Introduction to Formal Methods

Chapter 7. Safety Properties

Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr

7. Safety Properties

- Safety property
 - Under certain conditions, an (undesirable) event never occur.
 - Examples:
 - (S1) " Both processes will never be in their critical sections simultaneously (mutual exclusion) "
 - (S2) " Memory overflow will never occur "
 - (S3) " The situation ... is impossible "
 - (S4) " As long as the key is not in the ignition position, the car won't start " \leftarrow with conditions
 - ¬ safety property = reachability property
 - ¬ reachability property = safety property
- Organization of Chapter 7
 - Safety Properties in Temporal Logic
 - A Formal Definition
 - Safety Properties in Practice
 - The history Variables Method

7.1 Safety Properties in Temporal Logic

- AG *Φ*
 - " ϕ never occurs."
 - (S1) " Both processes will never be in their critical sections simultaneously "
 - AG \neg (crit_sec₁ \land crit_sec₂)
 - (S2) " Memory overflow will never occur "
 - AG ¬overflow
 - (S3) " The situation ... is impossible "
 - AG ¬situation
 - (S4) " As long as the key is not in the ignition position, the car won't start "
 - A (¬start W key) (using weak until)
 - A (¬start ∪ key) ← Not a safety property !

7.2 A Formal Definition

- Syntactic characterization
 - Safety properties can be written in the form AG ϕ^-
 - ϕ^- is a past temporal formula
 - When a safety property is violated, it should be possible to instantly notice it.
 - We can only notice it, in the current state, relying on events which occurred earlier.
- Temporal logic with past
 - CTL* does not provide past combinators
 - But, we can use a mirror image of future combinators (F^{-1} , X^{-1})

- AG ϕ^- in practice
 - (S1) AG \neg (crit_sec₁ \land crit_sec₂)
 - \neg (crit_sec₁ \land crit_sec₂) is a ϕ^-
 - (S4) A ¬start W key
 - Can be rewritten in the form: AG (start \Rightarrow F^-1 key)
 - " It is always true (AG) that if the car starts, then (\Rightarrow) the key was inserted beforehand (F⁻¹). "
 - If Ψ_1 and ψ_2 are safety properties, then $\Psi_1 \wedge \psi_2$ again a safety property.
 - But, $\Psi_1 \lor \psi_2$ is in general not
- Safety properties and diagnostic
 - If AG ϕ^- is not satisfied, then there necessarily exists a finite path leading from *init* to it.
 - Since ϕ^- is a past formula.

7.3 Safety Properties in Practice

- Safety properties are verified simply by submitting it to a model checker.
- But, in real life, hurdles spring up.
- A simple case: non-reachability
 - The most safety properties
 - $\neg \mathsf{EF} (crit_in_1 \land crit_in_2) = \mathsf{AG} \ \mathcal{P}^-$
 - \neg (crit_in₁ \land crit_in₂) is a present formula
- Safety without past
 - A (\neg start W key) is used more often than AG (start \Rightarrow F⁻¹ key)
 - But, no model checker is able to deal with past formulas. So, mixed logics are used.
 - The problem is their identification.
 - \rightarrow If they are identified, then it can be dealt with similarly
 - \rightarrow Otherwise, we have to use the method of <u>history variables (in section 7.4)</u>
- Safety with explicit past
 - No model checker is able to handle temporal formula with past.
 - Two approaches:
 - 1. Eliminate the past (in principle, it is possible to translate mixed formulas to pure-future ones)
 - AG ($ot\!\!\!/ \phi \Rightarrow \mathsf{F}^{-1}\psi$) \equiv A ($\neg \phi \lor \psi$), but not easy.
 - 2. History variable method (section 7.4)

7.4 The History Variables Method

• Skipped !!!