
Systems and Software Verificationy

Ch t 2 T l L iChapter 2. Temporal Logic

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://dslab.konkuk.ac.kr
Ver. 2.0

2 Temporal Logic2. Temporal Logic

M i i• Motivation:
– The elevator example includes two properties

• “Any elevator request must ultimately be satisfied”
• “The elevator never traverses a floor for which a request is pending without satisfying this request”The elevator never traverses a floor for which a request is pending without satisfying this request

– Dynamic behavior of the system

– In a first order logic,

• ∀t, ∀n (app(n, t) ⇒ ∃t’ > t : serv(n, t’))
(app(n, t) ∧H(t’) ≠ n∧∃ttrav :

– But, the above notation(mathematics) is quite cumbersome.

pp , trav

• ∀t, ∀t’ > t, ∀n, t ≤ ttrav ≤ t’ ≤ H(ttrav) = n)
⇒ (∃tserv : t ≤ tserv ≤ t’∧ serv(n, tserv))

• Temporal Logic is a different formalism, better suited for our situation.

Konkuk University 2

2 Temporal Logic2. Temporal Logic

T l L i• Temporal Logic
– A form of logic specifically tailored for

• statements and reasoning
• Involving the notion of order in timeInvolving the notion of order in time

– Compared with the mathematical formulas
• clearer and simpler
• immediately ready for use (linguistic similarity of operators)
• formal semantics (specification language tools)• formal semantics (specification language tools)

• Organization of Chapter 2
– The Language of Temporal Logic
– The Formal Syntax of Temporal Logic

Th S ti f T l L i– The Semantics of Temporal Logic
– PLTL and CTL: Two Temporal Logics
– The Expressivity of CTL*

Konkuk University 3

2 1 The Language of Temporal Logic2.1 The Language of Temporal Logic

CTL*• CTL*
– serves to formally state the properties concerned with the execution of a system
– Variants (CTL, PLTL, LTL)

6 characteristics– 6 characteristics

1 At i P iti

q0
warm
ok

1. Atomic Propositions
- warm, ok, error

q1
ok

2. Proposition Formula
- using boolean combinators

true false ∨ ∧ (if h) (if d l if)

q2
error

- true, false, ￢, ∨, ∧, ⇒ (if then), ⇔ (if and only if)

- error ⇒ ￢ warm
(if error then not warm) σ1 : (q0: warm, ok) (q1: ok) (q0: warm, ok) (q1: ok) …

Konkuk University 4

σ2 : (q0: warm, ok) (q1: ok) (q2: error) (q0: warm, ok)
(q1: ok) …

σ3 : (q0: warm, ok) (q1: ok) (q2: error) (q2: error)
(q2: error) …

3. Temporal combinators
b t th i f t t l ti• about the sequencing of states along an execution

• X : next state
• F : a future stateF : a future state
• G : all the future states

• X P : the next state satisfies P
• F P : a future state satisfies P without specifying which state

P will hold some day (at least once)
• G P : all future states will satisfy P

P will always beP will always be

• alert ⇒ F halt : if we are currently in a state of alert, then we will later be in
a halt state.

f f• G (alert ⇒ F halt) : at any time, a state of alert will necessarily be followed
by a halt state later.

• G (warm ⇒ F ￢warm) : trueG (warm F warm) : true
• G (warm ⇒ X ￢warm) : true

• G is the dual of F

Konkuk University 5

• G ф ≡ ￢ F￢ф

4. Arbitrary nesting of temporal combinatorsy g p
• give temporal logic its power and strength

• GF ф : always there will some day be a state such that ф,
ф i i fi d i fi i l f l h i id dф is satisfied infinitely often along the execution considered

• FG ф : all the time from a certain time onward, at each time instant,
possibly excluding a finite number of instants

• GF warm ∨ FG error

5. U combinator
• for until
• ф1 U ф2 : ф1 is verified until ф2 is verified

ill b ifi d d d ill h ld i h iф2 will be verified some day, and ф1 will hold in the meantime

• G (alert ⇒ (alarm U halt)) : starting from a state of alert, the alarm remains activated
until the halt state is eventually and inexorably reached.until the halt state is eventually and inexorably reached.

