
Introduction to Formal Methods

Part I. Principles and Techniques

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

IntroductionIntroduction

T• Text
– System and Software Verification : Model-Checking Techniques and Tools

• In this book, you will find enough theory
– to be able to assess the relevance of the various tools,
– to understand the reasons behind their limitations and strengths, and
– to choose the approach currently best suited for your verification task.

• Part I : Principles and Techniques
• Part II : Specifying with Temporal Logic• Part II : Specifying with Temporal Logic
• Part III : Some Tools

Konkuk University 2

Chapter 1 AutomataChapter 1. Automata

M d l h ki i t i if i ti f th d l f• Model checking consists in verifying some properties of the model of a
system.

• Modeling of a system is difficult
No universal method exists to model a system– No universal method exists to model a system

– Best performed by qualified engineers

• This chapter describes a general model which serves as a basis.This chapter describes a general model which serves as a basis.

• Organization of Chapter 1
– Introductory Examplesy p
– A Few Definitions
– A Printer Manager
– A Few More Variables

Synchronized Product– Synchronized Product
– Synchronization by Messaging Passing
– Synchronization by Shared Variables

Konkuk University 3

1 1 Introductory Examples1.1 Introductory Examples

(Fi i) A• (Finite) Automata
– Best suited for verification by model checking techniques
– A machine evolving from one state to another under the action of transitions

Graphical representation– Graphical representation

03:58… 03:59 04:00 …03:58 03:59 04:00

An automate model of a digital watch (24x60=1440 states)

Konkuk University 4

dec

0 1
inc

dec inc

dec
inc

2

Ac3 : a module 3 counter

Konkuk University 5

• A digicode door lock example
– Controls the opening of office doors

The door opens upon the keying in of the correct character sequence irrespective of any– The door opens upon the keying in of the correct character sequence, irrespective of any
possible incorrect initial attempts.

– Assumes
• 3 keys A, B, and C
• Correct key sequence : ABA

AB , C

1 2 3 4 …AB
A

CC

B CB , C

Konkuk University 6

• Two fundamental notations
i– execution

• A sequence of states describing one possible evolution of the system
• Ex. 1121 , 12234 , 112312234 3 different executions

execution tree– execution tree
• A set of all possible executions of the system in the form of a tree
• Ex. 1

11, 12
111, 112, 121, 122, 123
1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1234
…

1

1 2

1 2 1 2 3

1 2 1 2 3 1 2 1 2 3 1 4Konkuk University 7

• We associate with each automaton state a number of elementary
properties which we know are satisfies, since our goal is to verify system
model propertiesmodel properties.

• Properties
– Elementary property

• (atomic) Proposition
A i t d ith h t t• Associated with each state

• True or False in a given state

– Complicated property
• Expressed using elementary properties
• Depends on the logic we use

Konkuk University 8

• For example• For example,
• PA : an A has just been keyed in
• PB : an B has just been keyed in
• PC : an C has just been keyed inC j y
• pred2 : the proceeding state in an execution is 2
• pred3 : the proceeding state in an execution is 3

• Properties of the system to verify
1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
2. Keying in any sequence of letters ending in ABA opens the door.

• Let’s prove the properties with the propositions

PB PA

pred2
PA pred3

Konkuk University 9

1 2 A Few Definition1.2 A Few Definition

A i l A Q E T l i hi h• An automaton is a tuple A = < Q, E, T, q0, l > in which
– Q : a finite set of states
– E : the finite set of transition labels

T ⊆ Q x E ⅹ Q : the set of transitions– T ⊆ Q x E ⅹ Q : the set of transitions
– q0 : the initial state of the automaton
– l : the mapping each state with associated sets of properties which hold in it

– Prop = {P1, P2, … } : a set of elementary propositions

Konkuk University 10

A = < Q E T q l >A = < Q, E, T, q0, l >

– Q = {1, 2, 3, 4}
– E = {A, B, C}

T = { (1 A 2) (1 B 1) (1 C 1)

PB PA

– T = { (1,A,2), (1,B,1), (1,C,1),
(2,A,2), (2,B,3), (2,C,1),
(3,A,4), (3,B,1), (3,C,1) }

– q0 = 1

pred2
PA pred3

q0 1

– l =

1 → ø
2 → {PA}

 {P d }3 → {PB, pred2}
4 → {PA, pred3}

AB , C

The digicode with its atomic propositions

A

1
2

PA

3
pred2

PB

4
pred3

PA

AB
A

C

B , CKonkuk University 11

• Formal definitions of automaton’s behavior
– a path of automaton A :

– A sequence σ, finite or infinite, of transitions which follows each other
– Ex.

