
Introduction to Formal Specification

JUNBEOM YOO
jbyoo@knokuk.ac.kr

http://dslab.konkuk.ac.kr
Ver. 2.0

ReferenceReference

“ A S ifi ’ I d i F l M h d ”• “ A Specifier’s Introduction to Formal Methods ”
– Jeannette M. Wing, Carnegie Mellon University
– IEEE COMPUTER, 1990

Konkuk University 2

ContentsContents

O i f F l M h d• Overview of Formal Methods
• Formal Specification Language
• PragmaticsPragmatics
• Some Examples
• Bounds of Formal Methods
• Concluding Remarks

Konkuk University 3

Overview of Formal Methods

- Definition
- Features
- Applying Scope

P ti C id ti- Pragmatic Considerations

Konkuk University 4

DefinitionDefinition

F l M h d• Formal Methods
– Mathematically based techniques for describing system properties

• Have a sound mathematical basis
• Typically given by a formal specification language

– Provide frameworks for systematicallyy y
• Specifying,
• Developing, and
• Verifying systemsVerifying systems

Konkuk University 5

FeaturesFeatures

F l h d id f i l d fi i i lik• Formal methods provide means of precisely defining notions like
– Completeness
– Consistency
– Specification
– Implementation
– Correctness

• Formal methods address a number of pragmatic considerations
– WhoWho
– What
– When
– How it is used?How it is used?
– ex) System designers use a formal method to specify a system’s desired

behavioral and structural properties.

Konkuk University 6

Applying ScopeApplying Scope

A f d l k f f l h d• Any stage of system development can make use of formal methods
1. Initial statement of a customer’s requirements
2. System design
3. Implementation
4. Testing
5. Debugging
6. Maintenance
7. Verification
8. Evaluation

• When used early,
– Can reveal design flawsg

• When used later,
– Can help determine the correctness of a system implementation
– Can help determine the equivalence of different implementationsCan help determine the equivalence of different implementations

Konkuk University 7

Pragmatic ConsiderationsPragmatic Considerations

P i id i• Pragmatic considerations
– A set of guidelines
– Formal methods should tell the user

1. Circumstances under which the method should and can be applied
2. How it can be applied most effectively

• Formal Specification
– One tangible product of applying formal methods
– More precise and concise than informal specifications
– A formal method’s specification language may have Tool Supports

1. Syntax analysis
2. Semantic analysis with machine aids

Formal Specification :
Use mathematics to specify the desired properties of a computer

Konkuk University 8

system with support of automatic tools

Formal Specification Language

- Definition
S t ti D i- Syntactic Domains

- Semantics Domains
- Satisfies Relation

P ti f S ifi ti- Properties of Specifications
- Proving Properties of Specificands

Konkuk University 9

DefinitionDefinition

F l ifi i l• Formal specification language:

< Syn, Sem, Sat >, where
• Syn : syntactic domainy y
• Sem : semantic domain
• Sat : Sat ⊆ Syn ⅹ Sem

– syn is a specification of sem
– sem is a specificand of syn

• Considerations
– In principle, a formal method is based on some well-defined formal

specification language
– Formal specification language provides a formal method’s mathematical basis
– Formal methods differ because their specification languages have different

syntactic and/or semantic domains

Konkuk University 10

Syntactic DomainsSyntactic Domains

• Syn
– a set of symbols

• Constants
V i bl• Variables

• Logical connectives

– a set of grammatical rules for combining symbols into well-formed sentences
(semantics)(semantics)

• Ex) ∀x.P(x) ⇒ Q(x) : correct!!
∀x.⇒ P(x) ⇒ Q(x) : wrong!!

