Introduction to Formal Methods

Chapter 2. Temporal Logic

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr

2. Temporal Logic

- Motivation:
 - The elevator example includes two properties
 - "Any elevator request must ultimately be satisfied"
 - "The elevator never traverses a floor for which a request is pending without satisfying this request"
 - \rightarrow Dynamic behavior of the system
 - In a first order logic,

•
$$\forall t, \forall n (app(n, t) \Rightarrow \exists t' > t : serv(n, t'))$$

• $\forall t, \forall t' > t, \forall n, \begin{bmatrix} (app(n, t) \land H(t') \neq n \land \exists t_{trav}: \\ t \leq t_{trav} \leq t' \leq H(t_{trav}) = n) \\ \Rightarrow (\exists t_{serv}: t \leq t_{serv} \leq t' \land serv(n, t_{serv})) \end{bmatrix}$

- But, the above notation(mathematics) is quite cumbersome.
- Temporal Logic is a different formalism, better suited for our situation.

2. Temporal Logic

- Temporal Logic
 - A form of logic specifically tailored for
 - statements and reasoning
 - Involving the notion of order in time
 - Compared with the mathematical formulas
 - clearer and simpler
 - immediately ready for use (linguistic similarity of operators)
 - formal semantics (specification language tools)
- Organization of Chapter 2
 - The Language of Temporal Logic
 - The Formal Syntax of Temporal Logic
 - The Semantics of Temporal Logic
 - PLTL and CTL: Two Temporal Logics
 - The Expressivity of CTL*

2.1 The Language of Temporal Logic

- CTL*
 - serves to formally state the properties concerned with the execution of a system
 - Variants (CTL, PLTL, LTL)
 - 6 characteristics
- 1. Atomic Propositions
 - warm, ok, error
- 2. Proposition Formula
 - using boolean combinators
 - true, false, \neg , \lor , \land , \Rightarrow (if then), \Leftrightarrow (if and only if)
 - $error \Rightarrow \neg warm$ (if *error* then not *warm*)

 $\sigma_1: (\mathsf{q}_0: \mathsf{warm}, \mathsf{ok}) \not \rightarrow (\mathsf{q}_1: \mathsf{ok}) \not \rightarrow (\mathsf{q}_0: \mathsf{warm}, \mathsf{ok}) \not \rightarrow (\mathsf{q}_1: \mathsf{ok}) \not \rightarrow \dots$

$$\begin{split} \sigma_{2}:(q_{0}: \text{ warm, ok}) & \rightarrow (q_{1}: \text{ ok}) \rightarrow (q_{2}: \text{ error}) \rightarrow (q_{0}: \text{ warm, ok}) \rightarrow \\ (q_{1}: \text{ ok}) \rightarrow \dots \\ \sigma_{3}:(q_{0}: \text{ warm, ok}) \rightarrow (q_{1}: \text{ ok}) \rightarrow (q_{2}: \text{ error}) \rightarrow (q_{2}: \text{ error}) \rightarrow \\ 4 \end{split}$$

- 3. Temporal combinators
 - about the sequencing of states along an execution
 - X : next state
 - F : a future state
 - G : all the future states
 - X P : the next state satisfies P
 - F P : a future state satisfies P without specifying which state
 → P will hold some day (at least once)
 - G P : all future states will satisfy P \rightarrow P will always be
 - $alert \Rightarrow F halt$: if we are currently in a state of *alert*, then we will later be in a *halt* state.
 - G (*alert* \Rightarrow F *halt*) : at any time, a state of *alert* will necessarily be followed by a *halt* state later.
 - G (warm \Rightarrow F \neg warm) : true
 - G (warm \Rightarrow X \neg warm) : true
 - G is the dual of F
 - G $\phi \equiv \neg F \neg \phi$

- 4. Arbitrary nesting of temporal combinators
 - give temporal logic its power and strength
 - GF φ : always there will some day be a state such that φ,
 φ is satisfied infinitely often along the execution considered
 - FG ϕ : all the time from a certain time onward, at each time instant, possibly excluding a finite number of instants
 - GF warm \vee FG error
- 5. U combinator
 - for until
 - $\phi_1 \cup \phi_2 : \phi_1$ is verified until ϕ_2 is verified ϕ_2 will be verified some day, and ϕ_1 will hold in the meantime
 - G (*alert* \Rightarrow (*alarm* U *halt*)): starting from a state of *alert*, the *alarm* remains activated until the *halt* state is eventually and inexorably reached.
 - F ϕ = true U ϕ
 - $\phi_1 W \phi_2 \equiv (\phi_1 U \phi_2) \vee G \phi_1$: weak until

- 6. Path quantifier
 - A ϕ : all the executions out of the current state satisfy property ϕ
 - E ϕ : from the current state, there exists an execution satisfying ϕ
 - EF *P* : it is possible (by following a suitable execution) to have *P* some day
 - EG *P* : there exists an execution along which *P* always holds
 - AF *P* : we will necessarily have *P* some day (regardless of the chosen execution)
 - AG P: always true

2.2 Formal Syntax of Temporal Logic

- Abstract grammar
 - Needs parentheses, operator priority, specific set of atomic propositions, etc.
 - Most model checkers use a fragment of CTL* CTL or LTL.

$$\begin{array}{ll} \phi \ , \ \psi \colon : = \ P_1 \ | \ P_2 \ | \ ... & (atomic proposition) \\ & | \ \neg \phi \ | \ \phi \land \psi \ | \ \phi \Rightarrow \psi \ | \ ... & (boolean \ combinators) \\ & | \ X\phi \ | \ F\phi \ | \ G\phi \ | \ \phi \cup \psi \ | \ ... & (temporal \ combinators) \\ & | \ E\phi \ | \ A\phi & (path \ quantifiers) \end{array}$$

2.3 The Semantics of Temporal Logic

- Kripke structure
 - Name of the models of temporal logic
 - Propositions labeling the states are important in CTL*
 - Transition labels (*E*) are neglected. $A = \langle Q, T, q_o, l \rangle$, $T \subseteq Q \times Q$
- Satisfaction
 - A, σ ,i $\models \phi$
 - "at time i of the execution σ , ϕ is true."
 - where σ is an execution of A, which not required to start at the initial state
 - A is often omitted.
 - $\sigma,i \models \phi$: ϕ is satisfied at time *i* of σ
 - σ , $i \not \in \phi$ is not satisfied at time i of σ
 - $A \not\models \phi$ iff σ , 0 $\not\models \phi$ for every execution of σ of A
 - "the automaton A satisfies ϕ "
 - $A \not\models \phi \neq A \not\models \neg \phi$
 - $\sigma,i \not\models \phi = \sigma,i \not\models \neg \phi$

$$\begin{array}{ll} \sigma,i\models P & \text{iff } P\in l(\sigma(i)),\\ \sigma,i\models\neg\phi & \text{iff it is not true that } \sigma,i\models\phi,\\ \sigma,i\models\phi\wedge\psi & \text{iff } \sigma,i\models\phi\text{ and } \sigma,i+1\models\phi,\\ \sigma,i\models F\phi & \text{iff there exists } j \text{ such that } i\leq j\leq |\sigma| \text{ and } \sigma,j\models\phi,\\ \sigma,i\models G\phi & \text{iff for all } j \text{ such that } i\leq j\leq |\sigma|, \text{ we have } \sigma,j\models\phi,\\ \sigma,i\models\phi\cup\psi & \text{iff there exists } j,i\leq j\leq |\sigma| \text{ such that } \sigma,j\models\psi, \text{ and}\\ for all k \text{ such that } i\leq k< j, \text{ we have } \sigma,k\models\phi,\\ \sigma,i\models F\phi & \text{iff there exists } a \sigma' \text{ such that } \sigma(0)\dots\sigma(i)=\sigma'(0)\dots\sigma'(i) \text{ and}\\ \sigma',i\models\phi,\\ \sigma,i\models A\phi & \text{iff for all } \sigma' \text{ such that } \sigma(0)\dots\sigma(i)=\sigma'(0)\dots\sigma'(i), \text{ we have } \sigma',i\models\phi. \end{array}$$

Semantics of CTL*

CTL*

- Time is discrete.
- Nothing exists between i and i + 1.
- The instants are the points along the executions

2.4 PLTL and CTL: Two Temporal Logics

- Two most commonly used temporal logics in model checking tools
 - PLTL (Propositional Linear Temporal Logic)
 - CTL (Computational Tree Logic)
 - fragments of CTL*
- PLTL
 - No path quantifiers (A and E)
 - Linear time logic \rightarrow Path formula
 - For example, PLTL cannot distinguish A_1 from A_2

- CTL
 - Temporal combinators (X, F, U) should be under the immediate scope of path quantifier (A, E)
 - EX , AX , EU , AU , EF , EG , AG , AF , ...
 - State formulas
 - Truth only depends on the current state and the automaton regions made reachable by it
 - Not depend on a current execution.
 - $q \not\models \phi$: ϕ is satisfied in state q
 - CTL can distinguish automata A1 and A2

- Potential reachability : AG EF P
- Do not allow us to express very rich properties along the paths.

Konkuk University

- Which to choose CTL or PLTL ?
 - To state some properties \rightarrow PLTL
 - To perform exhaustive verification of a system $\xrightarrow{}$ CTL
 - For both purposes \rightarrow CTL*
 - Less popular
 - More complicated than PLTL
 - CTL + Fairness properties → FCTL
 - If we use model checking tools, then we have no choice
 - SMV : CTL (CTL*)
 - SPIN : PLTL
 - VIS : CTL / PLTL

2.5 The Expressivity of CTL*

- No logic can express anything not taken into account by the modeling decision made
- CTL* is rather expressive enough, when
 - Properties concern the execution tree of our automata
 - CTL* combinators are sufficiently expressive
 - CTL* is almost always sufficient