
The SMV language

K� L� McMillan

Cadence Berkeley Labs

���� Addison St�

Berkeley� CA ��	��

USA

mcmillan
cadence�com

March ��� ����

Abstract

This document describes the current state of the input language used by the SMV

model checker�

c����� Cadence Berkeley Labs� Cadence Design Systems�

�

Contents

� SMV language overview �

� Data types and type declarations �
��� Boolean� enumerated and subrange types � 	
��� Arrays �

��	 Multidimensional arrays �
��
 Generic arrays �
��� Structs �

� Signals and assignments �
	�� Operations on signals �
	�� Assignments �
	�	 Unit delay assignments the �next� operator � � � � � � � � � � � � � � � � � �
	�
 State machines �

� Rules for assignments �

�� The single assignment rule �

�� The circular dependency rule ��

�	 Range violations and unknown values ��

�
 Order of assignments and declarations ��

� Nondeterministic assignments ��

� Modules ��
��� Module declarations �	
��� Instantiations �	
��	 Input and output declarations �

��
 Instance hierarchies �

��� Structured data types ��
��� De�ned types ��

� Conditionals ��
��� Simple conditionals ��
��� Defaults ��
��	 Complex conditionals switch and case ��

	 Constructor loops �

��� Basic for�loops ��
��� Creating arrays of instances ��
��	 Creating parameterized modules ��
��
 Chained constructor loops ��

�

� Expressions ��
��� Parentheses and precedence �

��� Integer constants �

��	 Symbolic constants �

��
 Boolean operators ��
��� Conditional operators ��if�� �case� and �switch�� � � � � � � � � � � � � � � � ��
��� Representing state machines using conditionals � � � � � � � � � � � � � � � � � ��
��� Arithmetic operators ��
��� Comparison operators ��
��� Set expressions ��

����� The set inclusion operator ��
����� Extension of operators to sets ��
����	 Comprehension expressions � 	�

�
 Vectors and vector operators ��
���� The concatenation operator � 	�
���� Extension of operators to vectors � 	�
���	 Vector coersion operator � 	�
���
 Arithmetic on vectors � 		
���� Comparison operators on vectors � 		
���� Vector sets � 		
���� Coercion of scalars to vectors � 	

���� Explicit coercion operators � 	

���� Coercion of array variables to vectors � 	�
�����Array subranges � 	�
�����Assignments to vectors � 	�
�����Assignments to arrays � 	�
����	Vectors as inputs and outputs � 	�
����
Iteratively constructing vectors � 	�
�����Reduction operators �
�
�����Vectors as conditions �
�

�� Assertions ��
���� Temporal formulas �
�
���� The assert declaration �
�
���	 Using� � � Prove declarations �
�

�� Re�nements ��
���� The re�nement relation �
	

������ Circular assignments �
	
���� Compositional veri�cation �

���	 The using� � � prove declaration �
�
���
 Abstract signals �
�

�

�� Syntax ��
�	�� Lexical tokens �
�
�	�� Identi�ers �
�
�	�	 Expressions �
�
�	�
 Types �
�
�	�� Statements �
�
�	�� Module de�nitions �
�
�	�� Programs �
�

� SMV language overview

The SMV language can be divided roughly into three parts the de�nitional language� the
structural language� and the language of expressions� The de�nitional part of the language
declares signals and their relationship to each other� It includes type declarations and assign�
ments� The structural part of the language combines de�nitional components� It provides
language constructs for de�ning modules and structured data types� and for instantiating
them� It also provides constructor loops� for describing regularly structured systems� and
a collection of conditional structures that make describing complicated state transition ta�
bles easier� Finally� expressions in SMV are very similar to expressions in other languages�
both hardware description languages and programming languages� For this reason� expres�
sions will be discussed last� as any expressions appearing in discussions of other parts of the
language should be self explanatory�

� Data types and type declarations

A type declaration is of the form

�signal� � �type��

where �signal� is the name of a signal and �type� is the set of values that the signal may
take�

��� Boolean� enumerated and subrange types

The simple types are boolean� enumerated and subrange� The type �boolean� is simply an
abbreviation for the set f���g� Thus�

foo � boolean�

declares a signal named �foo�� which can take on the value � or �� An enumerated type is a
set of symbols� For example�

bar � 	ready�willing�able
�

	

declares a signal named �bar�� which can take one of the symbolic values �ready�� �willing�
or �able�� A type can also be a subrange of the integers� For example�

count � �����

declares a signal �count� which can take any value inclusively in the range from � to ��
Numeric values in type declarations may also be expressions� consisting of numeric constants�
and the numeric operators � �� �� �� mod� ��� �� and �� �see section ���

��� Arrays

The only remaining type in the language is the array type� � A declaration of the form�

�signal� � array �x����y� of �type��

declares an array of signals of type �type�� with subscripts running from �x� to �y�� For
example� the declaration

zip � array ���� of boolean�

is equivalent to declaring�

zip��� � boolean�

zip��� � boolean�

zip��� � boolean�

There is one additional aspect to the array declaration� however� which relates mainly to
binary arithmetic� An array declared as

little � array ���� of boolean�

is �little endian�� in the sense that little��� is treated as the least signi�cant bit� and
little��� is treated as the most signi�cant bit� By contrast�

big � array ���� of boolean�

is �big endian�� in the sense that big��� is treated as the most signi�cant bit� and big��� is
treated as the least signi�cant bit� This distinction is treated in more detail in the section
on vector expressions and binary arithmetic�

An element of an array can be referenced by adding a subscript in square brackets� The
subscript must evaluate to an integer in the declared range of the array�

�N�B�� Structured types are built using the module construct�

��� Multidimensional arrays

Arrays of arrays can also be declared� For example�

matrix � array ���� of array ���� of boolean�

is equivalent to

matrix��� � array ������ of boolean�

matrix��� � array ������ of boolean�

The boolean signals declared in this way are

matrix������ matrix������ matrix������

matrix������ matrix������ matrix������

There is no �xed limit to the number of dimension of an array declared in this way�

��� Generic arrays

Arrays whose elements are of di�erent types can also be declared� This is done by declaraing
a generic array� as follows�

�signal� � array �x����y��

where the type of the elements is unspeci�ed� The types of the elements can then be declared
separately� For example�

state � array �����

state��� � 	ready� willing
�

state��� � 	ready� willing� able
�

state��� � 	ready� willing� able� exhausted
�

This di�ers from simply declaring the elements of the array in that the generic array
declaration tells the compiler the upper and lower bounds of the array and whether its
storage order is �big endian� or �little endian�� This allows array references with variable
subscripts and binary arithmetic expressions to be compiled�

��� Structs

� Signals and assignments

A signal is an in�nite sequence of values of a given type� For example�

�����������

is a sequence of type boolean �of course� it is alo an integer sequence��

�

��� Operations on signals

An operator is applied to a signal one element at a time� For example� the operator � stands
for logical �not�� Thus if

foo � �����������

then

�foo � �����������

That is� it is the result of applying logical �not� to each element of the sequence� Similarly�
� stands for logical �and�� Thus� if

foo � �����������

and bar � �����������

then

foo � bar � �����������

��� Assignments

An assignment is of the form

�signal� �� �expr��

where �expr� is an expression that combines other signals using operators like � and ��
Unlike an assignent in a typical �procedural� language� this assignment means exactly what
it says� that �signal� is equal to �expr�� So for example� suppose we make the assignment

zip �� foo � bar�

If foo and bar are as above� then

zip � �����������

Note that this assignment says what to compute� but does not say when to compute
it� Thus� for example� we might �rst compute the entire sequences foo and bar �or more
accurately� �nite subsequences�� and then compute the sequence zip� Or� we might compute
the �rst elements of all three sequences� then the second elements� and so on� This is
a signi�cant departure from hardware description languages such as verilog HDL� which
explicitly schedule computations by means of an event queue� In SMV� the issues of what
to compute and when to compute it are separated� Thus� the same program might be
compiled into a highly parallel hardware implementation� or a completely sequential software
implementation�

�

��� Unit delay assignments � the 	next
 operator

A special operator is provided for describing recurrences� Recurrences are circular or recursive
systems of equations� and are the way that sequential systems are described in SMV�

If x is a signal� then next�x� is� intuitively� the �next� value of x� More precisely� the
ith value of next�x� is equal to the �i � ��st value of x� Thus� for example� if

x � �����������

then

next�x� � �����������

By assigning a value to the �next� value of a signal� we can de�ne a sequential machine�
For example� assuming x and y are boolean signals�

next�x� �� y � x�

de�nes a signal x which ��ips� each time the signal y is true �the � operator stands for
�exclusive or��� By de�niton� the �next� value of x is equal to �y � x�� which is equal to x

if y is false and �x if y is true� Note that this �recurrence� places a restriction on the order
in which we can compute the values of x� we cannot comput the �i � ��st value until we
have computed the ith value� Since the values of x must be computed in sequence� we have
de�ned a sequential machine�

Note� however� that the above assignment does not tell us the initial value of x� Thus� we
obtain a di�erent sequence depending on whether x starts at � or �� We can set this initial
value by assigning

init�x� �� ��

In this case� if we had

y � �����������

we would get

x � �������������������

On the other hand� if we assigned

init�x� �� ��

we would obtain the sequence

x � �������������������

As another example� to declare a signal x that maintains a running sum of the values of
a signal y� we would say

init�x� �� ��

next�x� �� x y�

�

��� State machines

Here is an example of a small �nite state machine� expressed in SMV� It starts in a state
�idle� and waits for a signal �start� to be asserted� On the next cycle� it changes to a state
�cyc��� then to state �cyc��� then returns to �idle�� In state �cyc��� it asserts a signal
�done��

start�done � boolean�

state � 	idle�cyc��cyc�
�

next�state� ��

switch�state�	

idle� start � cyc� � idle�

cyc�� cyc��

cyc�� idle�

�

done �� �state � cyc���

This illustrates two forms of conditional expressions in SMV� The �switch� operator
evaluates its argument �state�� then chooses the �rst expression in the curly brackets that
is tagged with that value� Thus� if state � cyc�� then the value of the switch expression is
cyc�� There is also a simpler form of conditional expression� that appears in the example as

start � cyc� � idle

If �start� is true� this evaluates to �cyc��� else to �idle��
The above state machine can be expressed more �procedurally� using the structural

conditional constructs describe in the next section� We would write�

default done �� ��

in switch�state�	

idle�

if start then next�state� �� cyc��

cyc��

next�state� �� cyc��

cyc��

next�state� �� cyc��

done �� ��

This style of expression is semantically equivalent to the previous one� but can be much more
readable for large complex state machines�

�

� Rules for assignments

An SMV program amounts simply to a system of equations� with a set of unkowns that are
the declared signals� With an arbitrary set of equations� there is� of course� no guarantee
that a solution exists� or that the solution is unique� Examples of systems that have no
solutions are

x �� x ��

or

next�x� �� x ��

next�x� �� x � ��

An example of a system with many solutions is

x �� y�

y �� x�

We avoid these di�culties by placing certain rules on the structure of assignments in a
program� to guarantee that every program is executable� This means� among other things�
that a schedule must exist for computing the elements of all the sequences� The rules for
assignments are�

� The single assignment rule each signal may be assigned only once�

� The circular dependency rule a program may not have �cycles� in its dependency
graph that are not broken by delays�

��� The single assignment rule

In addition� SMV follows a �single assignment� rule� This means that a given signal can be
assigned only once in a program� Thus� we avoid the problem of con�icting de�nitions� The
de�nition of �single assignment� is compicated somewhat by the �next� and �init� operators�
The rule is this� one may either assign a value to x� or to next�x� and init�x�� but not both�
Thus� the following are legal�

x �� foo� next�x� �� foo�
init�x� �� foo� init�x� �� foo�

next�x� �� bar�

while the following are illegal�

�

x �� foo� next�x� �� foo�
x �� bar next�x� �� bar�
x �� foo� x �� foo�
init�x� �� bar� next�x� �� bar�

An important note� assigning an array reference with a variable index counts as asigning
every element in the array� as far as the single assignment rule is concerened� Thus� for
example�

x��� �� foo�

x�count �� �� bar�

is a violation of the single assignment rule� if �count� is not a constant� This is because it
cannot be determined at compile time that �count � �� is not equal to �� One way to look
at this� is that

x�i� �� foo�

�assuming �i� is not a constant� is considered to be exactly equivalent to

if �i � �� x��� �� foo�

if �i � �� x��� �� foo�

if �i � �� x��� �� foo�

���

if �i � n� x�n� �� foo�

�assuming x is declared array ���n��
If you want to make two assignments to variable indices in the same array� use the

�default� construct �described below�� Thus

default next�x�i�� �� foo�

in next�x�j�� �� bar�

would be legal� In the case where i � j� the second assignment would take precedence�

��� The circular dependency rule

If we have the assignment

x �� y�

then we say that x depends on y� A combinational loop is a cycle of dependencies that is
unbroken by delays� For example� the assignments

x �� y�

y �� x�

��

form a combinational loop� Although as equations� they may have a solution� there is no
�xed order in which we can compute x and y� since the ith value of x depends on the ith
value of y and vice versa�

To be more precise� an assignment of form

next�x� �� �expr��

introduces �unit delay dependencies�� There is a unit delay dependency from x to every
signal refernced in �expr�� An assignment of the form

�signal�� �� �expr��

introduces �zero delay dependencies�� in the same way� A combinational loop is a cycle of
dependencies whose total delay is zero� Currently� combinational loops are illegal in SMV�

Therefore� legal SMV programs have the following property� for any sequence values
chosen for the unassigned �free� signals� there is at least one solution for the assigned signals�
There may be multiple solutions in the case where a signal has an unassigned initial value�
or the case of nondeterministic assignments �see below��

There are cases where a combinational loop �makes sense�� in that there is always a
solution of the equations� In this case� the order in which signals are evaluated may be
conditional on the values of some signals� For example� take the following system�

x �� c � y � ��

y �� �c � x � ��

If c is false� then we may �rst evaluate x� then y� obtaining x � �� then y � �� On the
other hand� if c is true� we may �rst evaluate y� then x� obtaining y � �� then x � �� The
existence of conditional schedules such as this is di�cult to determine� since it may depend
on certains states �or signal values� being �unreachable�� For example� if we have

x �� c � y � ��

y �� d � x � ��

it may be the case that c and d are never true at the same time� in which case x and y
can always be evaluated in some order� Loops of this kind do sometimes occur in hardware
designs �especially in buses and ring�structured arbiters�� The expected approach to this
problem is require the user to provide constraints on the order of evaluation �so that the
program can be compiled�� and to verify that these constraints always have a solution�
Currently� however� combination loops are simply disallowed�

��� Range violations and unknown values

When a signal is assigned a value that is not an element of its declared type� the result is
that the value of the signal is unde�ned� Thus� the signal may take on any value in its type�
Another way to view this is that any assignment

x �� expr�

��

is treated as if it were a shorthand for�

x �� �expr in TYPE� � expr � TYPE�

where TYPE is the set of values in the type of signal x� This means that if the value of expr
is not in the set TYPE� then the value of x is chosen nondeterministically from the set TYPE�
See the next section for a discussion of nondeterministic choice�

��� Order of assignments and declarations

Because assignments are treated as a system of simultaneous equations �or inclusions�� the
order in which assignments appear in the program is irrelevant� There may be multiple type
declarations for a given signal� provided they all agree on the type� Type declarations and
assignments may appear in any order� �

� Nondeterministic assignments

Especially in the early stages of a design� a designer may not want to completely specify
the value of a given signal� Incomplete speci�cation may represent either a design choice
yet to be made� incomplete information about the environment of a system� or a deliberate
abstraction made to simplify the veri�cation of a system� For this purpose� SMV provides
nondeterministic choice� A nondeterministic choice is represented by a set of values� If we
make the assignment

signal �� 	a�b�c�d
�

then the value of signal is chosen arbitrarily from the set fa�b�c�dg� As another example�
suppose that in our previous state machine� we don�t want to specify how many cycles will
be spent in state �cyc��� In this case� we could write�

next�state� ��

switch�state�	

idle� start � cyc� � idle�

cyc�� 	cyc��cyc�
�

cyc�� idle�

�

Note that in case state � cyc�� the value of the switch expression is the set fcyc��cyc�g�
This means that the next value of �state� may be either �cyc�� or �cyc��� In general� the
mathematical meaning of the assignment

x �� y�

where y is a set of values� is that x is included in the set y� Ordinary values are treated as sets
of size one� Thus� properly speaking� an SMV program is a simultaneous set of inclusions�
rather than equations�

�The current compiler accepts programs in which some type declarations are omitted� In particular� the

type of a signal which is assigned deterministically with zero delay need not be declared� New programs

should not rely on this feature� however�

��

� Modules

A module is a bundle of de�nitions �type declarations and assignments� that can be reused�
Much like a subroutine� a module may have formal parameters� When creating an instance

of the module� actual signals or expressions are plugged in for the formal parameters� thus
linking the module instance into the program� Most often the formal parameters of a module
are declared to be either inputs or outputs� Inputs are expected to be assigned outside the
module� whereas outputs are expected to be assigned inside the module�

��� Module declarations

As an example� suppose we want to construct a binary counter� by designing a counter �bit��
and then chaining the bits together to form a counter� In SMV� the counter bit might be
declared as follows�

MODULE counter�bit�carry�in� clear� bit�out� carry�out�

	

INPUT carry�in� clear � boolean�

OUTPUT bit�out� carry�out � boolean�

next�bit�out� �� clear � � � �carry�in � bit�out��

carry�out �� carry�in � bit�out�

The �INPUT� and �OUTPUT� declarations are specialized forms of type declarations�
which also give the direction of signals being declared� These declarations must occur before
any ordinary type declarations or assignments�

��� Instantiations

To create a three�bit counter� we can now write� for example�

clear � boolean�

count � array ���� of boolean�

carry � array ���� of boolean�

bit� � counter�bit�carry���� clear� count���� carry�����

bit� � counter�bit�carry���� clear� count���� carry�����

bit� � counter�bit�carry���� clear� count���� carry�����

Here� three instances of the module �counter bit� are created� These instances have
names �bit��� �bit��� �bit��� Each instance is� in e�ect� a copy of the de�nitions in module
�counter bit�� However� all the signal names referenced in the instance are pre�xed with
the instance name� so that they are unique to that instance� For example� the signals in
module instance �bit�� are�

�	

bit��carry�in

bit��clear

bit��bit�out

bit��carry�out

��� Input and output declarations

The e�ect of the INPUT declaration is to make an assignment from the actual paramenters
to the corresponding formal parameters� Thus� in instance �bit��� the declaration

INPUT carry�in� clear � boolean�

has the e�ect of assigning

bit��carry�in �� carry����

bit��clear �� clear�

Similarly� the e�ect of the OUTPUT declaration is to make an assignment from the
formal paramenters to the corresponding actual parameters� Thus� in instance �bit��� the
declaration

OUTPUT bit�out� carry�out � boolean�

has the e�ect of assigning

count��� �� bit��bit�out�

carry��� �� bit��carry�out�

��� Instance hierarchies

Modules may� of course� contain instances of other modules� and so forth� provided the
module references are not circular� So we can� for example� create three�bit counter module�
as follows�

MODULE counter��carry�in� clear� count� carry�out�

	

INPUT carry�in� clear � boolean�

OUTPUT count � array ���� of boolean�

OUTPUT carry�out � boolean�

carry � array ���� of boolean�

bit� � counter�bit�carry�in� clear� carry���� carry�����

bit� � counter�bit�carry���� clear� carry���� carry�����

bit� � counter�bit�carry���� clear� carry���� carry�����

carry�out �� carry����

�

If we then instantiate this module with

foo � counter�cin�clr�cnt�cout��

we will have� for example� an instance of counter bit called foo�bit�� which de�nes signals

foo�bit��carry�in

foo�bit��clear

foo�bit��bit�out

foo�bit��carry�out

MODULE declarations may not appear inside other MODULE declarations� however�
That is� all MODULE declarations must be in the outermost scope�

��� Structured data types

Amodule with only type declarations and no parameters or assignments acts like a structured
data type� For example� to de�ne a data structure �hands� with �elds �left� and �right��
the following module might be de�ned�

MODULE hands��

	

left� right � boolean�

An instance of this structured type can be created as follows�

party � hands���

This is exactly equivalent to

party�left� party�right � boolean�

The two �elds of this record can be referenced as

party�left

party�right

In fact� any signal belonging to a module instance can be referenced directly by name in
this way� Normally� however� it is recommended that only inputs and outputs be referenced�

An array of a given structured type may be created in the same manner as an array of
signals� For example�

foo � array ���� of hands���

which would be equivalent to

party����left� party����right � boolean�

party����left� party����right � boolean�

As with signals� multidimensional arrays may be created�

��

��� De�ned types

A type de�nition �typedef� is a special kind of module declaration with no parameters� and
a slightly di�erent syntax� The de�nition of �hands� above can equivalently be written as

typedef hands struct	

left� right � boolean�

The general form of this declaration is

typedef �name� �type�

where �type� is any legal type speci�cation�

� Conditionals

Assignments or groups of assignments may be made conditional� This is especially use�
ful when several assignments all depend on the same condition it avoids repeating the
conditional structure in each assignment�

�� Simple conditionals

The basic conditional structure is

if��condition��

�stmt��

else

�stmt��

A �statement� can be either an assignment� or a group of statements delimited by curly
brackets�

The e�ect of the statement

if�c�

x �� foo�

else

x �� bar�

is exactly equivalent to

x �� c � foo � bar�

If x is assigned in the �if� part� but not assigned in the �else� part� then x is unde�ned
when the condition is false� This means that x can take any value in its type� Similarly�
if x is assigned in the �else� part� but not in the �if� part� then x is unde�ned when the
condition is true� For example�

��

if�c�

x �� foo�

else

y �� bar�

is equivalent to

x �� c � foo � undefined�

y �� c � undefined � bar�

Mathematically� undefined is the set of all possible values�
If next�x� is assigned in one part of the conditional� but not the other� then

next�x� � x�

is the default� For example�

if�c�

next�x� �� foo�

else

next�y� �� bar�

is equivalent to

next�x� �� c � foo � x�

next�y� �� c � y � bar�

Conditionals are statements� and therefore can be nested inside conditionals� Groups of
statements can also be nested inside conditionals� For example�

if�c�

	

x �� foo�

if�d�

next�y� �� bar�

else

next�z� �� bar�

else

x �� bar�

The �else� part may be omitted� although this is hazardous� It can result in an ambiguity
as to which �if� a given �else� corresponds to� if there are nested conditionals� Care should
be take to use curly braces to disambiguate� Thus� instead of�

��

if�c�

if�d�

�stmt�

else

�stmt�

the prefered usage is�

if�c�	

if�d�

�stmt�

else

�stmt�

The e�ect of�

if�c�

�stmt�

is equivalent to�

if�c�

�stmt�

else 	

�� Defaults

The �default� construct provides a way of automatically �lling in the cases where a signal
is unde�ned with a default value� The syntax is�

default

�stmt��

in

�stmt��

The e�ect of this statement is to use the assignments in �stmt�� in any cases in �stmt��

where the given signal is unassigned� For example�

default

x �� foo�

in

	

if�c�

	

x �� bar�

��

next�y� �� y ��

else

next�y� �� y ��

is equivalent to

next�y� �� c � y � � y ��

x �� c � bar � foo�

An assignment to next�x� may also appear in the default statement� The e�ect is again to
insert the default assignment in any cases where next�x� is not de�ned� Default statements
may be nested inside conditionals� and vice�versa� and groups of statements may appear in
both the �default� part and the �in� part�

�� Complex conditionals � switch and case

The complex conditionals are �case� and �switch�� A �case� statement has the form�

case	

�cond�� � �stmt��

�cond�� � �stmt��

���

�condn� � �stmtn�

�default � �dftlstmt��

This statement is exactly equivalent to

if ��cond��� �stmt��

else if ��cond��� �stmt��

���

else if ��condn�� �stmtn�

�else �dfltstmt��

Note this means that if all the conditions are false� and there is no default statement�
then no assignments are made�

A �switch� statement has the form�

switch��expr��	

�case�� � �stmt��

�case�� � �stmt��

���

�casen� � �stmtn�

�default � �dftlstmt��

��

This is exactly equivalent to�

case	

�expr� in �case�� � �stmt��

�expr� in �case�� � �stmt��

���

�expr� in �casen� � �stmtn�

�default � �dftlstmt��

Note that the set inclusion operator �in� is used instead of ���� This means that each
case may be a set of values rather than a single value� For example� if we want a counter
that waits for a signal �start�� counts to seven� asserts a signal �done�� and resets� we might
write�

default

done �� ��

in

switch�count�	

� � if start then next�count� �� ��

���� � next�count� �� count ��

� � 	

next�count� �� ��

done �� ��

	 Constructor loops

A looping construct is provided for expressing regular structures more succinctly� Loops are
simply unrolled by the compiler into the equivalent �in�line� code�

��� Basic for�loops

For example�

for�i � �� i � �� i � i ��	

x�i� �� i�

is in every way equivalent to

x��� �� ��

x��� �� ��

x��� �� ��

��

The general form of the loop is

for�var � init� cond� var � next�

�stmt�

The loop is unrolled in the following way� initially� var is set to init� Then� while cond
is true� stmt is instantiated� and var is set to next� The loop variable var may appear in
stmt� Each occurrence of var is replaced by its current value�

��� Creating arrays of instances

One important use of loops is to create arrays of module instances� For example� to create
a three bit counter as an array of counter bits� we could write�

bits � array �����

for�i � �� i � �� i � i ��

bits�i� � counter�bit�carry�i��clear�count�i��carry�i����

Note that bits is �rst declared as a generic array� Then the elements of the array are
��lled in� inside the loop� In this way� each counter bit is connected to the appropriate
signal� as a function of the loop index i�

Also note that module instances can be nested inside conditionals� provided that the
condition evaluates to a constant at compile time� Since loops are unrolled at compile time�
a loop index counts as a constant� Thus� for example� if we want to use a special module
�special bit� for bit � of the counter� we could write�

bits � array �����

for�i � �� i � �� i � i ��	

if�i � ��

bits�i� � special�bit�carry�i��clear�count�i��carry�i����

else

bits�i� � counter�bit�carry�i��clear�count�i��carry�i����

��� Creating parameterized modules

Compile time constants can also be passed as parameters to modules� This allows us to
write a generic n�bit counter module� which takes n as a parameter�

MODULE nbit�counter�n�carry�in�clear�count�carry�out�

	

INPUT carry�in� clear � boolean�

OUTPUT count �n � ����� � boolean�

OUTPUT carry�out � boolean�

��

bits � array �n � ������

carry � array n �� � of boolean�

for�i � �� i � n� i � i ��

bits�i� � counter�bit�carry�i��clear�count�i��carry�i����

carry�out �� carry�n��

The ability to nest module instances inside conditionals even makes it possible to write
recursively de�ned modules� For example� the following code builds an n�input �or� gate as
a balanced tree of ��input �or� gates�

MODULE or�n�n�inp�out�

	

INPUT inp � array ����n � �� of boolean�

OUTPUT out � boolean�

case	

n � � � out �� inp����

n � � � or��inp����inp����out��

default� 	

x�y � boolean�

or�n�n � �� inp�� �� �n � � � ���� x��

or�n�n � n � �� inp��n � �� �� n�� y��

or���x�y�out��

��� Chained constructor loops

It is commonly necessary to select the �rst element of an array satisfying a certain condition�
or to perform some other computation involving prioritizing an array� A looping construct
called �chain� is provided for this purpose� It acts exactly like a �for� loop� except that the
assignments in one iteration of the loop act as defaults for the assignments in subsequent
iterations� This makes it possible to assign a signal in more than one iteration of the loop�
with the later assignment taking priority over the earlier assignment�

For example� suppose we want to specify a �priority encoder�� that inputs an array of
signals� and outputs the index of the highest numbered signal that is true� Here is a priority
encoder that inputs an array of boolean signals of size �n��

MODULE priority�n�n�inp�out�

	

��

INPUT inp � array ����n � �� of boolean�

OUTPUT out � ����n����

chain�i � �� i � n� i � i ��

if �inp�i�� out �� i�

Depending on the contents of the array �inp�� the signal �out� might be assigned many
times in di�erent iterations of the loop� In this case� the last assignment is given precedence�

The construct�

chain�i � �� i � �� i � i ��

�stmt�

is in every way equivalent to�

default

�stmt with i � ��

in default

�stmt with i � ��

in default

�stmt with i � ��

in

�stmt with i � ��

 Expressions

An �expression� combines signals using a collection of operators� These operators include�

� boolean operators ��and�� �or�� �not� and �xor���

� conditional operators ��if�then�else�� �case� and �switch��

� arithmetic operators ����� ���� ���� � �� �mod�� and shifts�

� comparison operators ����� ���� ���� ����� �����

� set operators �union� integer subrange and inclusion�

� vector operators �concatenation� subrange�

� conversion operations �integer to bit vector and vice versa�

Since signals are sequences of values� all of these operators apply to the elements of a
sequence one�by�one� Thus� if

x � x�� x�� x�� � � �

y � y�� y�� y�� � � �

�	

and � is a binary operator� then

x � y � �x� � y��� �x� � y��� �x� � y��� � � �

The following describes the various operators as they apply to individual values�

��� Parentheses and precedence

Parentheses ���� may always be put around an expression� without changing its value� If
parentheses are omitted� then the order of operators is determined by their priority� The
operators are listed here in order of priority� from �strongest binding� to �weakest binding��

�� �concatenation�

� �unary minus sign�

��������� �mult� div� left shift�right shift�

�� �add� subtract�

mod �integer mod�

in �set inclusion�

union �set union�

�������������� �comparison operators�

� �not�

� �and�

��� �or� exclusive or�

��� �iff�

�� �implies�

� �tuple separator�

�� �conditional�

�� �integer subrange�

��� Integer constants

Integer constants may appear in expressions� and are optionally signed decimal numbers in
the range ���� � � � ���� � ���

��� Symbolic constants

Symbolic constants may be declared by including them in a type declaration� such as�

x � 	ready� willing� able
�

The three symbols ready� willing and able are treated as distinct constants� which are also
distinct from all the integers� A given symbolic constant may not appear in two di�erent
types� For example�

x � 	foo� bar� baz
�

y � 	red� green� foo
�

is illegal� since foo appears in two distinct types� This restriction is made so that programs
may be type checked�

�

��� Boolean operators

The boolean operators are ���� for logical and� ��� for logical or� ��� for logical not� ���
for exclusive or � ���� for implies� and ����� for if�and�only�if �exclusive nor�� The boolean
values are � �false� and � �true��

The ��� operator obeys the following laws�

x � � � �

� � x � �

x � � � �

� � x � x

If neither x nor y is a boolean value� then �x � y� is unde�ned� �recall that an �unde�
�ned� expression yields the set of all possible values� which in the case of a boolean expression
is f���g�� In particular�

� � undefined � undefined

� � undefined � �

That is� �unde�ned� values behave like �X� values in typical logic simulators� You can
write an unde�ned value as simply f���g�

Also note that

� � �� � ��

� � �� � �

�� � �� � undefined

The other boolean operators behave similarly� obeying�

� � x � x

x � � � x

� � x � �

x � � � �

� � x � x

x � � � x

� � x � �x

x � � � �x

x �� y � �x � y

x ��� y � ��x � y�

��

��� Conditional operators �	if
� 	case
 and 	switch
�

The simple conditional operator has the form

x � y � z

It yields y if x is � �true� and z if x is � �false�� If x is not a boolean value� it yields undefined�
The complex conditionals are �case� and �switch�� The expression

case	

c� � e��

c� � e��

���

cn � en�

�default � ed��

is equivalent to

c� � e� � c� � e� � ��� cn � en � ed

if there is a default case� and otherwise

c� � e� � c� � e� � ��� cn � en � undefined

That is� if all the conditions c�� � � cn are false� and there is no default case� then the case
expression is unde�ned�

The expression

switch�x�	

v� � e��

v� � e��

���

vn � en�

�default � ed��

is equivalent to

�x in v�� � e� � �x in v�� � e� � ��� �x in vn� � en � ed

if there is a default case� and otherwise

�x in v�� � e� � �x in v�� � e� � ��� �x in vn� � en � undefined

That is� the switch expression �nds the �rst set vi that contains the value x� and returns
the corresponding ei� The vi can also be single values these are treated as the set containing
only the given value�

��

��� Representing state machines using conditionals

As an example� suppose we have a state machine with one boolean input �choice�� that
starts in state �idle�� then depending on �choice� goes to either state �left� or �right�� and
�nally returns to state �idle�� Using a �case� expression� we could write�

next�state� ��

case	

state � idle � choice � left � right�

default � idle�

�

The equivalent using a switch statement would be�

next�state� ��

switch�state�	

idle � choice � left � right�

default � idle�

�

The values in a switch statement can also be �tuples� �lists of expressions separated by
commas� see section on tuples�� Using this notation� we can write the above state machine
as

next�state� ��

switch�state�choice�	

�idle� �� � left�

�idle� �� � right�

�	left�right
� 	���
� � idle�

�

If we want to add outputs �left enable� and �right enable� to our state machine� to
indicate that the state is �left� and �right� respectively� we can use a switch expression that
returns a tuple� Thus�

�next�state��left�enable�right�enable� ��

switch�state�choice�	

�idle� �� � �left� �� ���

�idle� �� � �right� �� ���

�left� 	���
� � �idle� �� ���

�right� 	���
� � �idle� �� ���

�

This provides a fairly succint way of writing the truth table of a state machine� with current
state and inputs on the left� and next state and outputs on the right�

��

�� Arithmetic operators

The arithmetic operators are

 addition

� subtraction and unary minus sign

� multiplication

� integer division

mod remainder of division

�� left shift

�� right shift

All results of arithmetic on integers are modulo ���� in the range ���� � � � ���� � ��� �

The operators ���� � � and �mod� obey the law

y � �x�y� �x mod y� � x

The remainder is always positive�
The expression �x �� y� is equivalent to �x � �y�� Similarly� �x �� y� is equivalent to

�x � �y��

��� Comparison operators

The comparision operators are

� equal

�� not equal

� less than

� greater than

�� less than or equal

�� greater than or equal

When applied to integers� all return boolean values� The �equal� and �not equal� oper�
ators may also be applied to symbolic constants� Any integer is considered not equal to any
symbolic constant� The inequality operators are unde�ned if either operand is a symbolic
constant�

��� Set expressions

A set is speci�ed as a list of elements between curly brackets�

	 elem� ��� � elem

Note that a set cannot be empty there must be at least one element� Each element can
be one of the following�

�N�B� Unsigned arithmetic on integers of arbitrary precision can be performed on bit vectors� however�

See section on vectors�

��

� An expression x� In this case� the value of x is included in the set� Note that if x itself
represents a set of values� then all elements of x are included�

� A subrange x �� y� where x and y are integer valued expressions� In this case all
elements in the subrange x �� y are included in the set�

� A guarded expression c � e� In this case� the value of e is included in the set if the
condition c is true�

The set x��y can be abbreviated to x��y�
Note that a set expression may represent the empty set in the case that all elements are

guarded� and all the guard conditions are false� In this case the result of the set expression
is undefined� Thus� for example�

	� � foo� � � bar
 � 	foo�bar

	� � foo� � � bar
 � 	foo

	� � foo� � � bar
 � undefined

The reason for this rule is that a set expression is interpreted �with one exception� below�
to represent a non�deterministic choice between the values in the set� A choice between the
empty set of values is not meaningful�

����� The set inclusion operator

There is one operator for testings sets� the set inclusion operator �in�� The expression �x in
y� returns true if the value x is contained in the set y� The �in� operator obeys the following
law�

�x in 	y�z
� � ��x in y� � �x in z��

����� Extension of operators to sets

Most of the operators extend to sets� in a way which is consistent with the interpretation of
sets as independent nondeterministic choices� Generally� a unary operator f obeys the law

f	x�y
 � 	f�x��f�y�

Thus� for example�

������� � ��������

and

�	���
 � 	���

For a binary operator �� we have

	x�y
 � z � 	x � z� y � z

x � 	y�z
 � 	x � y� x � z

��

For example�

� 	��
 � 	��!

and

� � 	���
 � �

� � 	���
 � 	���

�which are actually special cases of the laws given above for �and���
This behavior of sets is somewhat counterintuitive when the equality operator is applied

to sets� For example� the result of

	a�b
 � 	a�b

is not equal to � �true�� The way to understand this is to think of each set as representing
an arbitrary choice among its elements� Thus� the result of the above expression is the set
f�� �g� since we may choose equal elements or we may choose unequal elements�

The exception to the above rule is the �in� operator� which compares a value and a set
of values� In this case� only the left represents a nondeterministic choice� That is�

	x�y
 in z � 	x in z� y in z

However� as stated previously�

x in 	y�z
 � �x in y� � �x in z�

�N�B� This makes �in� the only operator in the language which is not monotonic with
respect to set containment� The �in� operator is only monotonic in its left argument� A
formal veri�cation system that relies on monotonicity �such as ternary symbolic simulation�
should allow only constant sets on the right hand side of �in���

����� Comprehension expressions

A set may be built iteratively using the construction ff�i��i�x��yg� where f�i� is some
expression containing the parameter i� and x� y are integer constants� This expands to the
set ff�l������f�r�g� For example� the expression�

	 i�i � i � ���

is equivalent to the set�

	����"�����

The form ff�i� � i � x��y� c�i�g represents the set of all f�i�� for i � x��y such that
condition c�i� is true� That is�

	f�i� � i � x��y� c�i�
 � 	c�x� � f�x�� ��� �c�y� � f�y�

	�

For example�

	 i � i � ��� � i mod � � �
 � 	����

Or� for example� if y is of type array ��� of boolean� then

	 i � i � ��� � y�i�

represents the set of all indices i such that element i of array y is true� Note that in this case�
if none of the elements of y is true� the result is undefined� This provides a straightforward
way to describe a nondeterministic arbiter� In addition� the contruct provides a way to
describe a nondeterministic choice among all the number in a given range except a speci�ed
number�

x �� 	i � i in ��� � i �� j
�

�� Vectors and vector operators

A vector is a �xed�length string of values� It di�ers from an array in several respects�

� The elements of a vector are not indexed� hence vectors cannot be subscripted�

� Vectors may be concatenated�

� Arithmetic and comparison operators have special meanings when applied to vectors
�they interpret the vectors as unsigned binary numbers��

� Logical operators have special meanings when applied to vectors �they perform �bit�
wise� operations��

A vector x of n elements is denoted by a non�empty� comma�separated list of elements
within square brackets�

�xn� ���� x�� x��

The nth element can be extracted from a vector by the function nth� which takes a vector
as its �rst argument� and an integer as its second argument� The function nth numbers the
elements of the vector from zero on the right� So� for example�

nth�� ������������ �� � �

���� The concatenation operator

A vector may also be constructed using the concatenation operator ����� As an example�

�� �� � �� � �� ��

is a vector of length
� That is� the
 boolean values in this expression are treated as vectors
of length �� and concatenated to produce a vector of length
�

The concatenation operator is associative� Thus� for example�

��� �� �� �� �� �� ��� � �� �� � �� � �� ��

	�

���� Extension of operators to vectors

Logical operators extend to vectors in the obvious way� by applying them one�by�one to the
elements of the vector� That is� if f is a unary operator� then

f�x�y� � �f�x��f�y��

For example�

�������� � �������

Binary logical operators extend similarly� That is� if � is a binary operator� then

�w�x� � �y�z� � �w�y� x�z�

For example�

����� � ����� � �����

A binary logical operator may be applied to two vectors only when the vectors have the
same length�

���� Vector coersion operator

When combining vectors of di�erent length with a binary operator� the shorter vector is
prepended with a vector of zeros to make the vectors the same length� Thus� for example�

�a�b�c�d� � �e�f�

is equivalent to

�a�b�c�d� � �����e�f�

In general� if x and z are booleans� then

�w �� x� � z � �w � �� �� �x � z�

x � �y �� z� � �� � y� �� �x � z�

The exceptions to the above rule are

� the arithmetic operators�

� the comparison operators� and

� the conditional operator

� the union and �in� �set inclusion� operators

	�

���� Arithmetic on vectors

Arithmetic operators applied to vectors treat the vectors as unsigned binary numbers� If the
vectors are of unequal length� the shorter vector is prepended with a vector of zeros to make
the lengths equal� Thus

��������� �����

is equivalent to

��������� ���������

The arithmetic operator is then applied to the unsigned binary numbers represented by
the two vectors� yielding an unsigned binary representation of the result� of the same length
as the argument vectors� The operators are the same as they are on integers� except the
result is modulo �n� where n is the vector length� and the result is always positive �in the
range � � � � ��n � ���� For example�

���������

 ���������

� ���������

and

���������

 ���������

� ���������

�N�B� Since the arithmetic is modular� it doesn�t actually matter whether we look at it
as signed or unsigned� except that extension is always by zeros� It would make sense to
introduce a special kind of vector that sign�extends rather than zero�extending� to allow
signed arithmetic� Or at least a sign�extension operator��

���� Comparison operators on vectors

Comparison operators on vectors operate in the same manner as arithmetic opertors� the
shorter vector is prepended with zeros� and the resulting vectors are compared as unsigned

binary numbers�

���� Vector sets

Important note� The �union� operator can be applied to vectors� to produce a set of vectors�
In particular� one can express a nondeterministic choice between the vectors ����� and �����
by writing either

����� union �����

		

Note that the following is not legal� however�

	������ �����

As with other operators� vectors are padded with zeros to the same length before being
unioned� The �in� operator may also be applied to vetor sets� In general�

�a�b� in ��c�d� union �e�f��

is equivalent to

��a�b� � �c�d�� � ��a�b� � �e�f��

��� Coercion of scalars to vectors

An integer expression is coerced to a vector expression whenever�

� it is combined with a vector by a binary operator or conditional� or

� it is assigned to a vector of signals

The length of the vector representation of an integer is 	� bits� The shorter of the two
argument vectors is then padded with zeros before applying the opertion�

������� ��

yields a 	� bit vector representation of the number ���

���� Explicit coercion operators

An vector expression may be explicitly coerced to a vector of a given length by applying the
�bin� function� The expression

bin�n�val�

causes the vector �val� to be either shortened to length n� or padded with zeros to length
n� If �val� is an integer� is is �rst coerced to a 	� bit vector� and then truncated or padded�
Thus� for example

bin������ � �������

bin������ � ���������

and

������� bin������

is equal to

���������

 ���������

� ���������

Note that coercing a negative integer to longer than 	� bits will not produce the intuitively
correct result� since �bin� treats its argument as an unsigned number� The �sbin� operator
is equivalent to �bin�� except that it sign extends rather than zero extending� Thus� for
example �sbin�������� is a string of �
 ones�

	

