
Software Modeling & Analysis
2009 Spring

g y

- Introduction to SASD
- Structured Analysis
- Structured Design

Lecturer: JUNBEOM YOO
jbyoo@konkuk.ac.kr

ReferencesReferences

M d S d A l i Ed d Y d 1989• Modern Structured Analysis, Edward Yourdon, 1989.
• Introduction to System Analysis and Design: a Structured

Approach, Penny A. Kendall, 1996.pp , y ,

• Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002).
Structured Analysis and Structured Design (SASD) - Class PresentaionStructured Analysis and Structured Design (SASD) Class Presentaion
http://pages.cpsc.ucalgary.ca/~jadalow/seng613/Group/

Konkuk University 2

Structured AnalysisStructured Analysis

S d l i i• Structured analysis is [Kendall 1996]

– a set of techniques and graphical tools
– that allow the analysts to develop a new kind of system specificationy p y p
– that are easily understandable to the users.
– Analysts work primarily with their wits, pencil and paper.

• SASD
– Structured Analysis and Structured Design

Konkuk University 3

History of SASDHistory of SASD

D l d i h l 1970 b D M Y d d• Developed in the late 1970s by DeMarco, Yourdon and
Constantine after the emergence of structured programming.

• IBM incorporated SASD into their development cycle in the late
1970s and early 1980s.

• Yourdon published the book “Modern Structured Analysis” in
1989.

• The availability of CASE tools in 1990s enabled analysts to
d l d dif th hi l SASD d ldevelop and modify the graphical SASD models.

Konkuk University 4

Philosophy of SASDPhilosophy of SASD

A l di id l l bl i ll• Analysts attempt to divide large, complex problems into smaller,
more easily handled ones.

“Divide and Conquer”

• Top-Down approach

• Functional view of the problem

• Analysts use graphics to illustrate their ideas whenever possible.

• Analysts must keep a written record.

Konkuk University 5

Philosophy of SASDPhilosophy of SASD

“ Th f SASD i d l f l hi h li• “ The purpose of SASD is to develop a useful, high quality
information system that will meet the needs of the end user.
[Yourdon 1989] “

Konkuk University 6

Goals of SASDGoals of SASD

I li d d h i k f f il• Improve quality and reduce the risk of system failure.

• Establish concrete requirements specifications and completeEstablish concrete requirements specifications and complete
requirements documentations.

• Focus on reliability, flexibility and maintainability of system.

Konkuk University 7

Elements of SASDElements of SASD

Essential Model

Environmental
Model

Behavioral
Model

Implementation Model

Konkuk University 8

Essential ModelEssential Model

M d l f h h d• Model of what the system must do

• Not define how the system will accomplish its purposeNot define how the system will accomplish its purpose.

• A combination of environmental and behavioral models

Essential Model

Environmental
Model

Behavioral
ModelModel Model

Konkuk University 9

Environmental ModelEnvironmental Model

D fi h f h d• Defines the scope of the proposed system.

• Defines the boundary and interaction between the system andDefines the boundary and interaction between the system and
the outside world.

• Composed of
– Statement of purpose
– System Context diagramSystem Context diagram
– Event list

Konkuk University 10

Behavioral ModelBehavioral Model

M d l f h i l b h i d d i i f h• Model of the internal behavior and data entities of the system

• Models functional requirementsModels functional requirements.

• Composed of
– Data Dictionary
– Data Flow Diagram (DFD)
– Entity Relationship Diagram (ERD)– Entity Relationship Diagram (ERD)
– Process Specification
– State Transition Diagram

Konkuk University 11

Implementation ModelImplementation Model

M h f i l i h d d f• Maps the functional requirements to hardware and software.
• Minimizes the cost of the development and maintenance.
• Determines which functions should be manual vs automatedDetermines which functions should be manual vs. automated.
• Can be used to discuss the cost-benefits of functionality with

user/stakeholders.
• Defines the Human-Computer interface.
• Defines non-functional requirements.

• Composed of
– Structure Charts

Konkuk University 12

SASD ProcessSASD Process

ActivityActivity

Statement of

Environmental Model

Statement of
Purpose

System Context
Diagram

Event List Behavioral Model

Data Dictionary

ERD

DFD Process Specification

State Transition
Diagram

Implementation
Model

Structured Chart

Konkuk University 13

Time

Statement of PurposeStatement of Purpose

A l d i l d i i f h f h• A clear and concise textual description of the purpose for the
system to develop

• It should be deliberately vague.y g
• It is intended for top level management, user management and

others who are not directly involved in the system.

