Introduction to Formal Methods

Part L. Principles and Techniques

Lecturer: JUNBEOM YOO
Jbyoo@konkuk.ac.kr

Text

— System and Software Verification : Model-Checking Techniques and Tools

In this book, you will find enough theory
— to be able to assess the relevance of the various tools,
— to understand the reasons behind their limitations and strengths, and
— to choose the approach currently best suited for your verification task.

Part I : Principles and Techniques
Part II : Specifying with Temporal Logic
Part IIl : Some Tools

(\

Vv

1 I‘l'f\ ~~N
LUl 1a

I IJ L. A Ld

Model checking consists in verifying some properties of the model of a
system.

Modeling of a system is difficult
— No universal method exists to model a system
— Best performed by qualified engineers

This chapter describes a general model which serves as a basis.

Organization of Chapter 1
— Introductory Examples
— A Few Definitions
— A Printer Manager
— A Few More Variables
— Synchronized Product
— Synchronization by Messaging Passing
— Synchronization by Shared Variables

\7 V4 Vv

Intr OyElllp

1 1 A
1.1 111 U

7\ f'"l'
1V CL

* (Finite) Automata
— Best suited for verification by model checking techniques
— A machine evolving from one state to another under the action of transitions
— Graphical representation

An automate model of a digital watch (24x60=1440 states)

Konkuk University

dec

A, : @ module 3 counter

Konkuk University

« A digicode door lock example
— Controls the opening of office doors

— The door opens upon the keying in of the correct character sequence, irrespective of any
possible incorrect initial attempts.

— Assumes
* 3keys A B and C
» Correct key sequence : ABA

B,C

8-
N

B,C

Konkuk University

Two fundamental notations

— execution

» A sequence of states describing one possible evolution of the system
o Ex. 1121, 12234, 112312234 <« 3 different executions

— execution tree

» A set of all possible executions of the system in the form of a tree

e Ex. 1
11, 12
111, 112, 121, 122, 123
1111, 1112, 1121, 1122, 1123, 1211, 1212, 1221, 1222, 1223, 1231, 1234

AN A NN

1 2 1 2 3 Konkufk Univegsity 1 2 3 1 4

We associate with each automaton state a number of elementary

properties which we know are satisfies, since our goal is to verify system
model properties.

Properties

— Elementary property

» (atomic) Proposition
» Associated with each state
* True or False in a given state

— Complicated property

» Expressed using elementary properties
* Depends on the logic we use

Konkuk University

« For example,
« P,:an A has just been keyed in
* Pg:an B has just been keyed in
 Pc:an C has just been keyed in
* pred, : the proceeding state in an execution is 2
» pred; : the proceeding state in an execution is 3

* Properties of the system to verify
1. If the door opens, then A, B, A were the last three letters keyed in, in that order.
2. Keying in any sequence of letters ending in ABA opens the door.

» Let's prove the properties with the propositions

Konkuk University

 An automaton is a tuple A=<Q,E, T, qg | > in which
— Q: a finite set of states
— E : the finite set of transition labels
— T £QxE xQ: the set of transitions
— (p : the initial state of the automaton
— | : the mapping each state with associated sets of properties which hold in it

— Prop = {P,, P, ...} :a set of elementary propositions

A=<Q,ET,qyl>

- Q=1{12 3,4}

- E={AB,C}

- T={1A2), (18B]1), (1C1),
(2,A2), (2B,3), (2C1),
(3,A4), (3B1), (3,C1)}

— q0=1

l—-o
| 2 = {P,}
3 — {Pg pred,}
4 — {P,, preds}

B, (Konkuk University 11

Formal definitions of automaton’s behavior

a path of automaton A:
— A sequence ¢ finite or infinite, of transitions which follows each other
- Ex3%15%25%2
a /ength of a path o
- | ol
— 0o's potentially infinite number of transitions: | | € N U {w}
a partial execution of A :
— A path starting from the initial state q,
- Ex1525%2%3
a complete execution of A :
— An execution which is maximal.
— Infinite or deadlock

a reachable state :
— A state is said to be reachable,
— if a state appears in the execution tree of the automaton, in other words,
— if there exists at least one execution in which it appears.