– a length of a path σ :
3 → 1 → 2 → 2 B A A

a length of a path σ :
– | σ |
– σ ‘s potentially infinite number of transitions: | σ | ∈ N ∪ {ω}

– a partial execution of A :
– A path starting from the initial state q0

– Ex.
– a complete execution of A :

– An execution which is maximal

1 → 2 → 2 → 3 A A B

– An execution which is maximal.
– Infinite or deadlock

– a reachable state :
– A state is said to be reachable,

– if a state appears in the execution tree of the automaton, in other words,
– if there exists at least one execution in which it appears.

Konkuk University 12

1 3 Printer Manager1.3 Printer Manager
Propositions

W = WaitingA printer shared by two users W = Waiting
P = Printing now
R = Rest for now

0
RA

RB

endA endB

A printer shared by two users

1 2 76 begA begB

reqA reqB

WA

RB

RA

WB

RA

PB

PA

RB

gA begB

reqAreqB

5
P

4
W

3
W

endAendB

begAbegB
PA

WB

WA

PB

WA

WB

reqAreqB qAreqB

Konkuk University 13

A = < Q, E, T, q0, l >

– Q = {0, 1, 2, 3, 4, 5, 6, 7}
{ b b d d }– E = {reqA, reqB, begA, begB, endA, endB}

– T = { (0,reqA,1), (0,reqB,2), (1,reqB,3), (1,begA,6), (2,reqA,3),
(2,begB,7), (3,begA,5), (3,begB,4), (4,endB,1), (5,endA,2),
(6 end 0) (6 req 5) (7 end 0) (7 req 4) }(6,endA,0), (6,reqB,5), (7,endB,0), (7,reqA,4) }

– q0 = 0

0 → {RA, RB} , 1 → {WA, RB}

– l =
2 → {RA, WB} , 3 → {WA, WB}
4 → {WA, PB} , 5 → {PA, WB}
6 → {PA, RB} , 7 → {RA, PB}

Konkuk University 14

• Properties of the printer manager to verify

1. We would undoubtedly wish to prove that any printing operation is 1. We would undoubtedly wish to prove that any printing operation is
preceded by a print request.

• In any execution, any state in which PA holds is preceded by a state in which the
proposition WA holds.

2. Similarly, we would like to check that any print request is ultimately
satisfied. (fairness property)

• In any execution, any state in which WA holds is followed by a state in which the
proposition PA holds.

• Model checking techniques allow us to prove automatically that
• Property 1 is TRUE, and
• Property 2 is FALSE, for example 0 1 3 4 1 3 4 1 3 4 1 3 4 1 … (counterexample)

Konkuk University 15

1 4 Few More Variables1.4 Few More Variables

I i f i l i l i bl• It is often convenient to let automata manipulate state variables.
– Control : states + transitions
– Data : variables (assumes finite number of values)

• An automaton interacts with variables in two ways:
– Assignments
– Guards

Konkuk University 16

if ctr < 3
A
ctr := ctr + 1 if ctr < 3 (guard)

B C (t iti l b l)

if ctr < 3
B, C
ctr := ctr + 1

AB
A

B , C (transition label)

ctr := ctr + 1 (assignment)

1 2 3 4
AB

ctr := 0

if ctr < 3
C

1
if ctr = 3

ctr := ctr + 1 A, C
ctr := ctr + 1

if ctr = 3
B, C
ctr := ctr + 1if ctr = 3

B C

err

B, C
ctr := ctr + 1

The digicode with guarded transitions

No more than 3 mistakes !!!

Konkuk University 17

• It is often necessary, in order to apply model checking methods, y pp y g
• to unfold the behaviors of an automaton with variables
• into a state graph
• in which the possible transitions appear and the configurations are clear marked.