Konkuk University 14

Statement of Purpose RVC ExampleStatement of Purpose – RVC Example

Robot Vacuum Cleaner (RVC)

- An RVC automatically cleans and mops household surface.
- It goes straight forward while cleaning.

If its sensors found an obstacle it stops cleaning turns aside and- If its sensors found an obstacle, it stops cleaning, turns aside, and
goes forward with cleaning.

- If it detects dust, power up the cleaning for a while
- We do not consider the detail design and implementation on HW

controls.
- We only focus on the automatic cleaning function.

Konkuk University 15

System Context DiagramSystem Context Diagram

Hi hli h h b d b h d id ld• Highlights the boundary between the system and outside world.
• Highlights the people, organizations and outside systems that

interact with the system under development.y p

• A special case of DFD

Konkuk University 16

System Context Diagram NotationSystem Context Diagram - Notation

Process : represents the proposed systemProcess : represents the proposed system

Terminator : represents the external entities

Flow : represents the in/out data flows

Konkuk University 17

System Context Diagram RVC ExampleSystem Context Diagram – RVC Example

Motor

C

Motor

RVC
Control

Sensor

Cleaner

Konkuk University 18

Event ListEvent List

A li f h / i li id f h hi h i• A list of the event/stimuli outside of the system to which it must
respond.

• Used to describe the context diagram in details.g

• Types of events
– Flow-oriented event : triggered by incoming data
– Temporal event : triggered by internal clockTemporal event : triggered by internal clock
– Control event : triggered by an external unpredictable event

Konkuk University 19

Event List RVC ExampleEvent List – RVC Example

Input/ Output Event Description

Front Sensor Input Detects obstacles in front of the RVC

Left Sensor Input Detects obstacles in the left side of the RVC periodicallyLeft Sensor Input Detects obstacles in the left side of the RVC periodically

Right Sensor Input Detects obstacles in the right side of the RVC periodically

Dust Sensor Input Detects dust on the floor periodically

Direction
Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Clean Turn off / Turn on / Power-Up

Konkuk University 20

Context Diagram for RVC

System Context Diagram RVC ExampleSystem Context Diagram – RVC Example

Motor

C

Motor
Front Sensor Input
Left Sensor Input
Right Sensor Input
Dust Sensor Input

Direction

RVC
Control

Sensor

Clean

Cleaner

Konkuk University 21

Data Flow Diagram (DFD)Data Flow Diagram (DFD)

P id f f i l d i i• Provides a means for functional decomposition.
• Composed of hierarchies(levels) of DFDs.

• Notation (A kind of CDFD)

Data Process

Data Flow

Control Process

T i

Control Flow

Terminator

Data Store

Konkuk University 22

DFD Level 0 RVC ExampleDFD Level 0 – RVC Example

Front Sensor Motor
Front Sensor Input

RVC

MotorDirection

Left Sensor Left Sensor
Input RVC

Control
0

Clean

Right Sensor

p

Right Sensor
Input

CleanerDust Sensor Dust Sensor Input

Tick

Digital Clock

Konkuk University 23

DFD Level 0 RVC ExampleDFD Level 0 – RVC Example

Input/ Output

(A kind of) Data Dictionary

Input/ Output
Event Description Format / Type

Front Sensor Input Detects obstacles in front of the RVC True / False , Interrupt

Left Sensor Input Detects obstacles in the left side of the RVC periodically True / False , Periodic

Right Sensor Input Detects obstacles in the right side of the RVC periodically True / False , Periodic

Dust Sensor Input Detects dust on the floor periodically True / False , Periodic

Direction
Direction commands to the motor
(go forward / turn left with an angle / turn right with an angle)

