Introduction to Formal Methods

Chapter 3. Model Checking

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr

3. Model Checking

- Motivation:
 - Describe the principles underlying the algorithms used for model checking
 - The algorithm
 - Can find out whether a given automaton satisfies a given temporal formula
 - Different algorithms for CTL and PLTL
- Organization of Chapter 3
 - Model Checking CTL
 - Model Checking PLTL
 - The State Explosion Problem

3.1 Model Checking CTL

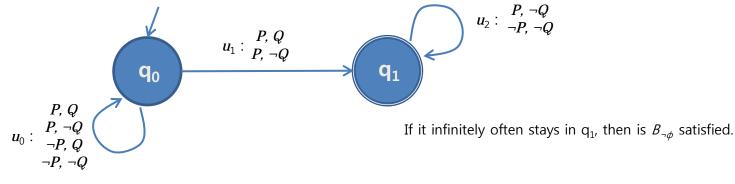
- Model checking algorithm for CTL
 - Developed in 1980s
 - Runs in time linear in each of its components (automaton and CTL formula)
 - Relies on the fact that CTL can only express state formulas
- Basic principles
 - procedure <u>marking</u>
 - Starting from a CTL formula ϕ
 - Mark for each state q of the automaton and for each sub-formula ψ of ϕ ,
 - Whether ψ is satisfied in state q
- Correctness of the algorithm
 - ...
 - Hence, the marking of q is correct.
- Complexity of the algorithm
 - Model checking " does $A,q_0 \notin \phi$? " for a CTL formula ϕ
 - can be solved in time O($|A| \times |\phi|$)
 - O(|A|): for marking the automaton
 - $O(|\phi|)$: for each sub-formula in ϕ
 - Linear!!!

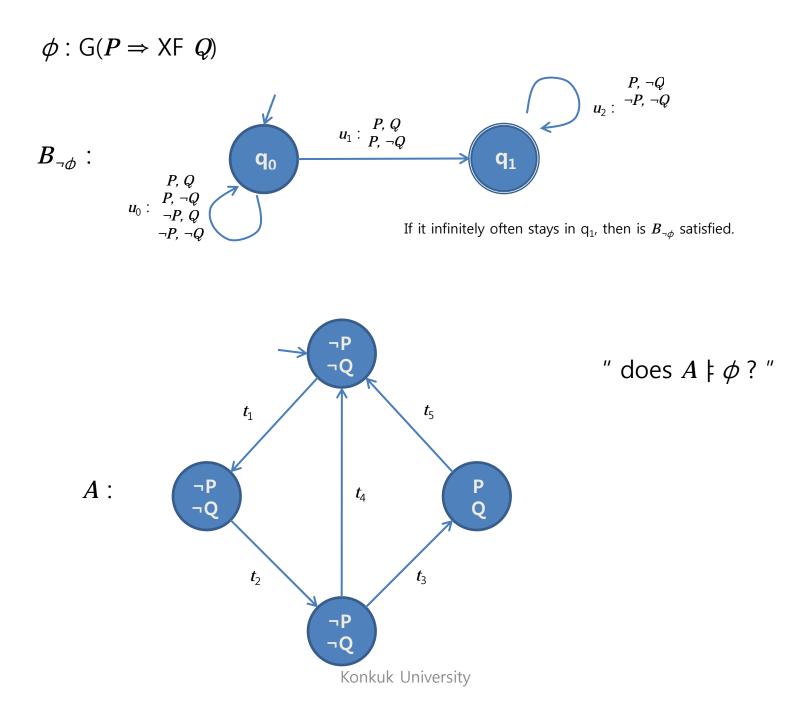
```
procedure marking(phi)
case 1: phi = P
  for all q in Q, if P in 1(q) then do q.phi := true,
                                  else do q.phi := false.
case 2: phi = not psi
  do marking(psi);
  for all q in Q, do q.phi := not(q.psi).
case 3: phi = psi1 /\ psi2
  do marking(psi1); marking(psi2);
  for all q in Q, do q.phi := and(q.psi1, q.psi2).
case 4: phi = EX psi
  do marking(psi);
                                                                  case 6: phi = A psi1 U psi2
                                                                    do marking(psi1); marking(psi2);
  for all q in Q, do q.phi := false;
                                           /* initialisation */
                                                                                                   /* L: states to be processed */
                                                                    L := {}
  for all (q,q') in T, if q'.psi = true then do q.phi := true.
                                                                    for all q in Q,
                                                                      q.nb := degree(q); q.phi := false;
                                                                                                             /* initialisation */
case 5: phi = E psi1 U psi2
                                                                    for all q in Q, if q.psi2 = true then do L := L + { q };
  do marking(psi1); marking(psi2);
                                                                    while L nonempty {
  for all q in Q,
                                                                                                                /* must mark q */
                                                                      draw q from L;
    q.phi := false; q.seenbefore := false;/* initialisation */
                                                                      L := L - \{q\};
  L := \{\};
                                /* L: states to be processed */
                                                                      q.phi := true;
  for all q in Q, if q.psi2 = true then do L := L + { q };
                                                                                                   /* q' is a predecessor of q */
                                                                      for all (q',q) in T {
  while L nonempty {
                                                                                                                  /* decrement */
                                                                    q'.nb := q'.nb - 1;
    draw q from L;
                                              /* must mark q */
                                                                   if (q'.nb = 0) and (q'.psi1 = true) and (q'.phi = false)
   L := L - \{q\};
                                                                          then do L := L + \{ q' \};
                                                                      7
    q.phi := true;
                                                                  }
                              /* q' is a predecessor of q */
   for all (q',q) in T {
      if q'.seenbefore = false then do {
        q'.seenbefore := true;
        if q'.psi1 = true then do L := L + \{q'\};
     }
   }
 }
```

