Systems and Software Verification

Chapter 4. Symbolic Model Checking

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr

4. Symbolic Model Checking

Symbolic model checking

- Any model checking method attempting to represent symbolically states and transitions
- A particular symbolic method in which BDDs are used to represent the state variables
 - BDD : Binary Decision Diagram

Motivation:

- State explosion is the main problem for CTL or PLTL model checking
- State explosion occurs whenever we represent explicitly all states of automaton we use
- Represent very large sets of states concisely, as if they were in bulk.

Organization of chapter 4

- Symbolic Computation of State Sets
- Binary Decision Diagrams (BDD)
- Representing Automata by BDDs
- BDD-based Model Checking

4.1 Symbolic Computation of State Sets

- Iterative computation of Sat(φ)
 - $A = \langle Q, T, ... \rangle$
 - Pre(S): immediate predecessors of the states belonging to S in Q
 - $Sat(\phi)$: set of states of A which satisfy ϕ
 - ψ is the sub-formulas of ϕ
 - $Sat(\neg \psi) = Q \setminus Sat(\psi)$
 - Sat(ψ ∧ ψ ') = Sat(ψ) ∩ Sat(ψ ')
 - $Sat(EX \psi) = Pre(Sat(\psi))$
 - $Sat(AX \psi) = Q \setminus Pre(Q \setminus Sat(\psi))$
 - $Sat(EF \psi) = Pre^*(Sat(\psi))$
 - ... (others are defined in a similar way)

```
/* ==== Computation of Pre*(S) ==== */
X := S;
Y := { };
while (Y != X) {
    Y := X;
    X := X \times Pre(X);
}
return X;
```

- The algorithms in Section 3.1 is an particular implementation of $Sat(\phi)$
- Hence, $Sat(\phi)$ is an <u>explicit representation</u> of the state sets

Which symbolic representations to use ?

- We have to access the following primitives:
 - 1. A symbolic representation of Sat(P) for each proposition $P \subseteq Prop_r$
 - 2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic representation of S,
 - 3. Algorithms to compute the complement, the union, and the intersection of the symbolic representations of the sets,
 - 4. An algorithm to tell whether two symbolic representations represent the same set.

Which logic for symbolic model checking?

- Logics based on state formulas
- CTL is the best.
- Mu-calculus on tree is possible.

Systems with infinitely many states

- Symbolic approach naturally extends to infinite systems.
- New difficulties:
 - 1. Much trickier to come up with symbolic representations
 - 2. Iterative computation $Sat(\phi)$ is no longer guaranteed to terminate.

4.2 Binary Decision Diagram (BDD)

BDD

- A particular data structure very commonly used for representing states sets symbolically
- Proposed in 1980s ~ early in 1990s
- Make possible the verification of the system which cannot represent explicitly.
- Advantages:
 - 1. Efficiency
 - 2. Simplicity
 - 3. Easy Adaptation
 - 4. Generality

BDD structure

- Example
 - Consider n boolean variables x_1, x_2, \dots, x_n associated with a tuple $< b_1, b_2, \dots, b_n > 1$
 - Suppose n = 4,
 - The set S of our interest is the set such that $(b_1 \lor b_3) \land (b_2 \Rightarrow b_4)$ is true.
 - We have several ways to represent the set:
 - $S = \{ \langle F, F, T, F \rangle, \langle F, F, T, T \rangle, ... \rangle$
 - $S = (b_1 \vee b_2) \wedge (b_3 \Rightarrow b_4)$
 - $S = (b_1 \wedge \neg b_2) \vee (b_1 \wedge b_4) \vee (b_3 \wedge \neg b_2) \vee (b_3 \wedge b_4) \leftarrow DNF$
 - ..
 - <u>Decision Tree</u> ← Our choice.

Decision tree reduction

- A BDD is a reduced decision tree.
- Reduction rules:
 - 1. Identical sub-trees are identified and shared. (n_8 and n_{10}) → leads to a directed acyclic graph (dag)
 - Superfluous internal nodes are deleted. (n_7)
- Advantages:
 - Space saving
 - Canonicity

Canonicity of BDDs

- BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)
- If the order of the variable x_i is fixed, then there exists a unique BDD for each set S.
- Properties of BDDs
 - 1. We can test the equivalence of two BDDs in constant time.
 - 2. We can tell whether a BDD represents the empty set simply by verifying whether it is reduced to a unique leaf F.

Operations on BDDs

- All boolean operations
 - 1. Emptiness test
 - 2. Comparison
 - 3. Complementation
 - 4. Intersection
 - 5. Union and other binary boolean operations
 - 6. Projection and abstractions
- Complexity: linear or quadratic (for each operation)
 - → the same state explosion problems still exist.

4.3 Representing Automata by BDDs

- Before applying BDDs to symbolic model checking, we need to restate
 - Representing the states by BDDs
 - Representing transitions by BDDs
- Representing the states by BDDs
 - Consider an automaton A with
 - $Q = \{q_0, \dots, q_6\} \rightarrow b_1^1, b_1^2, b_1^3$
 - var digit:0..9 $\rightarrow b_2^1, b_2^2, b_2^3, b_2^4$
 - var ready:bool $\rightarrow b_3^1$
 - $\langle b_1^1, b_1^2, b_1^3, b_2^1, b_2^2, b_2^3, b_2^4, b_2^4 \rangle$
 - $\langle F, T, T, T, F, F, F, F \rangle = \langle q_3, 8, F \rangle$
 - Let's represent Sat(ready ⇒ (digit > 2))
 - States $\langle q, k, b \rangle$ such that if b = T and k > 2
 - ready \Rightarrow (digit > 2) $\equiv \neg$ ready \lor (digit > 2)

Representing transitions by BDDs

- The same idea is applied.
- $< q_3, 8, F > \rightarrow < q_5, o, F > : < F, T, T, T, F, F, F, F, F, T, F, F, F, F, F, F, F >$
- For example,

-
$$(\langle q, k, b \rangle, \langle q', k', b' \rangle)$$

 $\rightarrow q = q_1, k \neq 0, q' = q_2, k' = k, b' = T$

4.4 BDD-based Model Checking

- BDDs can serve as an instance of symbolic model checking scheme
 - Provide compact representations for the sets of states in an automata
 - Support the basic sets of operations
 - Computation of Pre(S) in section 4.1 is very simple

Implementation

- SMV (chapter 12)
- Efficiency of BDDs depends on
 - B_T representing the transition relation T (as containing pairs of states)
 - Choice of ordering for the boolean variables
- Very easy to explode exponentially

Perspective

- Widely used from early 1990s
- Current work on model checking
 - Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)
 - Aiming at extending the limits inherent to BDD-based model checking
- Widely used throughout the VLSI design industry