
Systems and Software Verificationy

Chapter 4 Symbolic Model CheckingChapter 4. Symbolic Model Checking

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://dslab.konkuk.ac.krVer. 2.0

4 Symbolic Model Checking4. Symbolic Model Checking

S b li d l h ki• Symbolic model checking
– Any model checking method attempting to represent symbolically states and transitions
– A particular symbolic method in which BDDs are used to represent the state variables

• BDD : Binary Decision Diagram• BDD : Binary Decision Diagram

• Motivation:
– State explosion is the main problem for CTL or PLTL model checkingp p g
– State explosion occurs whenever we represent explicitly all states of automaton we use

– Represent very large sets of states concisely, as if they were in bulk.

• Organization of chapter 4
– Symbolic Computation of State Sets
– Binary Decision Diagrams (BDD)
– Representing Automata by BDDs
– BDD-based Model Checking

Konkuk University 2

4 1 Symbolic Computation of State Sets4.1 Symbolic Computation of State Sets

I i i f S (ф)• Iterative computation of Sat(ф)
– A = <Q, T, … >
– Pre(S) : immediate predecessors of the states belonging to S in Q

Sat(ф) : set of states of A which satisfy ф– Sat(ф) : set of states of A which satisfy ф
– ψ is the sub-formulas of ф

– Sat(¬ψ) = Q \ Sat(ψ) /* ==== Computation of Pre*(S) ==== */(ψ) Q \ (ψ)
– Sat(ψ∧ψ’) = Sat(ψ) ∩ Sat(ψ’)
– Sat(EX ψ) = Pre(Sat(ψ))
– Sat(AX ψ) = Q \ Pre(Q \ Sat(ψ))

/ p () /
X := S;
Y := { };
while (Y != X) {

Y := X;
X := X ∨ Pre(X);– Sat(EF ψ) = Pre*(Sat(ψ))

– … (others are defined in a similar way)

X := X ∨ Pre(X);
}
return X;

– The algorithms in Section 3.1 is an particular implementation of Sat(ф)

– Hence, Sat(ф) is an explicit representation of the state sets(ф) p p

Konkuk University 3

• Which symbolic representations to use ?
W h t th f ll i i iti– We have to access the following primitives:

1. A symbolic representation of Sat(P) for each proposition P ∈ Prop,
2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic

representation of S,p
3. Algorithms to compute the complement, the union, and the intersection of the

symbolic representations of the sets,
4. An algorithm to tell whether two symbolic representations represent the same set.

• Which logic for symbolic model checking?
Logics based on state formulas– Logics based on state formulas

– CTL is the best.
– Mu-calculus on tree is possible.

• Systems with infinitely many states
– Symbolic approach naturally extends to infinite systems.y pp y y
– New difficulties:

1. Much trickier to come up with symbolic representations
2. Iterative computation Sat(ф) is no longer guaranteed to terminate.

Konkuk University 4

4 2 Binary Decision Diagram (BDD)4.2 Binary Decision Diagram (BDD)

BDD• BDD
– A particular data structure very commonly used for representing states sets symbolically
– Proposed in 1980s ~ early in 1990s

– Make possible the verification of the system which cannot represent explicitly.

– Advantages:g
1. Efficiency
2. Simplicity
3. Easy Adaptation
4. Generality

Konkuk University 5

• BDD structure

– Example
• Consider n boolean variables x1, x2, … , xn associated with a tuple < b1, b2, … , bn >

• Suppose n = 4,
• The set S of our interest is the set such that (b1∨ b3)∧ (b2⇒ b4) is true.
• We have several ways to represent the set:• We have several ways to represent the set:

• S = {<F,F,T,F>, <F,F,T,T> , … >
• S = (b1∨ b2)∧ (b3⇒ b4)
• S = (b1∧ ¬b2)∨ (b1∧ b4)∨ (b3∧ ¬b2)∨ (b3∧ b4) DNF
• …
• Decision Tree Our choice.

b1?

n1

F T

b2?

n2

n4 n5

b2?

n3

n6 n7

F

F

T

TT F

b3? b3?

b4?b4?b4?b4?

n8 n9 n10 n11

b3? b3?

b4?b4?b4?b4?

n12 n13 n14 n15
F TTTT FF F

Konkuk University 6F F T T F F F T T T T T F T F T

F F F F F F F FT T T TT T T T

• Decision tree reduction
– A BDD is a reduced decision tree.
– Reduction rules:

1. Identical sub-trees are identified and shared. (n8 and n10)
l d di d li h (d)leads to a directed acyclic graph (dag)

2. Superfluous internal nodes are deleted. (n7)

– Advantages:Advantages:
1. Space saving
2. Canonicity

n2 n3

b1?

n1

F T

b2? b2?

b1?

