Systems and Software Verification

Chapter 7. Safety Properties

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr
Ver. 2.0 http://dslab.konkuk.ac.kr

7 CAa
/. O9d

—+
'U
'cs
U)

« Safety property

— Under certain conditions, an (undesirable) event never occur.

— Examples:

* (S1) " Both processes will never be in their critical sections simultaneously (mutual exclusion) ”
(S2) " Memory overflow will never occur ”

e (S3) " The situation ... is impossible ”
(S4) " As long as the key is not in the ignition position, the car won't start “* < with conditions

» - safety property = reachability property
- reachability property = safety property

* Organization of Chapter 7
— Safety Properties in Temporal Logic
— A Formal Definition
— Safety Properties in Practice
— The history Variables Method

5
}
§

/.4 OodITLly FTOUMCILUCO 1T ICTHTPUIdl LOYIC
e AGO®

— " @ never occurs. “

— (S1) " Both processes will never be in their critical sections simultaneously ”
* AG ~(crit_sec, A crit_sec,)

— (S2) " Memory overflow will never occur ”
* AG -overflow

— (S3) " The situation ... is impossible ”
* AG -situation

— (S4) " As long as the key is not in the ignition position, the car won't start ”
o A (-start W key) (using weak until)
» A (-start U key) €< Not a safety property !

sl 2@

A C~ ~
rUlllla

D)
/. L M\

« Syntactic characterization

— Safety properties can be written in the form AG @~
e @ is a past temporal formula

— When a safety property is violated, it should be possible to instantly notice it.
— We can only notice it, in the current state, relying on events which occurred earlier.

» Temporal logic with past
— CTL* does not provide past combinators
— But, we can use a mirror image of future combinators (F1, X1)

« AG @ In practice
— (S1) AG —(crit_sec, A crit_sec,)
e ~(crit_sec, A crit_sec,) isa ¢
— (54) A —start W key

e Can be rewritten in the form: AG (start = F1key)
o "Itis always true (AG) that if the car starts, then (=) the key was inserted beforehand (F1). “

— If ¥, and y, are safety properties, then ¥, A ¢, again a safety property.
e But, ¥, v ¢, is in general not

« Safety properties and diagnostic
— If AG @ is not satisfied, then there necessarily exists a finite path leading from init to it.

— Since @ s a past formula.

/.3 Safety Properties in Practice

Safety properties are verified simply by submitting it to a model checker.
But, in real life, hurdles spring up.

A simple case: non-reachability
— The most safety properties
— =EF (crit_in, A crit_in,) = AG @
e ~(crit_in, A crit_in,) is a present formula

Safety without past
— A (-start W key) is used more often than AG (start = F1 key)
— But, no model checker is able to deal with past formulas. So, mixed logics are used.

— The problem is their identification.
- If they are identified, then it can be dealt with similarly
> Otherwise, we have to use the method of history variables (in section 7.4)

Safety with explicit past
— No model checker is able to handle temporal formula with past.

— Two approaches:

1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
- AG(¢p = Fly)=A(-¢pW) , but not easy.
2. History variable method (section 7.4)

Skipped !!!