Forward / Left / Right / Stop

Clean Turn off / Turn on / Power-Up On / Off / Up

Konkuk University 24

DFD Level 1 RVC ExampleDFD Level 1 – RVC Example

Front Sensor Input

Obstacle
Left Sensor
Input Cleaner &

Direction

& Dust
Detection

1

p

Right Sensor
Input

Obstacle & Dust
Location

Motor
Control

2
Clean

Dust Sensor Input

Tick

Konkuk University 25

DFD Level 2 RVC ExampleDFD Level 2 – RVC Example

Front Sensor Input Front
Sensor

Interface
1.1

Front Obstacle

Determine
Obstacle
L ti

Left Sensor Input

Obstacle

Left
Sensor

f

Left Obstacle

Location
1.5

LocationInterface
1.2

Ri h

Tick

Right Sensor Input
Right
Sensor

Interface
1.3

Tick

Right Obstacle

Determine
Dust Dust

Dust Sensor Input

Dust
Sensor

Interface

Tick Dust
Existence

1.6
Dust Existence

Dust
Existence

Konkuk University 26
Tick

1.4

DFD Level 2 RVC ExampleDFD Level 2 – RVC Example

Direction

Obstacle
Location

Motor Command
Motor

Interface
2.2

Dust

Main
Control

2.1
Dust

Existence

Cleaner Command
Cleaner
Interface

2.3

Tick

Clean

Tick

Konkuk University 27

DFD Level 3 RVC ExampleDFD Level 3 – RVC Example

Motor CommandTick Move
Forward

2 1 2Enable

Obstacle
Location

Controller

2.1.2

M t C d

Disable

Trigger

Dust
Existence

2.1.1 Turn Left
2.1.3

Motor Command
gg

Trigger
Tick

Tick

Turn
Right
2 1 4

Motor Command

Cleaner Command 2.1.4

Konkuk University 28

DFD Level 4 RVC ExampleDFD Level 4 – RVC Example

State Transition Diagram for Controller 2 1 1

/ Enable “Move Forward”, Cleaner Command (On)

State Transition Diagram for Controller 2.1.1

Move
Forward

Tick [F && !R]Tick [F && !L]
/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Right”

Tick
/ Enable “Move Forward”

/ Disable “Move Forward”,
Cleaner Command (Off),
Trigger “Turn Left”

Tick
/ Enable “Move Forward”

Turn RightTurn Left

/ Enable Move Forward ,
Cleaner Command (On)

/ Enable Move Forward ,
Cleaner Command (On)

St

Tick [F && L && R]
/ Disable “Move Forward”,
Cleaner Command (Off),

Many problems in this model:
1 “Stop” state

Konkuk University 29

Stop 1. Stop state
2. Do not consider “Dust”
3. …

DFD RVC ExampleDFD – RVC Example

Konkuk University 30

Process SpecificationProcess Specification

Sh d il hi h i li d b h i DFD• Shows process details which are implied but not shown in a DFD.
• Specifies the input, output, and algorithm of a module in a DFD.
• Normally written in pseudo-code or table formatNormally written in pseudo code or table format.

• Example – “Apply Payment”
For all payments

If payment is to be applied today or earlier and has not yet been appliedIf payment is to be applied today or earlier and has not yet been applied
Read account
Read amount
Add amount to account’s open to buy
Add amount to account’s balanceAdd amount to account s balance
Update payment as applied

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

Konkuk University 31

Process Specification RVC ExampleProcess Specification – RVC Example

Reference No. 1.2

Name Left Sensor Interface

Input Left Sensor Input (+Data structure if possible) , Tick

O t t L ft Ob t l (D t t t)Output Left Obstacle (+Data structure)

Process Description
“Left Sensor Input” process reads a analog value of the left sensor
periodically, converts it into a digital value such as True/False, and
assigns it into output variable “Left Obstacle.”

Konkuk University 32

Data DictionaryData Dictionary

D fi d l id diff i i• Defines data elements to avoid different interpretations.
• Not used widely in recent years.

• Example [Yourdon 1989]

A: What’s a name?
B: Well, you know, it’s just a name. It’s what we call each other.
A: Does that mean you can call them something different when you are angry or

happy?
B N f t A i th ll th tiB: No, of course not. A name is the same all the time.
A: Now I understand. My name is 3.141592653.
B: Oh your name is PI…But that’s a number, not a name. But what about your

first and last name Or is your first name 3 and your last name 141592653?first and last name. Or, is your first name 3 and your last name 141592653?

