Introduction to Formal Methods

Chapter 4. Symbolic Model Checking

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr

4. Symbolic Model Checking

- Symbolic model checking
 - Any model checking method attempting to represent symbolically states and transitions
 - A particular symbolic method in which BDDs are used to represent the state variables
 - BDD : Binary Decision Diagram
- Motivation:
 - State explosion is the main problem for CTL or PLTL model checking
 - State explosion occurs whenever we represent explicitly all states of automaton we use
 - Represent very large sets of states concisely, as if they were in bulk.
- Organization of chapter 4
 - Symbolic Computation of State Sets
 - Binary Decision Diagrams (BDD)
 - Representing Automata by BDDs
 - BDD-based Model Checking

4.1 Symbolic Computation of State Sets

- Iterative computation of *Sat(\$\phi\$)*
 - $A = \langle Q, T, \dots \rangle$
 - Pre(S): immediate predecessors of the states belonging to S in Q
 - $Sat(\phi)$: set of states of A which satisfy ϕ
 - ψ is the sub-formulas of ϕ
 - $Sat(\neg \psi) = Q \setminus Sat(\psi)$
 - $Sat(\psi \land \psi') = Sat(\psi) \cap Sat(\psi')$
 - $Sat(EX\psi) = Pre(Sat(\psi))$
 - $Sat(AX\psi) = Q \mid Pre(Q \mid Sat(\psi))$
 - $Sat(EF\psi) = Pre^*(Sat(\psi))$
 - ... (others are defined in a similar way)

```
/* ==== Computation of Pre*(S) ==== */
X := S;
Y := { };
while (Y != X) {
    Y := X;
    X := X \times Pre(X);
}
return X;
```

- The algorithms in Section 3.1 is an particular implementation of $Sat(\phi)$
- Hence, $Sat(\phi)$ is an <u>explicit representation</u> of the state sets

- Which symbolic representations to use ?
 - We have to access the following primitives:
 - 1. A symbolic representation of Sat(P) for each proposition $P \subseteq Prop_{r}$
 - 2. An algorithm to compute a symbolic representation of Pre(S) from a symbolic representation of S,
 - 3. Algorithms to compute the complement, the union, and the intersection of the symbolic representations of the sets,
 - 4. An algorithm to tell whether two symbolic representations represent the same set.
- Which logic for symbolic model checking?
 - Logics based on state formulas
 - CTL is the best.
 - Mu-calculus on tree is possible.
- Systems with infinitely many states
 - Symbolic approach naturally extends to infinite systems.
 - New difficulties:
 - 1. Much trickier to come up with symbolic representations
 - 2. Iterative computation $Sat(\phi)$ is no longer guaranteed to terminate.

4.2 Binary Decision Diagram (BDD)

• BDD

- A particular data structure very commonly used for representing states sets symbolically
- Proposed in 1980s ~ early in 1990s
- Make possible the verification of the system which cannot represent explicitly.
- Advantages:
 - 1. Efficiency
 - 2. Simplicity
 - 3. Easy Adaptation
 - 4. Generality

- BDD structure
 - Example
 - Consider n boolean variables x_1, x_2, \dots, x_n associated with a tuple $\langle b_1, b_2, \dots, b_n \rangle$
 - Suppose n = 4,
 - The set S of our interest is the set such that $(b_1 \vee b_3) \wedge (b_2 \Rightarrow b_4)$ is true.
 - We have several ways to represent the set:
 - $S = \{ <F,F,T,F >, <F,F,T,T >, ... > \}$
 - $S = (b_1 \vee b_2) \wedge (b_3 \Rightarrow b_4)$

•
$$S = (b_1 \wedge \neg b_2) \vee (b_1 \wedge b_4) \vee (b_3 \wedge \neg b_2) \vee (b_3 \wedge b_4) \leftarrow DNF$$

- ...
- <u>Decision Tree</u> ← Our choice.