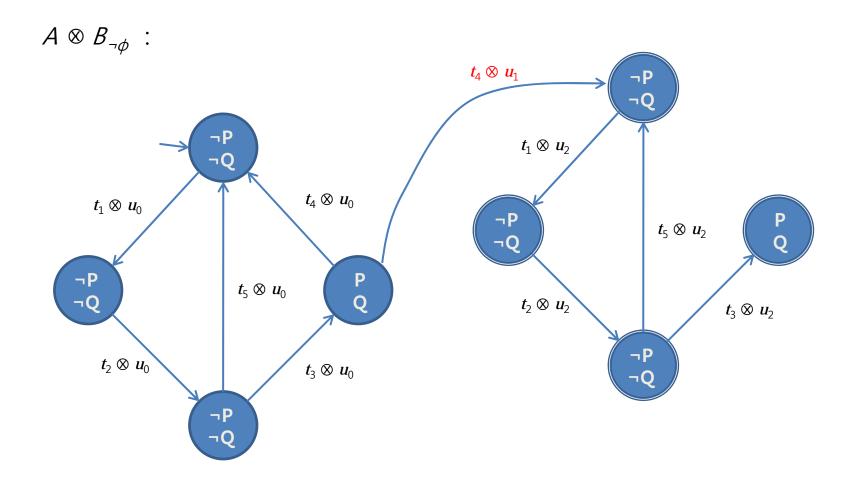
3.2 Model Checking PLTL

- Model checking algorithm for PLTL
 - Developed in 1980s, but too technical to cover in this course
 - PLTL uses path formulas
 - No longer possible to rely on marking the automaton states
 - A finite automaton will generally give rise to infinitely many different executions, themselves often infinite in length
 - Hence, PLTL uses a <u>language theory</u> : ω -regular expression
 - An extension of a regular expression
 - "*" : an arbitrary but finite number of repetitions
 - $(a b^* + c)^*$
 - " ω ": an infinite number of repetitions

- Basic principle
 - Model checking " does $A \nmid \phi$? " for a PLTL formula ϕ
 - Reduces to a " Are all the execution of A of the form described by ε_{ϕ} ? "
 - A PLTL model checker construct an automaton $B_{\neg\phi}$ (recognizing executions which do not satisfy ϕ)
 - Strongly synchronize A and $B_{\neg\phi} \rightarrow A \otimes B_{\neg\phi}$
 - Finally reduces to "Is the language recognized by $A \otimes B_{\neg\phi}$ empty ?"
- A simple example
 - ϕ : G(P ⇒ XF Q) → any occurrence of P must be followed (later) by an occurrence of Q
 - $B_{\neg\phi}$ \rightarrow there exists an occurrence of *P* after which we will never again encounter Q







There are behaviors of A accepted by $A \otimes B_{\neg \phi}$

→ The language recognized by $A \otimes B_{\neg \phi}$ is nonempty → $A \not\models \phi$

- Construction of $B_{\neg\phi}$
 - Very difficult technically
 - Automaton $B_{\neg\phi}$ must in general be able to recognize infinite words
 - → Büchi automata
- Complexity of the algorithm
 - $B_{\neg\phi}$ has size O(2^{| ϕ |}) in the worst case
 - $A \otimes B_{\neg \phi}$ has size O($|A| \times |B_{\neg \phi}|$)
 - If $A \otimes B_{\neg \phi}$ fits in computer memory, we can determine it in time O($|A| \times |B_{\neg \phi}|$)
 - Model checking "does A, $q_0 \nmid \phi$?" for a PLTL formula ϕ can be done in time O(|A| × 2^{| ϕ |})

- Reachability analysis
 - We can say that $B_{\neg\phi}$ observes the behavior of A when the two automata are synchronized.
 - Observable automata = formal specification of the desired property
 - UPPAAL
 - SPIN

3.3 The State Explosion Problem

- State explosion problem
 - The main obstacle encountered by model checking algorithms
 - Indeed, the algorithms rely on explicit construction of the automaton A
 - Traversal and marking (in case of CTL)
 - Synchronization with $B_{\neg\phi}$ and seeking of reachable states and loops (in case of PLTL)
 - In practice, the number of states of *A* is quickly very large
 - If we use values that are not priori bounded (integers, a waiting queue, etc.), we cannot even apply it
 - Explicit model checking \rightarrow Symbolic model checking (Chapter 4)