– Visual Specification : Graphical elements are also available
• boxes, circles
• lines, arrows

– called Specification

Konkuk University 11

Semantic DomainsSemantic Domains

S• Sem
– Formal specification languages differ most in their choice of

semantic domains (Specificand) such as:
Ab t t d t t ifi ti l• Abstract-data-type specification languages

– algebra, theory, program
• Concurrent and distributed systems specification languages

– state sequence, event sequence, state and transition sequencestate sequence, event sequence, state and transition sequence
– stream, synchronization tree, partial order
– state machine

• Programming languages
– function from input to output, computation
– predicate transformation
– relation, machine instruction

called Implementation– called Implementation

Konkuk University 12

Satisfies RelationSatisfies Relation

S• Sat
– Specifies different aspects of a single specificand using different specification

languages:
1 B h i l ifi ti t1. Behavioral specification aspect

– Constraints on observable behavior of specificands
– System‘s required functionality (mapping from inputs to outputs)
– Others: fault tolerance, safety, security, response time, space efficiencyOthers: fault tolerance, safety, security, response time, space efficiency

2. Structural specification aspect
– Constraints on the internal composition of specificands
– Various hierarchical and uses relations
– Call graph, data-dependency diagram, definition-use chain

Konkuk University 13

Properties of SpecificationsProperties of Specifications

S ifi i l h ld b d fi d• Specification language should be defined as
1. Unambiguous

• If and only if it has exactly one meaning
A t l l d h t f l i h tl• Any natural languages and graphs are not formal inherently

2. Consistent
• If and only if its specificand set is non-empty
• Cannot derive anything contradictory from the specification• Cannot derive anything contradictory from the specification
• There is some implementation that will satisfy the specification

3. Complete
• Need not be complete in the sense used in mathematical logicNeed not be complete in the sense used in mathematical logic
• Relatively-completeness properties might be desirable
• In practice, we must usually deal with incomplete specifications

• A specification has implementation bias if it places unnecessary constraints
on its specificand

Konkuk University 14

Proving Properties of SpecificationsProving Properties of Specifications

M f l ifi i l h l i l i f• Most formal specification languages have logical inference systems
– Can prove properties from the specification about specificands
– Can predict system’s behavior without executing or building the system
– Can be mechanized

• Theorem proving
• Model checking

ll d F l V ifi ti (P t II)• called Formal Verification (Part II)

Konkuk University 15

Pragmatics

Users
Uses
Characteristics

Konkuk University 16

UsersUsers

5 ki d f• 5 kind of users
1. Specifier : write, evaluate, analyze, and

refine specifications
2 C t hi d th ifi2. Customer : hired the specifiers
3. Implementer : realize a specification
4. Client : use a specified system

f h f l5. Verifier : prove the correctness of implementations

• A formal method’s guidelines should identify
1. Different types of users the method is targeted for
2. Capabilities the users should havep
3. Application domain of the method

Konkuk University 17

UsesUses

Th b fi• The greatest benefit comes
– from the process of formalizing
– rather than the end result

• Can apply formal methods in all phases of SW development
1. Requirements analysisq y
2. System design
3. System verification
4. System validation4. System validation
5. System documentation
6. System analysis and evaluation

• These applications should be considered as an integral one, framework

Konkuk University 18

Uses 1 R i A l iUses 1. Requirements Analysis

F l h d h l l if ’ i f ll d i• Formal methods help clarify customer’s informally stated requirements
– Crystallize customer’s vague ideas
– Reveal

• Contradictions,
• Ambiguities, and
• Incompleteness in the requirements

• On the specification, both customers and specifiers can see
h h i fl i i i– Whether it reflects customer’s intuition

– Whether specificand set has desired set of properties

Konkuk University 19

Uses 2 S D iUses 2. System Design

T i i i i d i d i• Two important activities during design
1. Decomposition
2. Refinement

• Decomposition
– Process of partitioning a system into smaller modules
– Interface specifications specify interfaces between modules

• Refinemente e e t
– Process of refining modules at one level to modules at a lower level
– Each refinement step should prove that a specification(program) at one level

satisfies a higher level specificationsg p
• Program transformation, Program synthesis, Inferential programming

– Formal methods and formal specification languages can state proof
obligations(assumptions) precisely

Konkuk University 20

Uses 3 S V ifi iUses 3. System Verification

S ifi i• System verification
– Showing that a system satisfies its specification

• Formal Verification
– Using formal specifications to verify a system
– Cannot completely verify an entire system, p y y y ,
– But can certainly verify smaller and critical part of system.