- Decision tree reduction
 - A <u>BDD</u> is a reduced decision tree.
 - Reduction rules:
 - 1. Identical sub-trees are identified and shared. (n_8 and n_{10}) \rightarrow leads to a directed acyclic graph (dag)
 - 2. Superfluous internal nodes are deleted. (n_7)
 - Advantages:
 - 1. Space saving
 - 2. Canonicity

- Canonicity of BDDs
 - BDDs canonically represent sets of boolean tuples. (fundamental property of BDDs)
 - If the order of the variable x_i is fixed, then there exists a unique BDD for each set S.
 - Properties of BDDs
 - 1. We can test the equivalence of two BDDs in constant time.
 - 2. We can tell whether a BDD represents the empty set simply by verifying whether it is reduced to a unique leaf F.
- Operations on BDDs
 - All boolean operations
 - 1. Emptiness test
 - 2. Comparison
 - 3. Complementation
 - 4. Intersection
 - 5. Union and other binary boolean operations
 - 6. Projection and abstractions
 - Complexity : linear or quadratic (for each operation)
 - \rightarrow the same state explosion problems still exist.

4.3 Representing Automata by BDDs

- Before applying BDDs to symbolic model checking, we need to restate
 - Representing the states by BDDs
 - Representing transitions by BDDs
- Representing the states by BDDs
 - Consider an automaton A with
 - $Q = \{q_0, \dots, q_6\} \rightarrow b_1^1, b_1^2, b_1^3$
 - var digit:0..9 $\rightarrow b_{2}^{1}, b_{2}^{2}, b_{2}^{3}, b_{2}^{4}$
 - var ready:bool $\rightarrow b_3^1$
 - $< b_1^1, b_1^2, b_1^3, b_2^1, b_2^2, b_2^3, b_2^4, b_3^1 >$
 - < F, T, T, T, F, F, F, F > = < q_3 , 8, F >
 - Let's represent $Sat(ready \Rightarrow (digit > 2))$
 - States $\langle q, k, b \rangle$ such that if b = T and k > 2
 - ready \Rightarrow (digit > 2) $\equiv \neg$ ready \lor (digit > 2)

- Representing transitions by BDDs
 - The same idea is applied.
 - $\quad <\!q_3^{}, 8, F > \rightarrow <\!q_5^{}, 0, F > \, : < F, T, T, T, F, F, F, F, F, T, F, F, F, F, F, F, F, F >$
 - For example,

$$\begin{array}{l} \boldsymbol{\rightarrow} (\neg b^{1}_{1} \wedge \neg b^{2}_{1} \wedge b^{3}_{1}) \\ \wedge (b^{1}_{2} \vee b^{2}_{2} \vee b^{3}_{2} \vee b^{4}_{2}) \\ \wedge (\neg b^{\prime 1}_{1} \wedge \neg b^{\prime 2}_{1} \wedge b^{\prime 3}_{1}) \\ \wedge (b^{\prime 1}_{2} \boldsymbol{\Leftrightarrow} b^{1}_{2} \wedge b^{\prime 2}_{2} \boldsymbol{\Leftrightarrow} b^{2}_{2} \wedge b^{\prime 3}_{2} \boldsymbol{\Leftrightarrow} b^{3}_{2} \wedge b^{\prime 4}_{2} b^{4}_{2}) \\ \wedge b^{\prime 1}_{3} \end{array}$$

4.4 BDD-based Model Checking

- BDDs can serve as an instance of symbolic model checking scheme
 - Provide compact representations for the sets of states in an automata
 - Support the basic sets of operations
 - Computation of *Pre(S)* in section 4.1 is very simple

• Implementation

- SMV (chapter 12)
- Efficiency of BDDs depends on
 - B_T representing the transition relation T (as containing pairs of states)
 - Choice of ordering for the boolean variables
- Very easy to explode exponentially

• Perspective

- Widely used from early 1990s
- Current work on model checking
 - Aiming at applying BDD technology to solve more verification problems (ex. program equivalence)
 - Aiming at extending the limits inherent to BDD-based model checking
- Widely used throughout the VLSI design industry