
Software Engineering

Part 5. Verification and Validation
- Verification and Validation
- Software Testing

JUNBEOM YOO
jbyoo@konkuk.ac.kr

http://dslab.konkuk.ac.krVer. 1.7
※ This lecture note is based on materials from Ian Sommerville 2006.
※ Anyone can use this material freely without any notification.

Chapter 22.

Verification and Validation

Objectives

• To introduce software verification and validation
• To discuss distinction between software verification and validation
• To describe program inspection process and its role in V & V
• To explain static analysis as verification technique
• To describe the Cleanroom software development process

3Konkuk University

• Verification
– “Are we building the product right?”
– The software should conform to its specification.

• Validation
– "Are we building the right product?”
– The software should do what the user really requires.

Verification vs. Validation

4Konkuk University

• V&V is a whole life-cycle process
– Must be applied at each stage in the software process.

• Two principal objectives
– Discovery of defects in a system
– Assessment of whether or not the system is useful and useable in an

operational situation

• Goals of V&V
– V&V should establish confidence that the software is suitable for purpose.
– Does not mean completely free of defects
– Rather, it must be good enough for its intended use.
– The type of use will determine the degree of confidence that is needed.

V & V Process

5Konkuk University

V & V Confidence

• V&V confidence depends on the system’s purpose, user expectations,
and marketing environment.

– Software function
• The level of confidence depends on how critical the software is to an organization.

– User expectations
• Users may have low expectations of certain kinds of software.

– Marketing environment
• Getting a product to market early may be more important than finding defects in

the program.

6Konkuk University

Static and Dynamic Verification

• Software Inspection
– Analyze static system representation to discover problems (Static Verification)
– May be supplemented by tool-based document and code analysis

• Software Testing
– Exercising and observing product behaviour (Dynamic Verification)
– System is executed with test data and its operational behaviour is observed.

7Konkuk University

Software
Inspection

High-Level
Design

Program Test

Requirements
Specification

Detailed Design
Formal

Specification
Program

Prototype

• Can reveal the presence of errors, NOT their absence
– Can validate non-functional requirements as we can execute the software and

see how it behaves
– Should be used in conjunction with static verification to provide full V&V

coverage

• Types of testing
– Defect testing

• Tests designed to discover system defects
• A successful defect test is one which reveals the presence of defects in a system.
• Covered in Chapter 23

– Validation testing
• Intended to show that the software meets its requirements.
• A successful test is one that shows that a requirements has been properly

implemented.

Program Testing

8Konkuk University

• Defect testing and debugging are different.
– Testing is concerned with establishing the existence of defects in a program.
– Debugging is concerned with locating and repairing these errors.

• Debugging involves formulating a hypothesis about program behaviour
and testing these hypotheses to find the system error.

• Debugging process:

Testing and Debugging

9Konkuk University

Locate error
Design error

repair

Test Results Specification Test Cases

Repair error
Reset

program

• V&V Planning should start early in the development process.
– The plan should identify the balance between static verification and testing.
– Test planning is about defining standards for testing process rather than

describing product tests.

• V-Model for Software Testing

V & V Planning

10Konkuk University

Konkuk University

Requirements
Specification

System
Specification

System
Design

Detailed
Design

Module and
Unit Code

Test

Acceptance
Test Plan

System
Integration
Test Plan

Sub-system
Integration
Test Plan

Acceptance
Test

System
Integration

Test

Sub-system
Integration

Test
Service

Software Test Plan

11Konkuk University

Items to Consider Description

Testing process
A description of the major phases of the testing process. These might be as
described earlier in this chapter.

Requirements
traceability

Users are most interested in the system meeting its requirements and testing
should be planned so that all requirements are individually tested.

Tested items The products of the software process that are to be tested should be specified.

Testing schedule
An overall testing schedule and resource allocation for this schedule. This,
obviously, is linked to the more general project development schedule.

Test recording
procedure

It is not enough simply to run tests. The results of the tests must be systematically
recorded. It must be possible to audit the testing process to check that it been
carried out correctly.

Hardware and software
requirements

section should set out software tools required and estimated hardware utilisation.

Constraints
Constraints affecting the testing process such as staff shortages should be
anticipated in this section.

Software Inspection

• Software inspection involves people examining the source representation
with aim of discovering anomalies and defects.

– Does not require execution of system
– May be used before implementation
– May be applied to any representation of the system (requirements, design,

configuration data, test data, etc.)
– Effective technique for discovering program errors

• Advantages:
– Many different defects may be discovered in a single inspection.
– In testing, one defect may mask another so several executions are required.
– Using domain and programming knowledge, reviewers are likely to have seen

the types of error that commonly arise.

12Konkuk University

Inspection and Testing

• Inspection and testing are complementary and not opposing verification
techniques.