���� Coercion of array variables to vectors

A reference to an variable of type �array� without a subscript will be converted to a vector�
For example� if x is declared�

x � array ���� of boolean�

then the expression �x� is equivalent to

�x����x����x����x����

Note that the elements of x occur in the order given by the type declaration� Thus� for
example� if x is declared�

x � array ���� of boolean�

then the expression �x� is equivalent to

�x����x����x����x����

This has consequences when combining �big endian� and �little endian� arrays� For
example� if we have

x � array ���� of boolean�

y � array ���� of boolean�

Then the expression �x � y� is equivalent to

�x��� � y���� � �x��� � y���� � �x��� � y���� � �x��� � y����

The only di�erence between big�endian and little�endian binary numbers is the order
in which they are converted to vectors �which determines which element of the array is
considered most signi�cant and least signi�cant��

����� Array subranges

A array variable may be explicitly coerced to a vector by specifying a subrange of bit indices�
For example� the expression

x���� �

is equivalent to

�x����x����x����x� ��

Similarly�

x� ����

is equivalent to

�x� ��x����x����x����

Subranges may be used� for example� to extract bit�elds� or to reverse the declared order
bits in an array�

	�

����� Assignments to vectors

Assignments may also be made to vectors of signals� When a value is assigned to a vector�
the following rules apply�

� An integer value on the right hand side is �rst coerced to a 	� bit vector�

� A vector value on the right hand side is padded or truncated to the same length as the
left hand side of the assignment�

For example�

�x�y� �� ��������

is equivalent to

x �� ��

y �� ��

That is� the leftmost �high order� bit is dropped to make the vectors the same length�
On the other hand

�x�y� �� ��

is equivalent to

x �� ��

y �� ��

since the integer is coerced to a vector� and then truncated to length ��
The assignment

�x�y�z� �� ������

is equivalent to

x �� ��

y �� ��

z �� ��

since the vector on the right�hand�side is zero�extended�
Important note� A vector of signals may not be assigned a nondeterministic value�

	�

����� Assignments to arrays

An unsubscripted array reference on the left hand side of an assignment is converted to a
vector �see above�� This means that the result of the assignment depends on whether the
vector is �big�endian� or �little�endian�� For example� if�

x � array ���� of boolean�

then

x �� ������

is equivalent to

�x����x���� �� ������

which is equivalent to

x��� �� ��

x��� �� ��

On the other hand� if�

x � array ���� of boolean�

then

x �� ������

is equivalent to

�x����x���� �� ������

which is equivalent to

x��� �� ��

x��� �� ��

����� Vectors as inputs and outputs

The above rules regarding vector assignments have consequences when vectors are passed as
parameters to modules� For example� suppose we have a module�

MODULE foo�x�

	

INPUT x � array ���� of boolean�

���

Suppose we create an instance of �foo� as follows�

	�

bar � foo�y��

This is equivalent to�

bar�x � array ���� of boolean�

bar�x �� y�

���

The meaning of this depends on whether �y� is big�endian or little endian� If �y� is
declared in the same order as �bar�x��

y � array ���� of boolean�

then we have

bar�x��� �� y����

bar�x��� �� y����

On the other hand� if �y� is in the opposite order�

y � array ���� of boolean�

then

bar�x��� �� y����

bar�x��� �� y����

That is� passing a �big�endian� array to a �little�endian� parameter� results in a reversal
of the index order of the elements� What remains constant is the value as a binary number�

Note that as a result of the above rules for vector assignment� inputs may be truncated�
or zero�extended� For example� if we instantiate �foo� as follows�

bar � foo����������

the e�ect will be

bar�x��� �� ��

bar�x��� �� ��

since the vector ������� will be truncated to ������ On the other hand�

bar � foo������

will give us

bar�x��� �� ��

bar�x��� �� ��

	�

since the integer � will be coerced to the vector ������
The same remarks apply to outputs� That is� suppose we have a module

MODULE zip�y�

	

OUTPUT y � array ���� of boolean�

���

An instance

bar � zip�x��

is equivalent to

bar�y � array ���� of boolean�

x �� bar�y�

This means that if �x� has length shorter than �bar�y�� then �x� will get the low order
bits of �bar�y�� Similarly� if �x� is longer� then it will get �bar�y� extended with zeros� If
�x� is an array declared in the opposite order to �bar�y�� then �x� will get �bar�y� reversed�
and so on�

����� Iteratively constructing vectors

A vector may be constructed iteratively using the construction �f�i��i�l��r�� where f�i�
is some expression containing the parameter i� and l� r are integers� This expands to the
vector �f�l������f�r��� For example� the expression�

� i�i � i � ��� �

is equivalent to�

�����"����� �

On the other hand�

� i�i � i � ��� �

is equivalent to�

�� ����"�����

	�

����� Reduction operators

The associative operators �� �concatenation�� �� �� �� � � and merge may be applied to
vectors as �reduction� operators � For example�

��w�x�y�z�

is equivalent to

�w � x � y � z�

and so on� Reduction operators may be combined with the iterated vector constructor� For
example� to compute the sum of the �rst �ve squares� we could write�

� i�i � i � ��� �

Note that for the non�commutative operator ��� the order of the range speci�cation
matters� For example

��� i�i � i � ��� �

produces �����"����� �� while

��� i�i � i � ����

produces �� ����"������ Also note that using �� as a reduction operator makes it
possible to construct a vector by repeating a pattern� For example�

��� ����� � i � �����

is equivalent to ��������������
Reduction operators do not coerce their arguments to vectors� A reduction operator

applied to a scalar operand has no e�ect� Thus� � � � �and not �� fortunately!��

����� Vectors as conditions

If a vector appears as the condition in a conditional expression or statement� then the logical
�or� of the elements of the vector is taken as the condition� Thus� for example�

�x�y�z� � foo � bar

is equivalent to

�x � y � z� � foo � bar

In particular� this means that when a bit vector is used as a condition� it is considered to be
true if and only if it is non�zero�

�

�� Assertions

An assertion is a condition that must hold true in every possible execution of the program�
Assertions in SMV are written in a �linear time� temporal logic� that makes it possible to
succinctly state propositions about the relation of events in time�

���� Temporal formulas

Temporal formulas may contain all of the usual expression operator of SMV� plus the tem�
poral operators G� F� X and U� The meanings of these operators are as follows�

� X p is true at time t if p is true at time t� ��

� G p is true at time t if p is true at all times t� � t�

� F p is true at time t if p is true at some time t� � t�

� p U q is true at time t if q is true at some time t� � t� and for all times � t� but � t�
p is true�

A temporal formula is true for a given exectution of the program if it is true at the initial
time �t � ���

���� The assert declaration

A declaration of the form

assert p�

where p is a temporal formula� means that every execution of the program must satisfy the
formula p� An execution that does not satisfy the formula is called a failure of the program�

An assertion may be given a name� For example�

foo � assert p�

This does not change the semantics of the program� but provides an identi�er �foo� for
refering to the given assertion� The code

foo � assert p�

foo � assert q�

is equivalent to

foo � assert p � q�

�

���� Using� � � Prove declarations

A using� � � prove declaration tells the veri�cation system to use one assertion as an assump�
tion when verifying another� A declaration of the form

using foo prove bar�

where foo and bar are identi�ers for assertions� tells the veri�cation system to use assertion
foo as an assumption when proving assertion bar� A list of assumptions may also be used�

using a��a������an prove bar�

Such a �proof� may not contain circular chains of reasoning� Thus� for example�

using foo prove bar�

using bar prove foo�

is illegal�

�� Re�nements

N�B� This section is incomplete and under construction

The mechanism of �re�nement� in SMV allows one model to represent the behavior of
a design simultaneously at many levels of abstraction� It also allows one to verify in a
compositional manner that each level of the design is a correct implementation of the level
above�

The basic object in the re�nement system is a �layer�� A layer is a named collection of
assignments� For example�

layer P � 	

x �� y z�

next�z� �� x�

represents a layer named P� which contains assignments to signals x and z� Within a layer
the single assignment rule applies� That is� any given signal may be assigned only once�
However� a signal may be assigned in more than one layer�

One layer may be declared to �re�ne� another� The syntax for this declaration is�

P refines Q�

where P and Q are names of layers� If P re�nes Q� then an assignment to any signal s in
P supercedes the corresponding assignment to s in Q� For example� suppose that layer Q is
de�ned as follows�

layer Q � 	

y �� z�

next�z� �� � � y�

�

The net functional e�ect of these declarations is equivalent to�

x �� y z�

y �� z�

next�z� �� x�

That is� the assignment to z in P supercedes the assignment to z in Q� because P re�nes Q�
Any assignment that is superceded in this way becomes a part of the speci�cation� That is�
in our example� every trace of the system must be consistent with

next�z� �� � � y

at all times� This proposition is given the name �z Q�� meaning �the assignment to signal
z in layer Q�� Note that the property z Q is true in the case of our example� since at all
times

x � yz � zz � ��z

Thus� we can infer that every trace of our system is also a trace of the system consisting
only of the layer Q� Put another way� our system satis�es speci�cation Q �and also� trivially�
speci�cation P��

���� The re�nement relation

The re�nement relation between layers is by de�nition transitive� Thus if we have�

P refines Q�

Q refines R�

then by implication

P refines R�

The re�nement relation may not be circular� Thus

P refines P

is an error� The implementation of a signal is the assignment to that signal whose layer is
minimal with respect to the re�nement relation� If no unique minimal assignment to a signal
exists� the program is in error�

������ Circular assignments

A circularity error occurs if there is a cycle of zero�delay assignments amongst the union of
all assignments in all layers� Thus for example� the following program�

	

layer Q � 	

x �� y�

layer P � 	

y �� x�

next�x� �� y�

P refines Q�

is erroneous� even though it is functionally equivalent to the non�circular program�

y �� x�

next�x� �� y�

���� Compositional veri�cation

In order to verify a given assignment x P� where x is a signal and P is layer� it is allowed
to use any other assignment y Q as an assumption �with one proviso� below�� The syntax
for this is�

using x��P prove y��Q�

In this case� x P is refered to as the �assumption� and y Q as the �guarantee�� The one
restriction on the use of this statement is that if x and y are identical� then P must re�ne
Q� Other than this� any use is allowed� including circularities� For example� it is legitimate
to write�

using x��P prove y��P�

using y��P prove x��P�

As a example� suppose we have�

layer P � 	

x �� ��

y �� ��

layer Q � 	

init�x� �� ��

next�x� �� y�

y �� x�

Q refines P�

using x��P prove y��P�

using y��P prove x��P�

That is� in essence� the �using� declarations say that in order to prove that x is always zero�
we can assume that y is always zero� and vice versa�

���� The using� � � prove declaration

This declaration has the form form

using

p��� p��� ���� p�k

prove

q��� q��� ���� q�m

�

where p �� p �� ���� p k and q �� q �� ���� q m are properties� The meaning of the decla�
ration is that properties p �� p �� ���� p k are to be taken as assumptions when proving
the properties q �� q �� ���� q m�

If assumptions are not declared for a given property� then that property inherits the
assumptions of its parent� For example� if we wish to assume property foo when proving
bar�a� bar�b and bar�c� it is su�cient to declare

using foo prove bar�

If there is no declaration of assumptions for bar�a� then it will inherit the assumption of
foo from its parent� bar� Note� however� that if we include the declaration

using baz prove bar�a�

then only property baz is used to prove bar�a�
Similarly� if we wish to assume a collection of properties foo�a� foo�b and foo�c when

proving a property bar� it is su�cient to declare�

using bar prove foo�

It is allowed to use several assignments to the same signal as assumptions� For example�

using x��P�� x��P� prove y��P

In this case� the conjunction of the two assumptions is used�

���� Abstract signals

In some cases� it may be necessary to introduce auxiliary signals that are used as part of
the speci�cation� or part of the proof� but do not belong to the system being veri�ed� Such
signals are introduced by the keyword abstract� as follows�

abstract �signal� � �type�

The implementation of a non�abstract signal may not depend on an abstract signal�

�� Syntax

This section gives a BNF grammar for the SMV language�

�

���� Lexical tokens

A program is a sequence of lexical tokens� optionally separated by whitespace� A token is
either an atom� a number� or any of the various keywords and punctation symbols that
appear in typewriter font in the grammar expressions that follow�

An atom is

� A string consisting of alphanumeric characters and the charaters� and the characters
�"� and � �� beginning with an alphabetic character� or

� A string containing any character except the space character� delimited by an initial
backslash ��n�� and a �nal space character� The delimiters do not count as part of the
atom�

As an example �foo ���� is an atom� It is exactly equivalent to �nfoo ��� � �note the
terminating space character�� Using backslash and space as delimiters allows any character
�including backslash� but excluding space� to be included in an atom�

A number is a string of digits� Whitespace is any string of space characters� tab characters
and newline characters�

���� Identi�ers

The grammar rules for an identi�er is as follows�

id�� atom
j id � atom
j id � expr �

���� Expressions

The grammar rules for an expression are� in order of precedence� from high to low �note �

stands for the empty string��

expr�� id
j number
j f atom�� � ��atom g
j expr �� expr
j ��jj�j�j�j�� expr
j expr �� expr
j expr ��j�j��j��� expr
j expr �j�� expr
j expr mod expr
j expr in expr
j expr union expr
j expr ��j �j�j��j�j��� expr
j � expr
j expr � expr

�

j expr ��j�� expr
j expr ��� expr
j expr �� expr
j expr � expr � expr
j expr �� expr
j � expr �
j � expr�� � ��expr �
j � expr�� � ��expr � atom � expr �� expr �
j bin � expr � expr �

All operators of the same precedence except ���� associate to the left� For example�
a � b � c is parsed as �a � b� � c� The ternary ���� associates to the right� Thus

a � b � c � d � e

is parsed as

a � b � �c � d � e�

���� Types

The grammar rules for types are�

type�� boolean

j expr �� expr
j f atom�� � ��atom g
j array expr �� expr of type
j atom � expr�� � ��expr �

���� Statements

The grammar rules for statements are�

stmt�� lhstup � type �

j lhs ���j��� expr �
j f block g
j if � expr � stmt
j case f cblk g
j switch � tuple � f cblk g
j �forjchain� � atom � expr � expr � atom � expr � stmt

lhs�� id
j next � id �

j � lhstup �

lhstup�� �

j lhs
j lhstup lhs

�

block�� stmt
j block stmt

cblk�� expr � stmt
j cblk expr � stmt

���� Module de�nitions

The grammar rules for module de�nitions are�

module�� module atom � params � f block g

params�� �

j atom
j params � atom

��� Programs

The grammar rules for programs are�

prog�� �stmt j module�
j prog �stmt j module�

�

