Introduction to Formal Methods

Chapter 5. Timed Automata

Lecturer: JUNBEOM YOO
Jbyoo@konkuk.ac.kr

v

OMa

Vv

T A A F +A
11HTTICSU AUL Ld

C
J.

e "“Temporal”
— "Trigger the alarm action upon detecting of a problem”

e "Real-Time"
— "Trigger the alarm less than 5 seconds after detecting a problem”

e Timed Automata
— Proposed by Alur and Dill in 1994.
— An answer to this “real-time” needs

« Organization of chapter 5
— Description of a Timed Automata
— Networks of Timed Automata and Synchronization
— Variants and Extensions of the Basic Model
— Timed Temporal Logic
— Timed Model Checking

C 1 Na %
J.1 LJC

II'I'A -~
LUl 1a

AN + A
M\ Ld

c>
o
—

criptio

« Two fundamental elements of timed automata

1. A finite automaton (assumed instantaneous between states)
2. Clocks

« An example

c25?msg, c:=0

-,?msg, c:=0 c<5,7?msqg, -

Konkuk University

e C(Clocks and transitions
— Clocks

» \Variables having non-negative real values in R
» All clocks are null in the initial system states
» All clocks evolve at the same speed, synchronously with time

— Transitions
e Three items
+ A guard

* An action (label)
* Reset of some clocks

— The system operates as if equipped with

* A global clock
* Many individual clocks (each is synchronized with the global clock)

cz257msg c:=0

-

7N

\)
N
o -,?m,c:—oe c<5,?m§g,-/®

Konkuk University

Configurations and executions

— Configuration of the system

* (q V)

e @ :a current control state of the automaton
v : the value of each clock

We also refer to v as a valuation of the automaton clocks.
Time automata does not fix the time unit under consideration

— Execution of the system
» (usually infinite) sequence of configurations
* A mapping p from R to the set of configuration ¢>5 msg c = 0

» Configurations change in two ways
— Delay transition
— Discrete transition (or action transition)

c<5,7’msg -

Discrete transition

(init, 0) — (init, 10.2)?@ (verify, 0) — (verify, 5.8)@3 (verify, 0) — (verify, 3.1)?@» (alarm, 3.1) — ...

Delay transition

» Trajectory
— p(0) : the initial state
— p(12.3) = (verify, 2.1)

Konkuk University 5

5.2 Networks of Timed Automata and Synchronization

« It is useful to build a timed model in a composite fashion,

— by combining several parallel automata synchronized with one another
— - a timed automata network

« Executions of a timed automata network
— All automata components run in parallel at the same speed
— Their clocks are all synchronized to the same global clock

— (q,v) : a network configuration
* q:a control state vector
« v : a function associating with each network clock its value at the current time

« Synchronization
— Timed automata synchronize on transitions (as usually) by resetting the clocks
— The clocks which were not reset are unchanged
— No concurrent write conflicts on clocks, since reset writes a zero value and nothing else

App

far near

Exit App

Train Gate (>

Example : modeling a railroad crossing

Konkuk University

5.3 Variants and Extensions of the Basic Models

« Many variants, and three extensions

1. Invariants
— Liveness hypothesis in the untimed model
— Invariant: a state’s condition on the clock values, which must always hold in the state
— Example: near (invariant: H, < 5), 0N (invariant: H, < 2), lower/raise (invariant: H, < 2)

2. Urgency
. X <2 7<2
— Used when cannot tolerate a time delay 1 2
nnnnnnn A +h A AM ,-A.A-L'n w—\-l-:f\v\ﬁ Nt in A FranncitiAanc
- I'\C[JICDCIILCU III LIIC DYDL I Coll Iy 1ativornis, 11OL 1 uic ualisiuvulis
— Allowing urgent/synchronized behaviors in a more natural way
c3 c3

3. Hybrid linear system

— Models dynamic variables (in a form of differential equiations)
— HYTECH

Konkuk University

v\

me

T anm
I U

empor

al Logic

L A
J. 7

« Given a system described as a network of timed automata,
 We wish to be able to state/verify properties of this system

— Temporal properties
* "When the train is inside the crossing, the gate is always closed.”

— Real-time properties
“The train always triggers an Exit signal within 7 minutes of having emitted an App signal”

* Three ways to formally state real-time properties
1. Express it in terms of the reachability of some sets of configurations

2. Use observer automata in PLTL model checking

. Given a property ¢, a network R
+ Testing reachability of some states in the product R || A,

. UPPAAL , HYTECH

3. Use a timed logic
. TCTL (Timed CTL)
. Etc.

TCTL (Timed CTL)

O, ¥ =P P .. (atomic proposition)
| =@ | oA¥Y | @@= Y| .. (boolean combinators)
| EF @ | EGy® | E@U_ ¥ (temporal combinators)
| AF Ly @ | AGw@ | A® U ¥ (path quantifiers)

e~ :any comparison symbol from {<, <, =, >, >}
k : any rational number from Q. (real number)
Operator X does not exist in TCTL

e Example:
* AG (pb = AGs alarm)
« "If a problem occurs, then the alarm will sound immediately and it will sound for at least
5 time units.”
* AG (—far = AF_ far)
. “When the train is located in the railway section between the two sensors App and Exit, it

will leave this section before 7 time units.”

Konkuk University 10

Y
J

kA
IIC

v\

me

LE:

T A NMAAAl
I U 1vVIOUCI

Y
J

With timed automata and TCTL logic
We wish to obtain a model checking algorithm for them.

Difficulties : Automaton has an infinite number of configurations, since

1. Clock values are unbounded
2. The set of real numbers used in clocks is dense

- Overcome it with the equivalence classes, called “regions"

X;

— Example: x,, x, ~ k with k=0, 1, 2

e

r0
Konkuk Umver3|tyr8

11

« Complexity

Model checking algorithms are complicated.
The number of regions grows exponentially.

e O(nIMM)
* n: number of clocks
. M: upper bounds of every constant

« No general and efficient method is likely to exist. (vs. linear complexity in CTL)
 PSPACE-complete problem

« Existing tools focus on defining adequate data structures for handing sets of regions
- "zones"

« Existing tools have been successfully used
- HYTECH
- KRONOS
- UPPAAL

M)
O
O

5
)
@)
D)
@)
Q)
-5
~—

Model checking is a verification technique

It consists of three steps:
1. Representation of a program or a system by an automaton
2. Representation of a property by a logical formula
3. Model checking algorithm

Model checking is a powerful but restricted tool:
— Powerfulness: exhaustive and automatic verification
— Limitation: due to complexity barriers
— In practice, the size of system is indeed the main obstacle yet to overcome.

Model checker users are forced to simplify the model under analysis,
until it is manageable. (Abstraction)