Konkuk University 33

Data DictionaryData Dictionary

N i• Notation
– = : is composed of
– + : and
– () : optional element
– { } : iteration
– [] : selects one of the elements list
– | : separation of elements choice
– ** : comments
– @ : identifier for a store (unique ID)q

Konkuk University 34

Data DictionaryData Dictionary

E l• Example
– Element Name = Card Number
– Definition = *Uniquely identifies a card*
– Alias = None
– Format = LD+LD+LD+LD+SP+LD+LD+LD+LD+SP+

LD+LD+LD+LD+SP+LD+LD+LD+LD
– SP = “ ” *Space*
– LD = {0-9} *Legal Digits*
– Range = 5191 0000 0000 0000 ~ 5191 9999 9999 9999

Konkuk University 35

Entity Relationship Diagram (ERD)Entity Relationship Diagram (ERD)

A hi l i f h d l f• A graphical representation of the data layout of a system at a
high level of abstraction

• Defines data elements and their inter-relationships in the system.p y
• Similar with the class diagram in UML.

• Notation (Original)

Associated Object

Data Element Cardinality – Exactly one

Cardinality – Zero or one

Relationship
Cardinality – Mandatory Many

Cardinality – Optional Many

Konkuk University 36

Entity Relationship Diagram ExampleEntity Relationship Diagram - Example

Konkuk University 37

State Transition DiagramState Transition Diagram

Sh h i d i b• Shows the time ordering between processes.
• More primitive than the Statechart diagram in UML.
• Different from the State transition diagram used in DFDDifferent from the State transition diagram used in DFD.
• Not widely used.

• Notation

TransitionsObjects

Konkuk University 38

State Transition Diagram ExampleState Transition Diagram - Example

Konkuk University 39

PracticePractice

C l h RVC l i i d il• Complete the RVC analysis in more details.
– Consider the “Dust”.
– You may have several controller.y

Konkuk University 40

Structure ChartsStructure Charts

S d D i (SD)• Structured Design (SD)

• Functional decomposition (Divide and Conquer)Functional decomposition (Divide and Conquer)
– Information hiding
– Modularity
– Low coupling
– High internal cohesion

• Needs a transform analysis.

Konkuk University 41

Structured Charts Transform AnalysisStructured Charts – Transform Analysis

Afferent Flow
(Input)

Efferent Flow
(Output)

Central Transformation
(Control)

Konkuk University 42

Structured Charts Transform AnalysisStructured Charts – Transform Analysis

Input
(Afferent Flo)

Process
(C t l T f ti)

Output
(Efferent Flo)(Afferent Flow) (Central Transformation) (Efferent Flow)

Control

ProcessInput Output

Konkuk University 43

Structured Charts NotationStructured Charts – Notation

Basic Notation [Yourdon 1989]

Modules

Basic Notation [Yourdon 1989]

Variations

Library modules

Data module

y

Module call

Asynchronous
module call

Data Flow

Iteration

Control Flow

Decision

Konkuk University 44

Structured Charts ExampleStructured Charts - Example

Zhou Qun, Kendra Hamilton, and Ibrahim Jadalowen (2002)

Konkuk University 45

Structured Charts RVC Example (Basic)Structured Charts – RVC Example (Basic)

i

Controller

Main

Controller

Obstacle Location Dust Existence

Determine
Obstacle Location

Determine
Dust Existence

Enable
Disable

Trigger Trigger

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface

Move Forward Turn Left Turn Right

Konkuk University 46

Structured Charts RVC Example (Advanced)Structured Charts – RVC Example (Advanced)

i

Controller

Main

Controller

Obstacle Location

Determine
Obstacle Location

Determine
Dust Existence

Dust Existence

Enable
Disable

Trigger

Trigger

Front Sensor
Interface

Left Sensor
Interface

Right Sensor
Interface

Dust Sensor
Interface

Move Forward Turn Left Turn Right

Konkuk University 47

Pros of SASDPros of SASD

H di i il ll i i j• Has distinct milestones, allowing easier project management
tracking.

• Very visual – easier for users/programmers to understandy /p g
• Makes good use of graphical tools
• Well known in industry
• A mature technique
• Process-oriented way is a natural way of thinking
• Flexible• Flexible
• Provides a means of requirements validation
• Relatively simple and easy to ready p y

Konkuk University 48

Pros of SASDPros of SASD

S C Di• System Context Diagram
– Provides a black box overview of the system and the environment

• Event List
– Provides a guidance for functionality
– Provides a list of system inputs and outputsProvides a list of system inputs and outputs
– A means of requirements summarization
– Can be used to define test cases (as we will see soon.)