• Gypsy, HDM(Hierarchical Development Method), FDM(Formal Development Method)
• M-EVES(Environment for Verifying and Emulating Software)
• HOL(Higher Order Logic)

• Difficulties in formal system verificationy
– Should state explicitly assumptions about its environment : Not easy!
– “Bounds of Formal Methods”

Konkuk University 21

Uses 4 S V lid iUses 4. System Validation

F l h d id i i d d b i• Formal methods can aid in system testing and debugging

• Specification alone :p
– Used to generate test cases for black-box testing
– For boundary condition tests

• Specification along with implementation
– Used to generate test cases

Additionally can be used for testing analysis– Additionally, can be used for testing analysis
• Path testing
• Unit testing
• Integration testingg g
• Etc.

Konkuk University 22

Uses 5 S D iUses 5. System Documentation

F l ifi i• Formal specification
– Captures “What” rather than “How”
– Serves as a communication medium between

• Clients and Specifiers
• Specifiers and Implementers
• Among members of an implementation team• Among members of an implementation team

Konkuk University 23

Uses 6 S A l i d E l iUses 6. System Analysis and Evaluation

S l i d l i• System analysis and evaluation
– After system has been built and tested,
– Critical analysis of its functionality and performance should be done

• Does the system do what the customer wants?
• Does it do it fast enough?

– Formal method used in the development can help formulate and answer
these questionsthese questions

• Most formal methods have not yet been applied to specifying large-
scale software and hardware systemsscale software and hardware systems

– Size of the specification
– Complexity of the specificand

I t l l it• Internal complexity
• Interface complexity

Konkuk University 24

CharacteristicsCharacteristics

F l h d’ h i i i fl h l i hi h li• Formal method’s characteristics influence the style in which a user applies
it

– Whether its language is graphical or textual
– Whether its underlying logic is first-order or high-order
– Etc.

• Formal method reflects a combination of many different characteristics:
1. Model-oriented vs. Property-oriented
2. Visual languages
3. Executable
4. Tool-supportedpp

Konkuk University 25

Characteristics 1 M d l i d P i dCharacteristics 1. Model-oriented vs. Property-oriented

M d l i d h d• Model-oriented methods
– Define system’s behavior directly by constructing a model of the system
1. For sequential systems

• Parnas’ statemechines, VDM, Z, SCR, NuSCR

2. For concurrent and distributed systems
• Petri Nets, CCS, Hoare’s CSP, Unity, I/O automata

T l l i L t’ t iti i th d LOTOS• Temporal logic, Lamport’s transition axiom method, LOTOS

P t i t d th d• Property-oriented methods
– Define system’s behavior indirectly by stating a set of properties using axioms
1. Axiomatic methods

• Iota, OBJ, Anna, Larch

2. Algebraic methods
• Act One

Algebraic specification of abstract data types can handle :
- Error values
- Nondeterminism
- parameterization

Konkuk University 26

p

Characteristics 2 Vi l LCharacteristics 2. Visual Languages

Vi l ifi i l• Visual specification languages
– Any one who contains graphical elements in their syntactic domains

• Many examples
– Petri nets : for concurrent systems
– Statecharts : for specifying state transitions in reactive systems

• Semiformal methodsSe o a et ods
– Multiple interpretations or text attached
– Jackson’s method (UML)
– SASD OODSASD, OOD
– Requirements Engineering Methodology

Konkuk University 27

Characteristics 3 E blCharacteristics 3. Executable

E bl S ifi i• Executable Specification
– Can run on a computer

• Specifiers can use executable specifications
– To gain immediate feedback about the specification itself.
– To do rapid prototyping
– To test a specificand through symbolic execution of the specification

• Many examples
– Statecharts
– OBJOBJ
– Prolog, Paisley
– Most recent ones

Konkuk University 28

Characteristics 4 T l dCharacteristics 4. Tool-supported

M d l Ch ki l• Model-Checking tools
– Let users construct a finite-state model of the system
– Then show a property holds in each state or state transition of the system
– EMC, SMV, SPIN

• Proof-checking tools
– Let users treat algebraic specifications as rewrite rules

• Larch Prover, Affirm, Reve

– Handling first-order logic
• Boyer-Moore Theorem Prover, FDM, HDM, m-EVES

– Handling higher-order logic
• HOL, LCF, OBJ

Konkuk University 29

Some Examples

Abstract Data Type: Z, VDM, Larch
Concurrency: Temporal Logic, CSP, Transition Axioms

