Introduction to Formal Methods

Part I. Principles and Techniques

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr

Introduction

- Text
 - System and Software Verification : Model-Checking Techniques and Tools
- In this book, you will find enough theory
 - to be able to assess the relevance of the various tools,
 - to understand the reasons behind their limitations and strengths, and
 - to choose the approach currently best suited for your verification task.
- Part I : Principles and Techniques
- Part II : Specifying with Temporal Logic
- Part III : Some Tools

Chapter 1. Automata

- Model checking consists in verifying some properties of the model of a system.
- Modeling of a system is difficult
 - No universal method exists to model a system
 - Best performed by qualified engineers
- This chapter describes <u>a general model</u> which serves as <u>a basis</u>.
- Organization of Chapter 1
 - Introductory Examples
 - A Few Definitions
 - A Printer Manager
 - A Few More Variables
 - Synchronized Product
 - Synchronization by Messaging Passing
 - Synchronization by Shared Variables

1.1 Introductory Examples

- (Finite) Automata
 - Best suited for verification by model checking techniques
 - A machine evolving from one *state* to another under the action of *transitions*
 - Graphical representation

An automate model of a digital watch (24x60=1440 states)

- A digicode door lock example
 - Controls the opening of office doors
 - The door opens upon the keying in of the correct character sequence, irrespective of any
 possible incorrect initial attempts.
 - Assumes
 - 3 keys A, B, and C
 - Correct key sequence : ABA

7

- Two fundamental notations
 - execution
 - A sequence of states describing one possible evolution of the system
 - Ex. 1121 , 12234 , 112312234 ← 3 different executions
 - execution tree
 - A set of all possible executions of the system in the form of a tree
 - Ex. 1

11, 12 111, 112, 121, 122, 123 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1234

- We associate with each automaton state a number of elementary properties which we know are satisfies, since our goal is to verify system model properties.
- Properties
 - Elementary property
 - (atomic) <u>Proposition</u>
 - Associated with each state
 - True or False in a given state
 - Complicated property
 - Expressed using elementary properties
 - Depends on the logic we use

- For example,
 - P_A : an A has just been keyed in
 - P_B : an B has just been keyed in
 - P_C : an C has just been keyed in
 - *pred*₂ : the proceeding state in an execution is 2
 - *pred*₃: the proceeding state in an execution is 3
 - Properties of the system to verify
 - 1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
 - 2. Keying in any sequence of letters ending in ABA opens the door.
 - Let's prove the properties with the propositions

1.2 A Few Definition

- An automaton is a tuple $A = \langle Q, E, T, q_0, I \rangle$ in which
 - Q: a finite set of states
 - *E*: the finite set of transition labels
 - $T \subseteq Q \times E \times Q$: the set of transitions
 - q_0 : the initial state of the automaton
 - *I*: the mapping each state with associated sets of properties which hold in it
 - $Prop = \{P_{1'}, P_{2'}, ...\}$: a set of elementary propositions

- Formal definitions of automaton's behavior
 - a *path* of automaton A:
 - A sequence σ , finite or infinite, of transitions which follows each other
 - $\text{Ex. } 3 \xrightarrow{B} 1 \xrightarrow{A} 2 \xrightarrow{A} 2$
 - a <u>length</u> of a path σ :

 $- |\sigma|$

- σ 's potentially infinite number of transitions: $|\sigma| \in N \cup \{\omega\}$
- a *partial execution* of A :
 - A path starting from the initial state q_0
 - Ex. 1 \xrightarrow{A} 2 \xrightarrow{A} 2 \xrightarrow{B} 3
- a *complete execution* of A :
 - An execution which is maximal.
 - Infinite or deadlock
- a <u>reachable state</u>:
 - A state is said to be reachable,
 - if a state appears in the execution tree of the automaton, in other words,
 - if there exists at least one execution in which it appears.

