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Overview of Formal Methods 

- Definition
- Features
- Applying Scope

P ti C id ti- Pragmatic Considerations
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DefinitionDefinition

F l M h d• Formal Methods
– Mathematically based techniques for describing system properties

• Have a sound mathematical basis 
• Typically given by a formal specification language

– Provide frameworks for systematicallyy y
• Specifying,
• Developing, and
• Verifying systemsVerifying systems
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FeaturesFeatures

F l h d id f i l d fi i i lik• Formal methods provide means of precisely defining notions like
– Completeness
– Consistency
– Specification
– Implementation
– Correctness

• Formal methods address a number of pragmatic considerations
– WhoWho
– What
– When
– How it is used?How it is used?
– ex) System designers use a formal method to specify a system’s desired 

behavioral and structural properties.
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Applying ScopeApplying Scope

A f d l k f f l h d• Any stage of system development can make use of formal methods
1. Initial statement of a customer’s requirements
2. System design
3. Implementation
4. Testing
5. Debugging
6. Maintenance
7. Verification
8. Evaluation

• When used early,
– Can reveal design flawsg

• When used later,
– Can help determine the correctness of a system implementation 
– Can help determine the equivalence of different implementationsCan help determine the equivalence of different implementations
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Pragmatic ConsiderationsPragmatic Considerations

P i id i• Pragmatic considerations
– A set of guidelines
– Formal methods should tell the user 

1. Circumstances under which the method should and can be applied
2. How it can be applied most effectively

• Formal Specification
– One tangible product of applying formal methods
– More precise and concise than informal specifications
– A formal method’s specification language may have Tool Supports

1. Syntax analysis
2. Semantic analysis with machine aids

Formal Specification : 
Use mathematics to specify the desired properties of a computer 
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Formal Specification Language

- Definition
S t ti D i- Syntactic Domains

- Semantics Domains
- Satisfies Relation

P ti f S ifi ti- Properties of Specifications
- Proving Properties of Specificands
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DefinitionDefinition

F l ifi i l• Formal specification language:

< Syn, Sem, Sat >, where
• Syn : syntactic domainy y
• Sem : semantic domain
• Sat : Sat ⊆ Syn ⅹ Sem

– syn is a specification of sem
– sem is a specificand of syn

• Considerations
– In principle, a formal method is based on some well-defined formal 

specification language
– Formal specification language provides a formal method’s mathematical basis
– Formal methods differ because their specification languages have different 

syntactic and/or semantic domains
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Syntactic DomainsSyntactic Domains 

• Syn
– a set of symbols

• Constants
V i bl• Variables

• Logical connectives

– a set of grammatical rules for combining symbols into well-formed sentences 
(semantics)(semantics)

• Ex) ∀x.P(x) ⇒ Q(x) : correct!!
∀x.⇒ P(x) ⇒ Q(x) : wrong!!

– Visual Specification : Graphical elements are also available
• boxes, circles
• lines, arrows

– called Specification
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Semantic DomainsSemantic Domains

S• Sem
– Formal specification languages differ most in their choice of 

semantic domains (Specificand) such as:
Ab t t d t t ifi ti l• Abstract-data-type specification languages

– algebra, theory, program
• Concurrent and distributed systems specification languages

– state sequence, event sequence, state and transition sequencestate sequence, event sequence, state and transition sequence
– stream, synchronization tree, partial order 
– state machine

• Programming languages
– function from input to output, computation
– predicate transformation
– relation, machine instruction

called Implementation– called Implementation
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Satisfies RelationSatisfies Relation

S• Sat
– Specifies different aspects of a single specificand using different specification 

languages:
1 B h i l ifi ti t1. Behavioral specification aspect

– Constraints on observable behavior of specificands
– System‘s required functionality (mapping from inputs to outputs)
– Others: fault tolerance, safety, security, response time, space efficiencyOthers: fault tolerance, safety, security, response time, space efficiency

2. Structural specification aspect
– Constraints on the internal composition of specificands
– Various hierarchical and uses relations
– Call graph, data-dependency diagram, definition-use chain
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Properties of SpecificationsProperties of Specifications

S ifi i l h ld b d fi d• Specification language should be defined as
1. Unambiguous

• If and only if it has exactly one meaning
A t l l d h t f l i h tl• Any natural languages and graphs are not formal inherently

2. Consistent
• If and only if its specificand set is non-empty
• Cannot derive anything contradictory from the specification• Cannot derive anything contradictory from the specification
• There is some implementation that will satisfy the specification

3. Complete
• Need not be complete in the sense used in mathematical logicNeed not be complete in the sense used in mathematical logic
• Relatively-completeness properties might be desirable
• In practice, we must usually deal with incomplete specifications

• A specification has implementation bias if it places unnecessary constraints 
on its specificand
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Proving Properties of SpecificationsProving Properties of Specifications

M f l ifi i l h l i l i f• Most formal specification languages have logical inference systems
– Can prove properties from the specification about specificands
– Can predict system’s behavior without executing or building the system
– Can be mechanized

• Theorem proving
• Model checking

ll d F l V ifi ti (P t II)• called Formal Verification (Part II)
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Pragmatics

