Systems and Software Verification

Chapter 3. Model Checking

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr
Ver. 2.0 http://dslab.konkuk.ac.kr

P, NAaAdal Chao
J. V UUIC] CI1IC

LE:

« Motivation:
— Describe the principles underlying the algorithms used for model checking

— The algorithm
* Can find out whether a given automaton satisfies a given temporal formula
» Different algorithms for CTL and PLTL

e Organization of Chapter 3

Madeal Chackina CTI

- IvivucTi \—IIC_I\IIIH I

— Model Checking PLTL
— The State Explosion Problem

C TI

KINg CIL

Model checking algorithm for CTL
— Developed in 1980s
— Runs in time linear in each of its components (automaton and CTL formula)
— Relies on the fact that CTL can only express state formulas

Aal ChkhAa
UCIT LCITIC

S

Basic principles

— procedure marking
« Starting from a CTL formula ¢

« Mark for each state g of the automaton and for each sub-formula ¢ of @,
* Whether is satisfied in state g

Correctness of the algorithm

— Hence, the marking of q is correct.

Complexity of the algorithm
— Model checking “ does A,y f @7 ” for a CTL formula ¢

— can be solved in time O(|A| x |@])
* O(|A)) : for marking the automaton
s O(¢|) : for each sub-formula in ¢

— Linear!!!

procedure marking(phi)

case 1: phi =P
for all q in Q, if P in 1(q) then do q.phi := true,
else do q.phi := false.

case 2: phi = not psi
do marking(psi);
for all q in Q, do q.phi := not(q.psi).

case 3: phi = psil /\ psi2
do marking(psil); marking(psi2);
for all q in Q, do q.phi := and(q.psil, q.psi2).

case 4: phi = EX psi
do marking(psi); case 6: phi = A psil U psi2
for all q in Q, do q.phi := false; /* initialisation */ do marking(psil); marking(psi2);
for all (q,q’) in T, if q’.psi = true then do q.phi := true. L 3= LF
for all q in Q,
q.nb := degree(q); q.phi := false; /* initialisation */
for all q in Q, if q.psi2 = true then do L := L + { q };
while L nonempty {

/* L: states to be processed */

case 5: phi = E psil U psi2
do marking(psil); marking(psi2);

for al} q in Q, S) draw q from L; /* must mark q */
q.phi := false; q.seenbefore := false;/# initialisation */ L:=L-{q}
L := {}; /* L: states to be processed */ q.phi := true;
for all q in Q, if q.psi2 = true then do L := L + { q }; for all (q’,q) in T { /* q’ is a predecessor of g */
while L nonempty { q’.nb := q’.nb - 1; /* decrement */
draw q from L; /* must mark q */ if (q’.nb = 0) and (q’.psil = true) and (q’.phi = false)
L:=L-4{qk} then do L :=L + { q’ };
g.phi := true; }
for all (q’,q) in T { /* q’ is a predecessor of q */ }
if q’.seenbefore = false then do {
q’.seenbefore := true;

if q’.psil = true then do L := L + { q’ };

Konkuk University 4

:'

Aal ChAa
UCIT LCITIC

e |g

2 7)) NA
D.L VU

* Model checking algorithm for PLTL

— Developed in 1980s, but too technical to cover in this course

— PLTL uses path formulas
— No longer possible to rely on marking the automaton states

— A finite automaton will generally give rise to infinitely many different executions,
themselves often infinite in length

— Hence, PLTL uses a language theory : w-regular expression
* An extension of a regular expression
e "* :an arbitrary but finite number of repetitions
— (@ab*+ o*
e "w" an infinite number of repetitions

Basic principle
— Modei checking “ does At ¢ 7 “ for a PLTL formuia ¢
— Reduces to a “ Are all the execution of A of the form described by &, 7 *

— A PLTL model checker construct an automaton B, (recognizing executions which do not
satisfy @)
— Strongly synchronize Aand B_, > A ©®B_,

— Finally reduces to “ Is the language recognized by A ®B_, empty ?"

A simple example
— @:GP = XFQ) - any occurrence of P must be followed (later) by an occurrence of Q
- B., > there exists an occurrence of P after which we will never again encounter Q

. P,=Q
D 2P Q
P,Q
Un P, -Q If it infinitely often stays in g, then is B_; satisfied.
0- -P,Q

-P, -Q

Konkuk University

é: G(P = XF Q)

P, -Q

If it infinitely often stays in q;, then is B, satisfied.

B.s:

"doesAfg@?”

Konkuk University

There are behaviors of A accepted by A ® B_,

~ The language recognized by A ® B_is nonempty
> Al

Konkuk University

— Very difficult technically

— Automaton B_, must in general be able to recognize infinite words
> Bulchi automata

o Complexity of the algorithm
— B._, has size O(214)) in the worst case
— A® B_y has size O(JA| x [B_y4])
- IfA® By fits in computer memory, we can determine it in time O(|A| x |Bj¢)

— Model checking "does A, q, | ¢ ?" for a PLTL formula ¢ can be done in time O(|A| x 2!4)

« Reachability analysis
— We can say that B_, observes the behavior of A when the two automata are synchronized.
— Observable automata = formal specification of the desired property
« UPPAAL
« SPIN

2 2
J.J

Th

A C E,
11TIC O LA

§

+ A
Ld

5
U
=5

O
O

(D

te

plo

« State explosion problem

The main obstacle encountered by model checking algorithms

Indeed, the algorithms rely on explicit construction of the automaton A
» Traversal and marking (in case of CTL)
+ Synchronization with B_, and seeking of reachable states and loops (in case of PLTL)

In practice, the number of states of A is quickly very large

If we use values that are not priori bounded (integers, a waiting queue, etc.), we cannot
even apply it

Explicit model checking - Symbolic model checking (Chapter 4)