1.3 Printer Manager

$$\begin{split} A &= \langle Q, E, T, q_0, I \rangle \\ &- Q = \{0, 1, 2, 3, 4, 5, 6, 7\} \\ &- E = \{ \operatorname{req}_{A'} \operatorname{req}_{B'} \operatorname{beg}_{A'} \operatorname{beg}_{B'} \operatorname{end}_{A'} \operatorname{end}_{B} \} \\ &- T = \{ (0, \operatorname{req}_{A'} 1), (0, \operatorname{req}_{B'} 2), (1, \operatorname{req}_{B'} 3), (1, \operatorname{beg}_{A'} 6), (2, \operatorname{req}_{A'} 3), \\ &\quad (2, \operatorname{beg}_{B'} 7), (3, \operatorname{beg}_{A'} 5), (3, \operatorname{beg}_{B'} 4), (4, \operatorname{end}_{B'} 1), (5, \operatorname{end}_{A'} 2), \\ &\quad (6, \operatorname{end}_{A'} 0), (6, \operatorname{req}_{B'} 5), (7, \operatorname{end}_{B'} 0), (7, \operatorname{req}_{A'} 4) \} \end{split}$$

$$- q_0 = 0$$

~

_ _

$$- I = \begin{cases} 0 \to \{R_{A'}, R_{B}\}, & 1 \to \{W_{A'}, R_{B}\}\\ 2 \to \{R_{A'}, W_{B}\}, & 3 \to \{W_{A'}, W_{B}\}\\ 4 \to \{W_{A'}, P_{B}\}, & 5 \to \{P_{A'}, W_{B}\}\\ 6 \to \{P_{A'}, R_{B}\}, & 7 \to \{R_{A'}, P_{B}\} \end{cases}$$

.

- Properties of the printer manager to verify
- 1. We would undoubtedly wish to prove that any printing operation is preceded by a print request.
 - In any execution, any state in which P_A holds is preceded by a state in which the proposition W_A holds.
- 2. Similarly, we would like to check that any print request is ultimately satisfied. (\rightarrow fairness property)
 - In any execution, any state in which W_A holds is followed by a state in which the proposition P_A holds.
- Model checking techniques allow us to prove automatically that
 - Property 1 is TRUE, and
 - Property 2 is FALSE, for example 0 1 3 4 1 3 4 1 3 4 1 3 4 1 ... (counterexample)

1.4 Few More Variables

- It is often convenient to let automata manipulate *state variables*.
 - Control : states + transitions
 - Data : variables (assumes finite number of values)
- An automaton interacts with variables in two ways:
 - Assignments
 - Guards

- It is often necessary, in order to apply model checking methods,
 - to *unfold* the behaviors of an automaton with variables
 - into a state graph
 - in which the possible transitions appear and the configurations are clear marked.
- Unfolded automaton = Transition system
 - has global states
 - transitions are no longer guarded
 - no assignments on the transitions

Konkuk University

1.5 Synchronized Product

- Real-life programs or systems are often composed of modules or subsystems.
 - Modules/Components \rightarrow (composition) \rightarrow Overall system
 - Component automata \rightarrow (synchronization) \rightarrow Global automaton
- Automata for an overall system
 - Often has so many global states
 - Impossible to construct it directly (State explosion problem)
 - Two composition ways
 - With synchronization
 - Without synchronization

- An example without synchronization
 - A system made up of three counters (modulo 2, 3, 4)
 - They do not interact with each other
 - Global automaton = Cartesian product of three independent automata