Py

k '
Konkuk Univew 12

B,C

Dy
Pl

r-'l-
M
-5
>
>

1T 2
1.O

E
ch

Propositions

A printer shared by two users W = Waiting
P = Printing now
end, endg R = Rest for now

Konkuk University 13

A=<Q,ET,qyl>

Q=401 23417567}

E = {req, reqg beg, begg end, endg}

T = { (0,requl), (Oreqg.2), (1,reqg,3), (1,begub), (2,reqpu3).

Jo =

(2,begg,7), (3,bega5), (3,begg4), (4,endgl), (5.end,,2),
(6,end,,0), (6,reqg,5), (7,endg,0), (7,req,4) }

0
[0 Ry Rg}, 1 — {W, Ry}

2 - {RAI WB} 1 3 - {WAI WB}
4 - {WAI PB} /] 5 - {PAI WB}

A printer shared by two users

6 — {Po Rg} . 7 = {Ry Pg}

Konkuk University

5 endy R = Rest for now
‘B
reqp
A

Propositions
W = Waiting
P = Printing now

14

Properties of the printer manager to verify

We would undoubtedly wish to prove that any printing operation is
preceded by a print request.

« In any execution, any state in which P, holds is preceded by a state in which the
proposition W, holds.

Similarly, we would like to check that any print request is ultimately
satisfied. (= fairness property)

« In any execution, any state in which W, holds is followed by a state in which the
proposition P, holds.

Model checking techniques allow us to prove automatically that
e Property 1 is TRUE, and
* Property 2 is FALSE, for example 01 341341341341 .. (counterexample)

\AIJ “A

I:f\ 7\ A\ \I"\If'.
ICVvV IVIVUIC vdi

Y e
diJ

II\(“
1ICO

« It is often convenient to let automata manipulate state variables.

— Control : states + transitions
— Data : variables (assumes finite number of values)

* An automaton interacts with variables in two ways:

— Assignments
— Guards

if ctr < 3

if ctr < 3
B, C A
ctro=ctr +1 ctri=ctr +1 if ctr < 3 (guard)

B, C (transition label)
ctr:=ctr + 1 (assignment)

()
N/

—

ctr:=0
if ctr < 3
C _ if ctr = 3
ctr:=ctr + 1 A, C if ctr = 3
ctre=ctr+1 B, C
if ctr = 3 ctre=ctr+1
B, C
ctr:=ctr+1

The digicode with guarded transitions

Konkuk University 17

o It is often necessary, in order to apply model checking methods,
e to unfold the behaviors of an automaton with variables
* into a state graph

« in which the possible transitions appear and the configurations are clear marked.

« Unfolded automaton = Transition system
* has global states
« transitions are no longer guarded
* no assignments on the transitions

ifctr=3
B C
ctri=ctr+ 1

ifctr <3
A
ctr:=ctr+1

ifctr < 3 (guard)
B,C (transition label)
ctr:= ctr + 1 (assignment)

ifctr =13
B, C
ctri=ctr+ 1

Unfolding

The digicode with error counting
(Unfolded automaton)

Konkuk University

19

\Wia\ If'\

C ~ s Y e A n AAII
SYHCHTOUTI U U

-7 N\ f'l'
VAS rio CL

1
1.J

» Real-life programs or systems are often composed of modules or

subsystems.
— Modules/Components > (composition) - Overall system
— Component automata -> (synchronization) > Global automaton

« Automata for an overall system

— Often has so many global states
— Impossible to construct it directly (State explosion problem)

Tiai~ ~ArAI~AciFIiAIN VATAY I

- 1VWOU LUIII[JUDILIUII VV(J_YD
* With synchronization
* Without synchronization

* An example without synchronization
— A system made up of three counters (modulo 2, 3, 4)
— They do not interact with each other
— Global automaton = Cartesian product of three independent automata

2*3*4 = 24 states
3*3*3 - 1 = 26 transitions per a state
(Inc, Dec, -)

> 24 * 26 = 624 transitions

Konkuk University 21

* An example with synchronization
— A number of ways depending on the nature of the problem
— Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Ex. Allowing updates in only one counter at a time (24*3*2=144 transitions)

* Synchronized product
— A way to formally express synchronizing options
— Synchronized product = Component automata + Synchronized set

- A XA x ... x A, : Component automata

- A=<Q1E1qu01|>

- Q=Q; xQyx .. x Q
- E= T[I(EU{D)

1<1sn

1 ((ql’ ceee s qn)’ (el,) en)’ (q,l’ e q’n)) | for all i’
(e;="-"and q;=qy or (¢ # - and (qg;, &, q) € T;)

- qO = (qoyl 9 cee s qO,n)
- I((ql PIRRE) qn)) zlgsnli (q|)

- Sync <[] (E; U {-}) :Synchronized set

1<i<n

* An example with synchronization

— Ex. Allowing only “inc, inc, inc” and “dec, dec, dec” (24*2=48 transitions)
— Strongly coupled version of modular counters

— Sync = { (in¢, inc, inc), (dec, dec, dec) }

T ((Qg -5 0p), (15 oo 56, (@', -,) | (e, ..., 8) € Sync
(e;="-"andq;=q)or(e+ - and (q;,€,q;) € T;)

12 states

12 transitions
(inc, inc, inc) (dec, dec, dec)

23

Reachable states
— Reachability depends on the synchronization constraints

coupl
Rearranged automaton A,,, — modulo 12 counter

Reachability graph E Fm : I ——
— Obtained by deleting non-reachable states @‘L@ "L@ **—e&@ ﬁ—-@
— Many tools to construct R.G. of synchronized product of automata

— Reachability is a difficult problem
— State explosion problem

Konkuk University

24

\llf'\f‘lf'\lf‘

[-: C 7N\ ‘l' 7~ N\ \Al:
LU oylHCIhnoull LIVIT VVI

Q)

Vg

wn,
Q

Zd

g
L.

« Message passing framework
— A special case of synchronized product
— Im : Emitting a message
— ?m: Reception of the message

— Only the transition in which !m and ?m pairs are executed simultaneously is permitted.

— Synchronous communication
» Control/command system
— Asynchronous communication
+ Communication protocol (using channel/buffer)

e Smallish elevator
— Synchronous communication (message passing)
— One cabin
— Three doors (one per floor)
— One controller
— No requests from the three floors

The controller

Iclose_2
@A
lopen_2

?down _ ?up
The cabin

up

?down

?close._i ?open_i

?close._i

The it door
Konkuk University

* An automaton for the smallish elevator example
— Obtained as the synchronized product of the five automata

— (door 0, door 1, door 2, cabin, controller)

— Sync = { (open_l, -, -, -, lopen_1), (?close_1, -, -, -, !close_1),
(-, ?open_2, -, -, lopen_2), (-, ?close_2, -, -, Iclose_2),
(-, -, Popen_3, -, lopen_3), (-, -, ?close_3, -, Iclsoe_3),
(-, -, -, ?down, |down), (- - - ?up, lup) }

* Properties to check

e (P1) The door on a given floor cannot open while the cabin is on a different
floor.

e (P2) The cabin cannot move while one of the door is open.

« Model checker
e Can build the synchronized product of the 5 automata.
» Can check automatically whether properties hold or not.

\ Wi a\ le'\ﬂ eV &\
/ y 2lidIt

AR YARIRL F'onNiZa U |

\' auvito

Another way to have components communicate with each other
Share a certain number of variables
Allow variables to be shared by several automata

Ex. The printer manager in Chapter 1.3

— Problem: fairness property is not satisfied

) Propositions
A printer shared by two users W = Waiting
P = Printing now
R = Rest for now

28

The printer manager synchronized with a shared variable
— Shared variable: turn

Fairness property: Any print request is ultimately satisfied.
- No state of the form (y, t, -) is reachable.
- TRUE in the model.

- But, this model forbids either user from printing twice in a row.

The user A
if turn=A, print, ,
turn:=B A
turn:=A turn:=B
The user B . .
if turn=B, printg

y

Konkuk University 29

= turn:=A H

« Printer manager : A complete version with 3 variables by peterson]
— 1 arequest from user A
— rg: a request from user B
— turn : to settle conflicts
— Satisfies all our properties

The user A The user B

r, .= false turn:=B rg .= false turn:=A

if turn = A, print, if turn = B, printg

if rg = false, print, if ry = false, printg

AAXB: < Q! Es T; qo; I >

- Q=AXBXr,Xx rgx turn
4 x 4 x 2 x 2 x 2=128 states
(only 128 reachable states)

Konkuk University