• Unfolded automaton = Transition systemUnfolded automaton Transition system
• has global states
• transitions are no longer guarded
• no assignments on the transitions

Konkuk University 18

A B A1
ctr=0

2
ctr=0

3
ctr=0

4
ctr=0

B,C B,C

ABA

A

C

ctr=0

1

ctr=0

2

ctr=0

3

ctr=0

4

B,C B,C

ABA

A

C

1
ctr=1

2
ctr=1

3
ctr=1

4
ctr=1

B C B C

ABA

A

C

1
ctr=2

2
ctr=2

3
ctr=2

4
ctr=2

Unfolding

B,C B,C

ABA

A

A C

1
ctr=3

2
ctr=3

3
ctr=3

4
ctr=3

B,C B,C
A, C

err
ctr 4

The digicode with error counting

Konkuk University 19

ctr=4(Unfolded automaton)

1 5 Synchronized Product1.5 Synchronized Product

R l lif f d f d l• Real-life programs or systems are often composed of modules or
subsystems.

– Modules/Components (composition) Overall system
C t t t (h i ti) Gl b l t t– Component automata (synchronization) Global automaton

A t t f ll t• Automata for an overall system
– Often has so many global states
– Impossible to construct it directly (State explosion problem)

Two composition ways– Two composition ways
• With synchronization
• Without synchronization

Konkuk University 20

• An example without synchronization
– A system made up of three counters (modulo 2, 3, 4)
– They do not interact with each other
– Global automaton = Cartesian product of three independent automata

AC3

1 0 3 1 1 3 1 2 3

AC2

0,0,3 0,1,3 0,2,3

1,0,3 1,1,3 1,2,3

AC4

0,0,2 0,1,2 0,2,2

1,0,2 1,1,2 1,2,2

2*3*4 = 24 states
3*3*3 - 1 = 26 transitions per a state

(I D)

0,0,1 0,1,1 0 2 1

1,0,1 1,1,1 1,2,1
(Inc, Dec, -)

24 * 26 = 624 transitions

, ,

0 0 0

0,1,1

0 1 0

0,2,1

1,0,0 1,1,0 1,2,0

Konkuk University 21

0,0,0 0,1,0 0,2,0

• An example with synchronization
– A number of ways depending on the nature of the problem
– Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
– Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)

• Synchronized product
– A way to formally express synchronizing options
– Synchronized product = Component automata + Synchronized set

A A A C t t t– A1 ⅹ A2 ⅹ … ⅹ An : Component automata

– A = < Q, E, T, q0, l >

– Q = Q1 ⅹ Q2 ⅹ … ⅹ Qn1 2 n

– E =

– T =

∏ (Ei∪ {-})
1≤i≤n

((q1, …. , qn), (e1, … , en), (q’1, … , q’n)) | for all i,
(ei = ‘-’ and q’i = qi) or (ei ≠ ‘-’ and (qi, ei, q’i) ∈ Ti)

– q0 = (q0,1 , … , q0,n)

– l((q1 , … , qn)) =

: Synchronized setSync ⊆ ∏ (E ∪ { })

∪ li (qi)1≤i≤n

Konkuk University 22

– : Synchronized set
1≤i≤n

Sync ⊆ ∏ (Ei∪ {-})

• An example with synchronization
– Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)

→ Strongly coupled version of modular counters
– Sync = { (inc, inc, inc), (dec, dec, dec) }

– T =
((q1, …. , qn), (e1, … , en), (q’1, … , q’n)) | (e1, … , en) ∈ Sync
(ei = ‘-’ and q’i = qi) or (ei ≠ ‘-’ and (qi, ei, q’i) ∈ Ti)

1,0,3 1,1,3 1,2,3

12 states
0,0,2 0,1,2 0,2,2

1,0,1 1,1,1 1,2,1

12 states

12 transitions
(inc, inc, inc) (dec, dec, dec)