Users
Uses
Characteristics
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UsersUsers

5 ki d f• 5 kind of users
1. Specifier : write, evaluate, analyze, and 

refine specifications
2 C t hi d th ifi2. Customer : hired the specifiers
3. Implementer : realize a specification
4. Client : use a specified system

f h f l5. Verifier : prove the correctness of implementations

• A formal method’s guidelines should identify
1. Different types of users the method is targeted for
2. Capabilities the users should havep
3. Application domain of the method 
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UsesUses

Th b fi• The greatest benefit comes
– from the process of formalizing
– rather than the end result

• Can apply formal methods in all phases of SW development
1. Requirements analysisq y
2. System design
3. System verification
4. System validation4. System validation
5. System documentation
6. System analysis and evaluation

• These applications should be considered as an integral one, framework
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Uses 1 R i A l iUses 1. Requirements Analysis

F l h d h l l if ’ i f ll d i• Formal methods help clarify customer’s informally stated requirements
– Crystallize customer’s vague ideas
– Reveal 

• Contradictions, 
• Ambiguities, and 
• Incompleteness in the requirements

• On the specification, both customers and specifiers can see
h h i fl i i i– Whether it reflects customer’s intuition

– Whether specificand set has desired set of properties
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Uses 2 S D iUses 2. System Design

T i i i i d i d i• Two important activities during design
1. Decomposition
2. Refinement

• Decomposition
– Process of partitioning a system into smaller modules
– Interface specifications specify interfaces between modules

• Refinemente e e t
– Process of refining modules at one level to modules at a lower level
– Each refinement step should prove that a specification(program) at one level 

satisfies a higher level specificationsg p
• Program transformation, Program synthesis, Inferential programming

– Formal methods and formal specification languages can state proof 
obligations(assumptions) precisely

Konkuk University 20



Uses 3 S V ifi iUses 3. System Verification

S ifi i• System verification
– Showing that a system satisfies its specification

• Formal Verification
– Using formal specifications to verify a system
– Cannot completely verify an entire system, p y y y ,
– But can certainly verify smaller and critical part of system.

• Gypsy, HDM(Hierarchical Development Method), FDM(Formal Development Method)
• M-EVES(Environment for Verifying and Emulating Software)
• HOL(Higher Order Logic)

• Difficulties in formal system verificationy
– Should state explicitly assumptions about its environment : Not easy!
– “Bounds of Formal Methods”
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Uses 4 S V lid iUses 4. System Validation

F l h d id i i d d b i• Formal methods can aid in system testing and debugging

• Specification alone :p
– Used to generate test cases for black-box testing
– For boundary condition tests

• Specification along with implementation
– Used to generate test cases

Additionally can be used for testing analysis– Additionally, can be used for testing analysis
• Path testing
• Unit testing
• Integration testingg g
• Etc.
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Uses 5 S D iUses 5. System Documentation

F l ifi i• Formal specification
– Captures “What” rather than “How”
– Serves as a communication medium between

• Clients and Specifiers
• Specifiers and Implementers
• Among members of an implementation team• Among members of an implementation team
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Uses 6 S A l i d E l iUses 6. System Analysis and Evaluation

S l i d l i• System analysis and evaluation
– After system has been built and tested,
– Critical analysis of its functionality and performance should be done

• Does the system do what the customer wants?
• Does it do it fast enough?

– Formal method used in the development can help formulate and answer 
these questionsthese questions

• Most formal methods have not yet been applied to specifying large-
scale software and hardware systemsscale software and hardware systems

– Size of the specification
– Complexity of the specificand

I t l l it• Internal complexity
• Interface complexity
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CharacteristicsCharacteristics

F l h d’ h i i i fl h l i hi h li• Formal method’s characteristics influence the style in which a user applies 
it

– Whether its language is graphical or textual
– Whether its underlying logic is first-order or high-order
– Etc.

• Formal method reflects a combination of many different characteristics:
1. Model-oriented vs. Property-oriented
2. Visual languages
3. Executable
4. Tool-supportedpp
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Characteristics 1 M d l i d P i dCharacteristics 1. Model-oriented vs. Property-oriented

M d l i d h d• Model-oriented methods
– Define system’s behavior directly by constructing a model of the system
1. For sequential systems

• Parnas’ statemechines, VDM, Z, SCR, NuSCR

2. For concurrent and distributed systems
• Petri Nets, CCS, Hoare’s CSP, Unity, I/O automata

T l l i L t’ t iti i th d LOTOS• Temporal logic, Lamport’s transition axiom method, LOTOS

P t i t d th d• Property-oriented methods
– Define system’s behavior indirectly by stating a set of properties using axioms
1. Axiomatic methods

• Iota, OBJ, Anna, Larch

2. Algebraic methods
• Act One

Algebraic specification of abstract data types can handle : 
- Error values
- Nondeterminism
- parameterization
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Characteristics 2 Vi l LCharacteristics 2. Visual Languages

Vi l ifi i l• Visual specification languages
– Any one who contains graphical elements in their syntactic domains

• Many examples
– Petri nets : for concurrent systems
– Statecharts : for specifying state transitions in reactive systems

• Semiformal methodsSe o a et ods
– Multiple interpretations or text attached
– Jackson’s method (UML)
– SASD OODSASD, OOD
– Requirements Engineering Methodology

Konkuk University 27



Characteristics 3 E blCharacteristics 3. Executable

E bl S ifi i• Executable Specification 
– Can run on a computer

• Specifiers can use executable specifications
– To gain immediate feedback about the specification itself.
– To do rapid prototyping
– To test a specificand through symbolic execution of the specification 

• Many examples
– Statecharts
– OBJOBJ
– Prolog, Paisley
– Most recent ones
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Characteristics 4 T l dCharacteristics 4. Tool-supported

M d l Ch ki l• Model-Checking tools
– Let users construct a finite-state model of the system
– Then show a property holds in each state or state transition of the system
– EMC, SMV, SPIN

• Proof-checking tools
– Let users treat algebraic specifications as rewrite rules

• Larch Prover, Affirm, Reve

– Handling first-order logic
• Boyer-Moore Theorem Prover, FDM, HDM, m-EVES

– Handling higher-order logic
• HOL, LCF, OBJ
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Some Examples

Abstract Data Type: Z, VDM, Larch
Concurrency: Temporal Logic, CSP, Transition Axioms
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Some ExamplesSome Examples

6 ll k f l h d (i 1990 )• 6 well-known formal methods (in 1990s)
– Abstract data type : Z, VDM, Larch

• Symbol table example

C T l L i CSP T i i A i– Concurrency : Temporal Logic, CSP, Transition Axioms
• Unbounded buffer example

• When specifying the same problem with different methods, they look
– Remarkably similar
– Or totally different
– Due to

• Nature of the specificand
• Simplicity of the specificand
• Methods themselves
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Abstract Data Type: Z VDM LarchAbstract Data Type: Z, VDM, Larch

3 diff ifi i f b l bl• 3 different specifications for a symbol table

Z
VDM

Larch
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Abstract Data Type: Z VDM LarchAbstract Data Type: Z, VDM, Larch

Z (1988) VDM (1986) Larch (1985)

Base
Model-oriented
(Also property-oriented)

Model-oriented Property-oriented

Readability Good Normal Bad

Specifiability Bad Normal Good

Size Normal Compact Long

Tool-Support Proof Checker B N/A
Syntax Analyzer
L h P

Tool Support Proof Checker B N/A
Larch Prover
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Concurrency: 
Temporal Logic, CSP, Transition Axioms

3 diff ifi i f b d d b ff• 3 different specifications for an unbounded buffer

Transition Axioms

Temporal Logic

CSP
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Concurrency: 
Temporal Logic, CSP, Transition Axioms

T l L i CSP T iti A iTemporal Logic (1980) CSP (1985) Transition Axioms (1983)

Base Property-oriented
Model-oriented (for specifying)
Property-oriented (for proving)

Model-oriented (for specifying)
Property-oriented (for proving)

Readability Normal Normal GoodReadability Normal Normal Good

Specifiability Bad Bad Good

Size Compact Compact Long

Tool-Support Many related tools Proof Checker B N/A
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Bounds of Formal Methods

Between the Ideal and Real Worlds
Assumptions about the Environment
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Between the Ideal and Real WorldsBetween the Ideal and Real Worlds

F l h d• Formal methods are
– Based on mathematics 
– But not entirely mathematical

• Two important boundaries between the mathematical and the real world
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Assumptions about the EnvironmentAssumptions about the Environment

• There is a boundary between a real system and its environment
– Environment is out of the scope of formal specifications (Open System)
– Except, Gist specification language

• Environment ⇒ System
• Environment is a set of assumptions
• System is a set of constraints on its behaviors placed by specifiers

I li it ti i i l– Implicit assumptions in programming language areas
– Specifiers should make explicit as many assumptions as possible.

• Hazard Analysis
– Identify a system’s safety-critical components

• FTA, FMEA, HAZOP

– A complementary technique to formal methods
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Concluding Remarks

Formal Methods
Challenges
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Formal MethodsFormal Methods

I i h i l• In a strict mathematical sense, 
– Formal methods differ greatly from one another

• In a practical sense,
– Formal methods do not differ radically from one another

• Formal methods can be used
1. Identify

• Deficiencies in informal requirements
• Discrepancies between a specification and an implementation
• Errors in existing programs and systems

2. Specify
• Medium-sized and nontrivial problems
• Functional behavior

3. Provide
• Deeper understanding of the behavior of systems
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ChallengesChallenges

1 S if i f i l b h i1. Specifying nonfunctional behavior
– Reliability, safety, real-time, performance, human factors

2. Combining different methods
– Domain specific + General
– Formal + Informal

3. Building more usable and robust toolsg
– Can manage large specifications
– Can perform more complicated semantic analysis

4 Building specification libraries4. Building specification libraries
– Reuse in general or domain-specific purpose

5. Formal methods based software development
6 S l i ti t h i6. Scale up existing techniques
7. Educating and training
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