Konkuk University 30

Some ExamplesSome Examples

6 ll k f l h d (i 1990)• 6 well-known formal methods (in 1990s)
– Abstract data type : Z, VDM, Larch

• Symbol table example

C T l L i CSP T i i A i– Concurrency : Temporal Logic, CSP, Transition Axioms
• Unbounded buffer example

• When specifying the same problem with different methods, they look
– Remarkably similar
– Or totally different
– Due to

• Nature of the specificand
• Simplicity of the specificand
• Methods themselves

Konkuk University 31

Abstract Data Type: Z VDM LarchAbstract Data Type: Z, VDM, Larch

3 diff ifi i f b l bl• 3 different specifications for a symbol table

Z
VDM

Larch

Konkuk University 32

Abstract Data Type: Z VDM LarchAbstract Data Type: Z, VDM, Larch

Z (1988) VDM (1986) Larch (1985)

Base
Model-oriented
(Also property-oriented)

Model-oriented Property-oriented

Readability Good Normal Bad

Specifiability Bad Normal Good

Size Normal Compact Long

Tool-Support Proof Checker B N/A
Syntax Analyzer
L h P

Tool Support Proof Checker B N/A
Larch Prover

Konkuk University 33

Concurrency:
Temporal Logic, CSP, Transition Axioms

3 diff ifi i f b d d b ff• 3 different specifications for an unbounded buffer

Transition Axioms

Temporal Logic

CSP

Konkuk University 34

Concurrency:
Temporal Logic, CSP, Transition Axioms

T l L i CSP T iti A iTemporal Logic (1980) CSP (1985) Transition Axioms (1983)

Base Property-oriented
Model-oriented (for specifying)
Property-oriented (for proving)

Model-oriented (for specifying)
Property-oriented (for proving)

Readability Normal Normal GoodReadability Normal Normal Good

Specifiability Bad Bad Good

Size Compact Compact Long

Tool-Support Many related tools Proof Checker B N/A

Konkuk University 35

Bounds of Formal Methods

Between the Ideal and Real Worlds
Assumptions about the Environment

Konkuk University 36

Between the Ideal and Real WorldsBetween the Ideal and Real Worlds

F l h d• Formal methods are
– Based on mathematics
– But not entirely mathematical

• Two important boundaries between the mathematical and the real world

Konkuk University 37

Assumptions about the EnvironmentAssumptions about the Environment

• There is a boundary between a real system and its environment
– Environment is out of the scope of formal specifications (Open System)
– Except, Gist specification language

• Environment ⇒ System
• Environment is a set of assumptions
• System is a set of constraints on its behaviors placed by specifiers

I li it ti i i l– Implicit assumptions in programming language areas
– Specifiers should make explicit as many assumptions as possible.

• Hazard Analysis
– Identify a system’s safety-critical components

• FTA, FMEA, HAZOP

– A complementary technique to formal methods

Konkuk University 38

Concluding Remarks

Formal Methods
Challenges

Konkuk University 39

Formal MethodsFormal Methods

I i h i l• In a strict mathematical sense,
– Formal methods differ greatly from one another

• In a practical sense,
– Formal methods do not differ radically from one another

• Formal methods can be used
1. Identify

• Deficiencies in informal requirements
• Discrepancies between a specification and an implementation
• Errors in existing programs and systems

2. Specify
• Medium-sized and nontrivial problems
• Functional behavior

3. Provide
• Deeper understanding of the behavior of systems

Konkuk University 40

ChallengesChallenges

1 S if i f i l b h i1. Specifying nonfunctional behavior
– Reliability, safety, real-time, performance, human factors

2. Combining different methods
– Domain specific + General
– Formal + Informal

3. Building more usable and robust toolsg
– Can manage large specifications
– Can perform more complicated semantic analysis

4 Building specification libraries4. Building specification libraries
– Reuse in general or domain-specific purpose

5. Formal methods based software development
6 S l i ti t h i6. Scale up existing techniques
7. Educating and training

Konkuk University 41