– Both should be used during the V & V process.

• Inspections
– Can check conformance with a specification but not conformance with the

customer’s real requirements
– Cannot check non-functional characteristics such as performance, usability, etc.

13Konkuk University

Program Inspection

• Formalized approach to document reviews
– Intended explicitly for detecting defects (not correction)

• Defects may be
– Logical errors
– Anomalies in the code that might indicate an erroneous condition

(e.g. an uninitialized variable)
– Non-compliance with standards

14Konkuk University

Pre-Conditions for Inspection

• A precise specification must be available.
• Team members must be familiar with the organization standards.
• Syntactically correct code or other system representations must be

available.
• An error checklist should be prepared.
• Management must accept that inspection will increase costs early in the

software process.
• Management should not use inspections for staff appraisal, i.e. finding

out who makes mistakes.

15Konkuk University

Inspection Procedure

• Inspection procedure
– Present system overview to inspection team
– Code and associated documents are distributed to inspection team in

advance
– Inspection takes place and discovered errors are noted
– Modifications are made to repair discovered errors
– Re-inspection may or may not be required

16Konkuk University

Planning Overview
Individual

Preparation
Inspection
Meeting

Rework Follow-Up

Inspection Roles

17Konkuk University

Roles Description

Author or Owner
The programmer or designer responsible for producing the program or
document. Responsible for fixing defects discovered during the inspection
process.

Inspector
Finds errors, omissions and inconsistencies in programs and documents. May
also identify broader issues that are outside the scope of the inspection team.

Reader Presents the code or document at an inspection meeting

Scribe Records the results of the inspection meeting

Chairman or Moderator
Manages the process and facilitates the inspection. Reports process results to
the Chief moderator.

Chief Moderator
Responsible for inspection process improvements, checklist updating, standards
development, etc.

Inspection Checklist

• Checklist of common errors should be used to drive inspections.
– Depend on the programming languages
– Reflect the characteristic errors that are likely to arise in the language

• In general, the weaker type checking language, the larger the checklist.

• Examples of common errors in checklists
– Data faults
– Control faults
– Input/Output faults
– Interface faults
– Storage management faults
– Exception management faults

18Konkuk University

Automated Static Analysis

• Static analyzers are software tools for source text processing.
– Parse the program text and try to discover potentially erroneous conditions
– Very effective as an aid to inspections
– A supplement to inspections but not a replacement

19Konkuk University

Fault Class Static Analysis Check

Data fault

Variables used before initialisation
Variables declared but never used
Variables assigned twice but never used between assignments
Possible array bound violations
Undeclared variables

Control faults
Unreachable code
Unconditional branches into loops

Input/output faults Variables output twice with no intervening assignment

Interface faults

Parameter type mismatches
Parameter number mismatches
Non-usage of the results of functions
Uncalled functions and procedures

Storage
management faults

Unassigned pointers
Pointer arithmetic

Stages of Static Analysis

• All stages generate vast amounts of information, and must be used with
care.

20Konkuk University

Stage Description

Control Flow Analysis Checks for loops with multiple exit or entry points, finds unreachable code, etc.

Data Use Analysis
Detects uninitialized variables, variables written twice without an intervening
assignment, variables which are declared but never used, etc.

Interface Analysis Checks the consistency of routine and procedure declarations and their use

Information Flow
Analysis

Identifies the dependencies of output variables. Does not detect anomalies
itself but highlights information for code inspection or review

Path Analysis
Identifies paths through the program and sets out the statements executed in
that path. It is potentially useful in the review process.

Use of Static Analysis

• Particularly valuable when a language such as C is used.
– C has weak typing and many errors are undetected by the C compiler.

• Less cost-effective for languages like Java
– Java has strong type checking and can therefore detect many errors during

compilation.

Konkuk University 21

Verification through Formal Methods

• Formal methods can be used when a mathematical specification of
system is prepared.

– Ultimate static verification technique : formal verification
– Involve detailed mathematical analysis of the specification
– Develop formal arguments that a program conforms to its mathematical

specification

22Konkuk University

Arguments about Formal Methods

• Advantages:
– Produce mathematical specifications which require detailed analysis of the

requirements and this is likely to uncover errors
– Detect implementation errors before testing, when the program is analyzed

alongside the specification

• Disadvantages:
– Require specialized notations that cannot be understood by domain experts
– Very expensive to develop specification and even more expensive to show

that the program meets that specification
– May be possible to reach the same level of confidence more cheaply using

other V & V techniques

23Konkuk University

• Cleanroom process
– Defect avoidance rather than defect removal
– Based on

• Incremental development
• Formal specification
• Static verification using correctness arguments
• Statistical testing to determine program reliability

Cleanroom Software Development

24Konkuk University

Formally
specify
system

Develop
operational

profile

Define
software

increments

Construct
structured
program

Formally
verify code

Integrate
increment

Test integrate
system

Design
statistical

tests

Characteristics of Cleanroom Process

• Cleanroom
– Formal specification using a state transition model
– Incremental development where the customer prioritises increments
– Structured programming : Limited control and abstraction constructs are used

in the program.
– Static verification using rigorous inspections
– Statistical testing of the system

• Team organization:
– Specification team: Responsible for developing and maintaining the system

specification.
– Development team: Responsible for developing and verifying the software.