Accc
coupl

Konkuk University 23
0,0,0 0,1,1 0,2,0

ccc

• Reachable states
– Reachability depends on the synchronization constraints

1,2,3 0,1,2 1,0,1 0,2,0 1,1,3 0,0,2

dec

inc

dec

inc

dec

inc

dec

inc

dec

inc

0,0,0 1,1,1 0,2,2 1,0,3 0,1,0 1,2,1dec

inc

dec

inc

dec

inc

dec

inc

dec

inc
dec inc decinc

dec

Accc
coupl

Rearranged automaton → modulo 12 counter

• Reachability graph
Obt i d b d l ti h bl t t– Obtained by deleting non-reachable states

– Many tools to construct R.G. of synchronized product of automata
– Reachability is a difficult problem

– State explosion problem

Konkuk University 24

p p

1 6 Synchronization with Message Passing1.6 Synchronization with Message Passing

M i f k• Message passing framework
– A special case of synchronized product
– !m : Emitting a message

?m : Reception of the message– ?m : Reception of the message

– Only the transition in which !m and ?m pairs are executed simultaneously is permitted.

– Synchronous communication
• Control/command system

A h i i– Asynchronous communication
• Communication protocol (using channel/buffer)

Konkuk University 25

• Smallish elevator
– Synchronous communication (message passing)
– One cabin
– Three doors (one per floor)

One controller– One controller
– No requests from the three floors

The controller

?down ?up
The cabin

!close_2

!open_2
free2 on2

2->0

!down

0 1 2
?down ?down

?up?up

!close_1

!up !down
!down

?close_i ?open_i
!open_1

free1 on1

!up !down
!up

C O
?open_i

?close_i

!close_0

free0 on0

0->2

!up !down

!up

Konkuk University 26
The ith door

!open_0
free0 on0 !up

A t t f th lli h l t l• An automaton for the smallish elevator example
– Obtained as the synchronized product of the five automata

– (door 0 door 1 door 2 cabin controller)– (door 0, door 1, door 2, cabin, controller)
– Sync = { (?open_1, -, -, -, !open_1), (?close_1, -, -, -, !close_1),

(-, ?open_2, -, -, !open_2), (-, ?close_2, -, -, !close_2),
(-, -, ?open_3, -, !open_3), (-, -, ?close_3, -, !clsoe_3),

d d(-, -, -, ?down, !down), (-, -, -, ?up, !up) }

P ti t h k• Properties to check
• (P1) The door on a given floor cannot open while the cabin is on a different

floor.
• (P2) The cabin cannot move while one of the door is open.(P2) The cabin cannot move while one of the door is open.

• Model checker• Model checker
• Can build the synchronized product of the 5 automata.
• Can check automatically whether properties hold or not.

Konkuk University 27

1 7 Synchronization by Shared Variables1.7 Synchronization by Shared Variables

A h h i i h h h• Another way to have components communicate with each other
• Share a certain number of variables
• Allow variables to be shared by several automatay

• Ex. The printer manager in Chapter 1.3
– Problem: fairness property is not satisfiedProblem: fairness property is not satisfied

Konkuk University 28

• The printer manager synchronized with a shared variable
– Shared variable: turn

• Fairness property: Any print request is ultimately satisfied.
No state of the form (y, t, -) is reachable.
TRUE in the model.
B hi d l f bid i h f i i i iBut, this model forbids either user from printing twice in a row.

The user A

x y

if turn=A, printA

turn:=B

printAx, z
A

y, z
A

The user B
if turn=B, printB

turn:=Bturn:=A

z t
turn:=A

printBx, t
B

x, z
B

Konkuk University 29

• Printer manager : A complete version with 3 variables [by Peterson]

– rA : a request from user A
– rB : a request from user BrB : a request from user B
– turn : to settle conflicts
– Satisfies all our properties

1 2
rA := true

The user A

1 2
rB := true

The user B

1 2

turn:=B

if t A i t
rA := false

1 2

turn:=A

if t B i t
rB := false

4 3

if turn = A, printA

if rB = false printA

4 3

if turn = B, printB

if rA = false printBif rB false, printA if rA false, printB

A = < Q, E, T, q0, l >
– Q = A ⅹ B ⅹ rA ⅹ rB ⅹ turn

AⅹB

Konkuk University 30

4 ⅹ 4 ⅹ 2 ⅹ 2 ⅹ 2 = 128 states
(only 128 reachable states)

