(n,t))
(app(n,t) N HE)+#n N dt,,

« Vit Vt'>t, Vn, t<t,m<t <H(,,) =n)
:>(3 serv * ctst v—t A Serv(n’ serv))

ser
— But, the above notation(mathematics) is quite cumbersome.

« Temporal Logic is a different formalism, better suited for our situation.

Tf\m

’-) ™\ M\
<. ICIpPUId

v~
I

O

I 7N\ N
LUY

« Temporal Logic

A form of logic specifically tailored for
« statements and reasoning
» Involving the notion of order in time
Compared with the mathematical formulas
e clearer and simpler
» immediately ready for use (linguistic similarity of operators)
« formal semantics (specification language tools)

« Organization of Chapter 2

The Language of Temporal Logic
The Formal Syntax of Temporal Logic
The Semantics of Temporal Logic
PLTL and CTL: Two Temporal Logics
The Expressivity of CTL*

N
i—-\
:r
Q)
LE)
ch
a
e
O
—
O
Q
(@)

 (CTL*

— serves to formally state the properties concerned with the execution of a system

— Variants (CTL, PLTL, LTL)
— 6 characteristics

1. Atomic Propositions
- warm, ok, error

2. Proposition Formula

- using boolean combinators
- true, false, —, v, A, = (if then), < (if and only if)

- error = —warm

(if error then not warm) 07 : (go: warm, ok) = (g;: ok) = (q,: warm, ok) = (qg;: ok) = ...

0, : (go: warm, ok) = (g;: ok) = (q,: error) = (g, warm, ok) >
(gy: ok) = ...

Konku%Urﬂ}bm rm, ok) > (q;: ok) = (q: error) > (qy: error) >,
(g,: error) > ..

3. Temporal combinators
« about the sequencing of states along an execution

X : next state
F : a future state
G : all the future states

e X P: the next state satisfies P

« F P: a future state satisfies P without specifying which state
- P will hold some day (at least once)

« G P: all future states will satisfy P
- P will always be

o alert = F halt : if we are currently in a state of alert, then we will later be in
a halt state.

G (alert = F halt) : at any time, a state of alert will necessarily be followed
by a halt state later.

e G (warm = F —warm) : true
e G (warm = X —warm) : true

e G is the dual of F
. Gop= -F=¢

4. Arbitrary nesting of temporal combinators
« give temporal logic its power and strength

« GF ¢: always there will some day be a state such that ¢,
@ is satisfied infinitely often along the execution considered

« FG ¢@: all the time from a certain time onward, at each time instant,
possibly excluding a finite number of instants

e GF warm v FG error

5. U combinator
e for until

@, U @,: @, is verified until ¢, is verified
@, will be verified some day, and ¢; will hold in the meantime

G (alert = (alarm U halt)) : starting from a state of alert, the alarm remains activated
until the halt state is eventually and inexorably reached.

Fo=trueU ¢
&, W ¢,= (¢, U @) v G @, :weak until

6. Path quantifier

EF P :

A ¢ : all the executions out of the current state satisfy property @
E ¢ : from the current state, there exists an execution satisfying @

EF P : it is possible (by following a suitable execution) to have P some day
EG P : there exists an execution along which P always holds

AF P : we will necessarily have P some day (regardless of the chosen execution)
AG P: always true

Konkuk University

’-) '-) EI\ M"\I C\ llf'\‘l"'\\
£.£ TUldl OylTItdA

r—
O
Q
O

e Abstract grammar
— Needs parentheses, operator priority, specific set of atomic propositions, etc.
— Most model checkers use a fragment of CTL* - CTL or LTL.

o, ¥Y..=P|P|.. (atomic proposition)
| | AW | g=%¥|.. (boolean combinators)
| X¢ | F¢| Gg| oUW | .. (temporal combinators)
|E@ | Ag (path quantifiers)

L.DO 111IC OCIIIdIILILCS VU

« Kripke structure
— Name of the models of temporal logic

— Propositions labeling the states are important in CTL*
— Transition labels (E) are neglected. A=<Q,T,q,,l>, T <QxQ

« Satisfaction
- Aol @
« "at time i of the execution g, ¢ is true
» where o is an execution of A, which not required to start at the initial state
s A is often omitted.
— o, F@ : @is satisfied at time 7 of o
— o, V¢ : ¢is not satisfied at time 7 of ¢

— A F¢@ iff 0,0 | @for every execution of o of A
* “the automaton A satisfies ¢"
® O)i le¢ = O)i |: _'¢

o i P iff P €l(o(3)),
o,i |=—¢ iff it is not true that 0,1 |~ ¢,
oiE¢AYiffo,i = ¢ and 0,1 E 7,

o,i=Xe iffi<|o|and o,i+ 1 ¢, .
o,i=F¢ iff there exists j such that i < j <|o| and 0, = ¢,
0,1 = G¢ iff for all j such that 2 <7 < |o|, we have o,j = ¢,

o,i |= pUy iff there exists j, i < j < |o]| such that o, |= ¢, and
for all k such that i < k < j, we have 0,k = ¢,

o,i = E¢ iff there exists a o’ such that ¢(0)...0(i) = o’'(0)...0'(%) and
o' b | -

o,i = A¢ iff for all o’ such that 0(0)...0(2) = o’'(0)...0'(i), we have
o i [b

Semantics of CTL*

CTL*

- Time is discrete.
- Nothing exists between i and i + 1.
- The instants are the points along the executions

Konkuk University

10

P,
L

DIT
-

| AanA T Thay Tm
LIL allu C L.

WO |||p LOg

/|
4

Two most commonly used temporal logics in model checking tools

— PLTL (Propositional Linear Temporal Logic)
— CTL (Computational Tree Logic)
— fragments of CTL*

PLTL
— No path quantifiers (A and E)
— Linear time logic = Path formula
— For example, PLTL cannot distinguish A, from A,

Execution 1 : {P Q}. {P}. {-}
Execution 2 : {P. Q} . {P} . {Q}

Konkgk University

11

« (CTL
— Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
- EX,AX,EU, AU, EF, EG, AG, AF, ...
— State formulas

— Truth only depends on the current state and the automaton regions made reachable by it
— Not depend on a current execution.
— q F@ : @is satisfied in state q

— CTL can distinguish automata A1 and A2

A,q, F AX(EXQ N EX-Q)
A,q’, ¥ AX(EXQ N EX-Q)

— Potential reachability : AG EF P
— Do not allow us to express very rich properties along the paths.

Konkuk University 12

e Which to choose CTL or PLTL ?

— To state some properties
- PLTL

— To perform exhaustive verification of a system
- CTL

— For both purposes
-> CTL*
* Less popular
* More complicated than PLTL

— CTL + Fairness properties > FCTL

— If we use model checking tools, then we have no choice
— SMV: CTL (CTL)
— SPIN : PLTL
— VIS: CTL/ PLTL

T Thao E,n
L.J 11IC LA lJ

No logic can express anything not taken into account by the modeling
decision made

o (CTL* is rather expressive enough, when
Properties concern the execution tree of our automata

— CTL* combinators are sufficiently expressive
— CTL* is almost always sufficient