- An example <u>with synchronization</u>
 - A number of ways depending on the nature of the problem
 - Ex. Allowing only "inc, inc, inc" and "dec, dec, dec" (24*2=48 transitions)
 - Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)
- Synchronized product
 - A way to formally express synchronizing options
 - Synchronized product = Component automata + Synchronized set
 - $A_1 \times A_2 \times \dots \times A_n$: Component automata

$$- A = \langle Q, E, T, q_{0}, I \rangle
- Q = Q_{1} \times Q_{2} \times ... \times Q_{n}
- E = \prod_{i \le i \le n} (E_{i} \cup \{-\})
- T = \left\{ \begin{array}{l} ((q_{1}, ..., q_{n}), (e_{1}, ..., e_{n}), (q'_{1}, ..., q'_{n})) \mid \text{ for all } i, \\ (e_{i} = `-` \text{ and } q'_{i} = q_{i}) \text{ or } (e_{i} \neq `-` \text{ and } (q_{i}, e_{i}, q'_{i}) \in T_{i}) \end{array} \right\}
- q_{0} = (q_{0,1}, ..., q_{0,n})
- I((q_{1}, ..., q_{n})) = \bigcup_{i \le i \le n} I_{i}(q_{i})$$

- Sync
$$\subseteq \prod_{1 \le i \le n} (E_i \cup \{-\})$$
 : Synchronized set

- An example <u>with synchronization</u>
 - Ex. Allowing only "inc, inc, inc" and "dec, dec, dec" (24*2=48 transitions)
 → Strongly coupled version of modular counters
 - *Sync* = { (inc, inc, inc), (dec, dec, dec) }

$$- T = \left\{ \begin{array}{l} ((q_1, \dots, q_n), (e_1, \dots, e_n), (q'_1, \dots, q'_n)) \mid (e_1, \dots, e_n) \in Sync \\ (e_i = `-` and q'_i = q_i) \text{ or } (e_i \neq `-` and (q_i, e_i, q'_i) \in T_i) \end{array} \right\}$$

12 states

12 transitions

(inc, inc, inc) (dec, dec, dec)

- Reachable states
 - Reachability depends on the synchronization constraints

Rearranged automaton $A_{ccc}^{coupl} \rightarrow \text{modulo 12 counter}$

- Reachability graph
 - Obtained by deleting non-reachable states
 - Many tools to construct R.G. of synchronized product of automata
 - Reachability is a difficult problem
 - <u>State explosion problem</u>

1.6 Synchronization with Message Passing

- Message passing framework
 - A special case of synchronized product
 - !m : Emitting a message
 - ?m : Reception of the message
 - Only the transition in which !m and ?m pairs are executed simultaneously is permitted.
 - Synchronous communication
 - Control/command system
 - Asynchronous communication
 - Communication protocol (using channel/buffer)

- Smallish elevator
 - Synchronous communication (message passing)
 - One cabin
 - Three doors (one per floor)
 - One controller
 - No requests from the three floors

- An automaton for the smallish elevator example
 - Obtained as the <u>synchronized product</u> of the <u>five automata</u>
 - (door 0, door 1, door 2, cabin, controller)
 - Sync = { (?open_1, -, -, -, !open_1), (?close_1, -, -, -, !close_1), (-, ?open_2, -, -, !open_2), (-, ?close_2, -, -, !close_2), (-, -, ?open_3, -, !open_3), (-, -, ?close_3, -, !clsoe_3), (-, -, -, ?down, !down), (-, -, -, ?up, !up) }
 - Properties to check
 - (P1) The door on a given floor cannot open while the cabin is on a different floor.
 - (P2) The cabin cannot move while one of the door is open.
- Model checker

۲

- Can build the synchronized product of the 5 automata.
- Can check automatically whether properties hold or not.

1.7 Synchronization by Shared Variables

- Another way to have components communicate with each other
- Share a certain number of variables
- Allow variables to be shared by several automata
- Ex. The printer manager in Chapter 1.3
 - Problem: fairness property is not satisfied

- The printer manager synchronized with a shared variable
 - Shared variable: turn
- Fairness property: Any print request is ultimately satisfied. \rightarrow No state of the form (y, t, -) is reachable.
 - \rightarrow TRUE in the model.
 - \rightarrow But, this model forbids either user from printing twice in a row.

- Printer manager : A complete version with 3 variables [by Peterson]
 - r_A : a request from user A
 - r_B : a request from user B
 - turn : to settle conflicts
 - Satisfies all our properties