F T

b2?

b3? b3?

n4 n5

b2?

b3? b3?

n6 n7
F T

TTTT

T F

FF F

Reduced

b2? b2?

b3? b3?

F

F
T

T

T
T

b4?b4?b4?b4?

n8 n9 n10 n11

b4?b4?b4?b4?

n12 n13 n14 n15
F

F F F F F F F FT T T TT T T T

TTTT FF F

b4?F F

F

T

T

Konkuk University 7

F F T T F F F T T T T T F T F T F T

Decision tree BDD

• Canonicity of BDDsy
– BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)
– If the order of the variable xi is fixed, then there exists a unique BDD for each set S.

– Properties of BDDs
1. We can test the equivalence of two BDDs in constant time.
2. We can tell whether a BDD represents the empty set simply by verifying whether it

is reduced to a unique leaf Fis reduced to a unique leaf F.

• Operations on BDDsOperations on BDDs
– All boolean operations

1. Emptiness test
2. Comparison
3 Complementation3. Complementation
4. Intersection
5. Union and other binary boolean operations
6. Projection and abstractions

C l i li d i f h i– Complexity : linear or quadratic (for each operation)
the same state explosion problems still exist.

Konkuk University 8

4 3 Representing Automata by BDDs4.3 Representing Automata by BDDs

B f l i BDD b li d l h ki d• Before applying BDDs to symbolic model checking, we need to restate
– Representing the states by BDDs
– Representing transitions by BDDs

• Representing the states by BDDs
Consider an automaton A with

b1
2

F

– Consider an automaton A with
• Q = {q0, … , q6} b1

1, b2
1, b3

1

• var digit:0..9 b1
2, b2

2, b3
2, b4

2

• var ready:bool b1
3

 b1 b2 b3 b1 b2 b3 b4 b1

b2
2

b3
2 b3?

F

T

• < b1
1, b2

1, b3
1, b1

2, b2
2, b3

2, b4
2, b1

3 >
• < F, T, T, T, F, F, F, F > = <q3, 8, F >

b4?
F

T
T

F b4
2

– Let’s represent Sat(ready⇒ (digit > 2))
• States <q, k, b> such that if b = T and k > 2
• ready⇒ (digit > 2) ≡ ¬ ready∨ (digit > 2)

T
F

b1
3 T

Konkuk University 9

F T

• Representing transitions by BDDs
– The same idea is applied.
– <q3, 8, F > → <q5, 0, F > : < F, T, T, T, F, F, F, F, T, F, T, F, F, F, F, F >q3, , q5, , , , , , , , , , , , , , , , ,

– For example,

if digit ≠ 0, ready := T

– (<q, k, b>, <q’, k’, b’>)
q = q1, k ≠ 0, q’ = q2, k’ = k , b’ = T

q1 q2
g , y

q q1, k ≠ 0, q q2, k k , b T

(¬b1
1 ∧¬b2

1∧ b3
1)

∧ (b1
2∨b2

2∨b3
2∨b4

2)
∧ (¬b’ 11 ∧¬b’ 21∧ b’ 31)∧ (¬b 1 ∧¬b 1∧ b 1)
∧ (b’ 12⇔b1

2 ∧ b’ 22⇔b2
2 ∧ b’ 32⇔b3

2 ∧ b’ 42 b4
2)

∧b’ 13

Konkuk University 10

4 4 BDD based Model Checking4.4 BDD-based Model Checking

• BDDs can serve as an instance of symbolic model checking schemey g
– Provide compact representations for the sets of states in an automata
– Support the basic sets of operations
– Computation of Pre(S) in section 4.1 is very simple

• Implementation
– SMV (chapter 12)

– Efficiency of BDDs depends on
• BT representing the transition relation T (as containing pairs of states)
• Choice of ordering for the boolean variables

Very easy to explode exponentially– Very easy to explode exponentially

• Perspective
– Widely used from early 1990s– Widely used from early 1990s
– Current work on model checking

• Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)
• Aiming at extending the limits inherent to BDD-based model checking

Konkuk University 11

– Widely used throughout the VLSI design industry