• Data Flow Diagram (DFD)
– Ability to represent data flows

F ti l d iti (di id d)– Functional decomposition (divide and conquer)

Konkuk University 49

Pros of SASDPros of SASD

D Di i• Data Dictionary
– Simplifies data requirements
– Used at high or low level analysis

• Entity Relationship Diagram (ERD)
– Commonly used and well understoodCommonly used and well understood
– A graphical tool, so easy to read by analysts
– Data objects and relationships are portrayed independently from the process
– Can be used to design database architectureCan be used to design database architecture
– Effective tool to communicate with DBAs

• Process Specification• Process Specification
– Expresses the process specifications in a form that can be verified

Konkuk University 50

Pros of SASDPros of SASD

S T i i Di• State Transition Diagrams
– Models real-time behavior of the processes in the DFD

• Structure Charts
– Modularity improves the system maintainability
– Provides a means for transition from analysis to designProvides a means for transition from analysis to design
– Provides a synchronous hierarchy of modules

Konkuk University 51

Cons of SASDCons of SASD

I f i l i• Ignores non-functional requirements.
• Minimal management involvement
• Non-iterative – waterfall approachNon iterative waterfall approach
• Not enough use-analysts interaction
• Does not provide a communication process with users.
• Hard to decide when to stop decomposing.
• Does not address stakeholders’ needs.

D k ll i h Obj O i d i l• Does not work well with Object-Oriented programming languages.

Konkuk University 52

Cons of SASDCons of SASD

S C Di• System Context Diagram
– Does not provide a specific means to determine the scope of the system.

• Event List
– Does not define all functionalities.
– Does not define specific mechanism for event interactions.Does not define specific mechanism for event interactions.

• Data Flow Diagram (DFD)
W k di l f i t/ t t d t il– Weak display of input/output details

– Confused for users to understand.
– Does not represent time.

N i li d i– No implied sequencing
– Assigns data stores in the early analysis phase without much deliberation.

Konkuk University 53

Cons of SASDCons of SASD

D Di i• Data Dictionary
– No functional details
– Formal language is confusing to users.

• Entity Relationship Diagram (ERD)
– May be confused for users due to its formal notation.May be confused for users due to its formal notation.
– Become complex in large systems.

• Structure Chart• Structure Chart
– Does not work well for asynchronous processes such as networks.
– Could be too large to be effectively understood with larger programs.

Konkuk University 54

Cons of SASDCons of SASD

P S ifi i• Process Specification
– They may be too technical for users to understand.
– Difficult to stay away from the current “How to implement.”

• State Transition Diagram
– Explains what action causes a state change, but not when or how often.Explains what action causes a state change, but not when or how often.

Konkuk University 55

When to use SASD?When to use SASD?

W ll k bl d i• Well-known problem domains
• Contract projects where SRS should be specified in details
• Real-time systemsReal time systems
• Transaction processing systems
• Not appropriate when time to market is short.

I• In recent years,
SASD is widely used in developing real-time embedded systems.

Konkuk University 56

SASD vs OOADSASD vs. OOAD

Si il i i• Similarities
– The both have started off from programming techniques.
– The both use graphical design and tools to analyze and model requirements.
– The both provide a systematic step-by-step process for developers.
– The both focus on the documentation of requirements.

• Differences
– SASD is process-oriented.
– OOAD is data(object)-orientedOOAD is data(object) oriented.
– OOAD encapsulates as much of the system’s data and processes into objects,
– While SASD separates them as possible as it can.

Konkuk University 57

Class QuestionsClass Questions

Wh i i i ?• What is your opinion on ?
– Does it reduce maintainability costs?
– Is it useful?
– Is it efficient?
– Is it appropriate for E-commerce(business) development?

• What is SASD’s target domain?

Konkuk University 58

SummarySummary

SASD i d i f l i h i• SASD is a process-driven software analysis technique.
• SASD has a long history in the industry and it is very mature.
• It provides a good documentation for requirementsIt provides a good documentation for requirements.
• In recent years, it is widely used for developing real-time

embedded system’s software.

SASD

Konkuk University 59

SASD

Final Presentation (OOAD SASD)Final Presentation (OOAD vs. SASD)

E li h i• English presentation

• Compare OOAD with SASD using your elevator controller teamCompare OOAD with SASD using your elevator controller team
project.

– Pros and Cons of SASD and OOAD for developing elevator controllers
respectivelyrespectively

– Your opinion and suggestion!!!

Konkuk University 60