The software is NOT executed or even compiled during this process.
– Certification team: Responsible for developing a set of statistical tests to

exercise the software after development. Reliability growth models are used
to determine when reliability is acceptable.

25Konkuk University

• The results of using the Cleanroom process have been very impressive
with few discovered faults in delivered systems.

– Independent assessment shows that the process is no more expensive than
other approaches.

– There were fewer errors than in a 'traditional' development process.

• However, the process is not widely used.
– It is not clear how this approach can be transferred to an environment with

less skilled or less motivated software engineers.

Evaluation of Cleamroom Process

26Konkuk University

Summary

• Verification and validation are not the same thing. Verification shows
conformance with specification; validation shows that the program meets
the customer’s needs.

• Test plans should be drawn up to guide the testing process.
• Static verification techniques involve examination and analysis of the

program for error detection.
• Program inspections are very effective in discovering errors.
• Program code in inspections is systematically checked by a small team to

locate software faults.
• Static analysis tools can discover program anomalies which may be an

indication of faults in the code.
• Cleanroom development process depends on incremental development,

static verification and statistical testing.

27Konkuk University

Konkuk University 28

Chapter 23.

Software Testing

Objectives

• To discuss distinctions between validation testing and defect testing
• To describe principles of system and component testing
• To describe strategies for generating system test cases
• To understand essential characteristics of tools used for test automation

30Konkuk University

Software Testing

• Component testing
– Testing of individual program components
– Usually responsibility of developers
– Tests are derived from the developer’s experience.

• System testing
– Testing of groups of components integrated to create a system or sub-system
– Responsibility of independent testing team
– Tests are based on system specification.

31Konkuk University

Component Testing System Testing

Software developer Independent testing team

Software Testing Process

32Konkuk University

Design test
cases

Prepare test
cases

Test cases Test data Test result

Run program
with test data

Compare result
to test cases

Test reports

Goals of Software Testing

• Validation testing
– To demonstrate to developer and system customer that the software meets its

requirements
– A successful test shows that the system operates as intended.

• Defect testing
– To discover faults or defects in the software where its behavior is incorrect or

not in conformance with its specification
– A successful test is a test that makes the system perform incorrectly and so

exposes a defect in the system.

33Konkuk University

System Testing

• System testing involves integrating components to create a system or
sub-system

• Two phases:
– Integration testing

• Test team has access to system source code.
• System is tested as components are integrated.

– Release testing
• Test team tests a complete system to be delivered as a black-box.

34Konkuk University

Integration Testing

• Involves building a system from its components and testing it for
problems that arise from component interactions.

– Top-down integration
• Develop the skeleton of the system and populate it with components

– Bottom-up integration
• Integrate infrastructure components then add functional components

35Konkuk University

Integration Testing Approaches

• Architectural validation
– Top-down integration testing is better at discovering errors in the system

architecture.

• System demonstration
– Top-down integration testing allows a limited demonstration at an early stage

in the development.

• Test implementation
– Often easier with bottom-up integration testing

• Test observation
– Problems with both approaches
– Extra code may be required to observe tests.

36Konkuk University

Release Testing

• Process of testing a system release that will be distributed to customers
– To increase the supplier’s confidence that the system meets its requirements

• Release testing is usually black-box or functional testing
– Based on the system specification only
– Testers do not have knowledge of the system implementation.

• Release testing may include
– Performance testing
– Stress testing

Black-box testing

37Konkuk University

IeInput test data

OeOutput test result

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Performance Testing

• Release testing may involve testing emergent properties of system.
– Performance
– Reliability

• Performance tests usually involve planning a series of tests where the
load is steadily increased until the system performance becomes
unacceptable.

38Konkuk University

Stress Testing

• Exercises the system beyond its maximum design load.
– Stressing the system often causes defects to come to light.

• Stressing the system to test failure behaviour.
– Systems should not fail catastrophically.
– Stress testing checks for unacceptable loss of service or data too.

• Stress testing is particularly relevant to distributed systems that can
exhibit severe degradation as network becomes overloaded.

39Konkuk University

Component Testing

• Component testing is the process of testing individual components in
isolation.