• F ф ≡ true U ф
• ф1 W ф2 ≡ (ф1 U ф2) ∨ G ф1 : weak until

Konkuk University 6

6. Path quantifier
• A ф : all the executions out of the current state satisfy property ф
• E ф : from the current state, there exists an execution satisfying ф

• EF P : it is possible (by following a suitable execution) to have P some day
• EG P : there exists an execution along which P always holds

• AF P : we will necessarily have P some day (regardless of the chosen execution)
• AG P : always true

P PEF P : EG P :
(= E￢ F￢P)

AF P :
(= ￢ E￢ FP)

AG P :
(= ￢ EF ￢P)

P P P P

(= E￢ F￢P) (= ￢ E￢ FP) (= ￢ EF ￢P)

P P P P P P P P

Konkuk University 7

2 2 Formal Syntax of Temporal Logic2.2 Formal Syntax of Temporal Logic

Ab• Abstract grammar
– Needs parentheses, operator priority, specific set of atomic propositions, etc.
– Most model checkers use a fragment of CTL* - CTL or LTL.

ф , Ψ : : = P1 | P2 | … (atomic proposition)
| ￢ф | ф ∧Ψ | ф ⇒Ψ | (boolean combinators)| ф | ф ∧Ψ | ф ⇒Ψ | … (boolean combinators)
| Xф | Fф | Gф | ф UΨ | … (temporal combinators)
| Eф | Aф (path quantifiers)

Konkuk University 8

2 3 The Semantics of Temporal Logic2.3 The Semantics of Temporal Logic

K i k• Kripke structure
– Name of the models of temporal logic
– Propositions labeling the states are important in CTL*

Transition labels (E) are neglected A < Q T q l > T ⊆ Q x Q– Transition labels (E) are neglected. A = < Q, T, q0 , l > , T ⊆ Q x Q

• Satisfaction
A σ i ㅑф– A,σ,i ㅑф

• “at time i of the execution σ, ф is true.”
• where σ is an execution of A, which not required to start at the initial state
• A is often omitted.

– σ,i ㅑф : ф is satisfied at time i of σ
– σ,i ㅑф : ф is not satisfied at time i of σ

– A ㅑф iff σ,0 ㅑΦ for every execution of σ of A
• “the automaton A satisfies ф”
• A ㅑ ф ≠ A ㅑ¬ф
• σ i ㅑф = σ i ㅑ¬ф

Konkuk University 9

• σ,i ㅑф = σ,i ㅑ¬ф

Semantics of CTL*

CTL*
- Time is discrete.
- Nothing exists between i and i + 1.

The instants are the points along the executions

Konkuk University 10

- The instants are the points along the executions

2 4 PLTL and CTL: Two Temporal Logics2.4 PLTL and CTL: Two Temporal Logics

T l d l l i i d l h ki l• Two most commonly used temporal logics in model checking tools
– PLTL (Propositional Linear Temporal Logic)
– CTL (Computational Tree Logic)

fragments of CTL*– fragments of CTL*

• PLTL
No path quantifiers (A and E)– No path quantifiers (A and E)

– Linear time logic Path formula
– For example, PLTL cannot distinguish A1 from A2

P,QA1 : P,QA2 :

Execution 1 : {P, Q} . {P}. {-}
P

Q

P

Q

P
{ , Q} { } { }

Execution 2 : {P, Q} . {P} . {Q}

Konkuk University 11

Q Q

• CTL
– Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
– EX , AX , EU , AU , EF , EG , AG , AF , …
– State formulas

– Truth only depends on the current state and the automaton regions made reachable by it– Truth only depends on the current state and the automaton regions made reachable by it
– Not depend on a current execution.
– q ㅑф : ф is satisfied in state q

C di i i h d– CTL can distinguish automata A1 and A2

P,QA1 : P,QA2 :

P P P
A1,q0 ㅑ AX (EXQ∧ EX¬Q)
A2,q’0 ㅑ AX (EXQ∧ EX¬Q)

Q Q

2,q 0 ㅑ (Q Q)

– Potential reachability : AG EF P

Konkuk University 12

y
– Do not allow us to express very rich properties along the paths.

Whi h t h CTL PLTL ?• Which to choose CTL or PLTL ?
– To state some properties

PLTL

– To perform exhaustive verification of a system
CTL

b h– For both purposes
CTL*

• Less popular
• More complicated than PLTL

– CTL + Fairness properties FCTL

If e se model checking tools then e ha e no choice– If we use model checking tools, then we have no choice
– SMV : CTL (CTL*)
– SPIN : PLTL
– VIS : CTL / PLTL

Konkuk University 13

2 5 The Expressivity of CTL*2.5 The Expressivity of CTL

N l i hi k i b h d li• No logic can express anything not taken into account by the modeling
decision made

• CTL* is rather expressive enough, when
– Properties concern the execution tree of our automata

– CTL* combinators are sufficiently expressive
– CTL* is almost always sufficient

Konkuk University 14

