Systems and Software Verification

Chapter 9. Deadlock-freeness

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr http://dslab.konkuk.ac.kr

9. Deadlock-freeness

- Deadlock-freeness
 - A special property
 - "The system can never be in a situation on which no progress is possible "
 - Correct property relevant for systems that are supposed to run indefinitely
 - A set of properly identified final states will be required to be deadlock-free.

- Organization of Chapter 9
 - Safety? Liveness?
 - Deadlock-freeness for a Given Automaton
 - Beware of Abstractions!

9.1 Safety? Liveness?

- AG EX true
 - "Whatever the state reached may be (AG), there will exist an immediate successor state (EX true) "
 - Not the form of $AG\phi^{-1}$
 - Deadlock-free is not a safety property.
 - Can be verified if the model checker at our disposal can handle AG EX true.

9.2 Deadlock-freeness for a Given Automaton

- We sometimes think of deadlock-freeness as a safety property
 - For a given automaton, we can describe the deadlock states explicitly.
 - But, it is up to the automaton we obtain.

For example,

—

if x > 0 x := x + 1A $\mathbf{x} = \mathbf{x} + \mathbf{1}$ AG EX true \rightarrow hold! (liveness property) x:=0, y:=0 AG \neg (s3 \land x \leq 0) \rightarrow hold! (safety property) s2 s3 s1 if x = y y = y + 1 if x > 0A'x := x + 1 $\mathbf{x} = \mathbf{x} + \mathbf{1}$ AG EX true \rightarrow not hold! (liveness property) x:=0, y:=0 AG \neg (s3 \land x≤0) \rightarrow hold! (safety property) s3 s2 s1 if x = y

9.3 Beware of Abstractions!