– Defect testing process

• Components may be
– Individual functions or methods within an object
– Object classes with several attributes and methods
– Composite components with defined interfaces used to access their

functionality

40Konkuk University

Object Class Testing

• Complete test coverage of a class involves
– Testing all operations associated with an object
– Setting and interrogating all object attributes
– Exercising object in all possible states

• Inheritance makes it more difficult to design object class tests
– Since the information to be tested is not localized.

Need to define test cases for all methods
- reportWeather, calibrate,
- test, startup and shutdown

Using a state model, identify sequences of state
transitions to be tested and the event sequences
to cause these transitions

For example:
Waiting -> Calibrating -> Testing -> Transmitting -> Waiting

41Konkuk University

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

• To detect faults due to interface errors or invalid assumptions about
interfaces

– Particularly important for object-oriented development as objects are defined
by their interfaces

• Guidelines for interface testing
– Design tests so that parameters to called procedure are at the extreme ends

of their ranges
– Always test pointer parameters with null pointers
– Design tests which cause the component to fail
– Use stress testing in message passing systems
– In shared memory systems, vary the order in which components are activated

Interface Testing

42Konkuk University

Interface Types

• Interface types
– Parameter interfaces

• Data passes from one procedure to another.

– Shared memory interfaces
• Block of memory is shared between procedures or functions.

– Procedural interfaces
• Sub-system encapsulates a set of procedures to be called by other sub-systems.

– Message passing interfaces
• Sub-systems request services from other sub-systems.

43Konkuk University

Interface Errors

• Interface errors
– Interface misuse

• Calling component calls another component and makes an error in its use of its
interface.

• e.g. parameters in the wrong order

– Interface misunderstanding
• Calling component embeds assumptions about the behaviour of the called

component which are incorrect.

– Timing errors
• Called and calling component operate at different speeds and out-of-date

information is accessed.

44Konkuk University

Test Case Design

• Involves designing the test cases (inputs and outputs) used to test the
system

– To create a set of tests that are effective in validation and defect testing

• Test case design approaches
– Requirements-based testing
– Partition testing
– Structural testing

45Konkuk University

Requirements based Testing

• A general principle of requirements engineering is that requirements
should be testable.

• Requirements-based testing is a validation testing technique where you
consider each requirement and derive a set of tests for that requirement.

46Konkuk University

Partition Testing

• Input data and output results often fall into different classes where all
members of a class are related.

• Each of these classes is an equivalence partition or domain where the
program behaves in an equivalent way for each class member.

– Test cases should be chosen from each partition.

Equivalence partitioning

47Konkuk University

Between 10000 and 99999Less than 10000 More than 99999

9999

10000 50000
100000

99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

• Sometime called white-box testing.
– Derives test cases according to program structure.
– Knowledge of the program is used to identify additional test cases.

• Objective is to exercise all program statements.
– A number of structural testing techniques exist, i.e. path testing
– A number of testing coverage exist.

Structural Testing

48Konkuk University

Test outputs
Component

code

Test data

DrivesTests

Path Testing

• To ensure that all the paths in the programs are executed
– Starting point for path testing is a program flow graph that shows nodes

representing program decisions and arcs representing the flow of control.
– Statements with conditions become nodes in the flow graph.

Flow-graph for
binary search Independent test paths:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14
1, 2, 3, 4, 5, 14
1, 2, 3, 4, 5, 6, 7, 11, 12, 5, …
1, 2, 3, 4, 6, 7, 2, 11, 13, 5, …

Test cases should be derived so that
all of these paths are executed.

A dynamic program analyzer may be
used to check that paths have been
Executed.

49Konkuk University

elemArray [mid] != key

elemArray [mid] > key elemArray [mid] < key

1

2

3

4

5

6

7

8

9

14 10

11

12 13

bottom > top while bottom <= topbottom > top

elemArray
[mid] = key

Test Automation

• Testing workbenches provide a range of tools to reduce the time
required and total testing costs.

– Most are open systems, because testing needs are organization-specific.
– Sometimes difficult to integrate with closed design and analysis workbenches.

Test workbench

50Konkuk University

Test Data
Generator

Specification

OracleTest Data

Test
Predictions

Test Results

Test Manager

Program
being Tested

Simulator

Dynamic
Analyzer

Source Code

Execution
Report

File
Comparator

Report
Generator

Test Result
Report

Summary

• Testing can show the presence of faults in a system, but it cannot prove
there are no remaining faults.

• Component developers are responsible for component testing. System
testing is the responsibility of a separate team.

• Integration testing is testing increments of the system. Release testing
involves testing a system to be released to a customer.

• Interface testing is designed to discover defects in the interfaces of
composite components.

• Equivalence partitioning is a way of discovering test cases - all cases in a
partition should behave in the same way.

• Structural analysis relies on analysing a program and deriving tests from
this analysis.

• Test automation reduces testing costs by supporting the test process
with a range of software tools.

51Konkuk University

