Introduction to Formal Specification

JUNBEOM YOO
Jjbyoo@knokuk.ac.kr

Ver. 2.0 http://dslab.konkuk.ac.kr

DI\'F/'\IFI'\V'\/‘A
MNCITCICIILC

“ A Specifier’s Introduction to Formal Methods “

— Jeannette M. Wing, Carnegie Mellon University
— IEEE COMPUTER, 1990

A Specifier’s
Introduction
to Formal
Methods

[eannette M, Wing, Cornegie Mellan University

Applied to compuater
sysiems development, -
formal methods
provide
mathematically based po
technigues that '
describe system
properties. As such,
they present a
Tramework for
systematically

specitying, developing. !
and verifying svstems,

Konkuk University

N+
L

Ff\ If'\'l'
VUl L

ents

Overview of Formal Methods
Formal Specification Language
Pragmatics

 Some Examples

e Bounds of Formal Methods

e Concluding Remarks

Overview of Formal Methods

- Definition
- Features

- Applying Scope
- Pragmatic Considerations

Konkuk University

e Formal Methods

— Mathematically based techniques for describing system properties
» Have a sound mathematical basis
« Typically given by a formal specification language

— Provide frameworks for systematically
» Specifying,
« Developing, and

» Verifying systems

Konkuk University

EI\ "\'l'l Naa¥Ye
I TdluUlitto

Formal methods provide means of precisely defining notions like
— Completeness

— Consistency

— Specification

— Implementation

— Correctness

« Formal methods address a number of pragmatic considerations
— Who
— What
— When
— How it is used?

— ex) System designers use a formal method to specify a system'’s desired
behavioral and structural properties.

Konkuk University

.
\ Wil a

A~nl ~n C~ANnAa
APMIYITIYy oLUPYC

« Any stage of system development can make use of formal methods
Initial statement of a customer’s requirements

System design

Implementation

Testing

Debugging

Maintenance

Verification

Evaluation

© No A wh =

 When used early,
— Can reveal design flaws

 When used later,
— Can help determine the correctness of a system implementation
— Can help determine the equivalence of different implementations

A 4+
LiC

ragima

rt\ t‘:
CONSsi

e Pragmatic considerations
— A set of guidelines

— Formal methods should tell the user
1. Circumstances under which the method should and can be applied
2. How it can be applied most effectively

« Formal Specification
— One tangible product of applying formal methods
— More precise and concise than informal specifications

— A formal method’s specification language may have Tool Supports
1. Syntax analysis
2. Semantic analysis with machine aids

Formal Specification :
Use mathematics to specify the desired properties of a computer
system with support of automatic tools

Konkuk University 8

Formal Specification

Language

- Definition

- Syntactic Domains

- Semantics Domains

- Satisfies Relation

- Properties of Specifications

- Proving Properties of Specificands

Konkuk University

* Formal specification language:

f < Syn, Sem, Sat >, where \
* Syn : syntactic domain
» Sem : semantic domain
e Sat: Sat € Syn x Sem
— syn is a specification of sem
\ — sem is a specificand of syn

/

e Considerations

— In principle, a formal method is based on some well-defined formal
specification language
— Formal specification language provides a formal method’s mathematical basis

— Formal methods differ because their specification languages have different
syntactic and/or semantic domains

Konkuk University 10

Syn

O
O
Q.
n

a set of symbols

» Constants

» Variables

* Logical connectives
a set of grammatical rules for combining symbols into well-formed sentences
(semantics)

 Ex) "'x.P(x) = Q(x) : correct!!
Vx. =2 P(X) = Q(x) : wrong!!

Visual Specification : Graphical elements are also available
* boxes, circles
* lines, arrows

called Specification

Konkuk University 11

SCIllIdIILUC DOUlidlillo

e Sem

— Formal specification languages differ most in their choice of
semantic domains (Specificand) such as:

» Abstract-data-type specification languages
— algebra, theory, program

» Concurrent and distributed systems specification languages
— state sequence, event sequence, state and transition sequence
— stream, synchronization tree, partial order
— state machine

* Programming languages
— function from input to output, computation
— predicate transformation
— relation, machine instruction
— called Implementation

Konkuk University

12

adlISIcSS NCIdllVIl]
e Sat
— Specifies different aspects of a single specificand using different specification

languages:
1. Behavioral specification aspect
— Constraints on observable behavior of specificands
— System'’s required functionality (mapping from inputs to outputs)
— Others: fault tolerance, safety, security, response time, space efficiency
2. Structural specification aspect
— Constraints on the internal composition of specificands
— Various hierarchical and uses relations
— Call graph, data-dependency diagram, definition-use chain

3;1 lll , _\T&—-—‘;] D)
_ - *\\ ! . \\I /
r// 3"—;8;19 \HMM__H el

13

'h

Dy
Pl

:h

)

m
§5'
wn

oper Spec

» Specification language should be defined as

1. Unambiguous
« If and only if it has exactly one meaning
» Any natural languages and graphs are not formal inherently
2. Consistent
« If and only if its specificand set is non-empty
« Cannot derive anything contradictory from the specification
« There is some implementation that will satisfy the specification
3. Complete
* Need not be complete in the sense used in mathematical logic
 Relatively-completeness properties might be desirable
 In practice, we must usually deal with incomplete specifications

» A specification has implementation bias if it places unnecessary constraints
on its specificand

Konkuk University 14

Dy
Pl

'h

7~\\ 7

UV

'aY aYe

11D

:h

.|.
al

U)

ng Proper Spec

Most formal specification languages have logical inference systems

— Can prove properties from the specification about specificands
— Can predict system'’s behavior without executing or building the system
— Can be mechanized

« Theorem proving

* Model checking

« called Formal Verification (Part II)

Konkuk University

15

Users
Uses
Characteristics

Konkuk University

16

What does this
X pregram do?
I I N\ re Client
UOoLIS re:.:tfem:'t D |
i—-bl?il—b — SDEGITIC‘;IDH — —{Erej_é_raa_r_n_:)
) 5 kind Of users Customer Specifier Implementar
1. Specifier : write, evaluate, analyze, and
refine specifications i Doss s
. .o satisfy this
2. Customer : hired the specifiers e ssecification?
3. Implementer : realize a specification Figure 2. Specifcation users
4. Client : use a specified system s
5. Verifier : prove the correctness of implementations e e s

« A formal method’s guidelines should identify
1. Different types of users the method is targeted for
2. Capabilities the users should have
3. Application domain of the method

Konkuk University

I It"f\t"
UoSCO

« The greatest benefit comes
— from the process of formalizing
— rather than the end result

e Can apply formal methods in all phases of SW development
1. Requirements analysis

System design

System verification

System validation

System documentation

System analysis and evaluation

o vk WN

« These applications should be considered as an integral one, framework

Konkuk University

I It"f\t"
UOC O 1 Requirements Analysis

« Formal methods help clarify customer’s informally stated requirements
— Crystallize customer’s vague ideas

— Reveal
« Contradictions,
« Ambiguities, and
« Incompleteness in the requirements

« On the specification, both customers and specifiers can see
— Whether it reflects customer’s intuition
— Whether specificand set has desired set of properties

| |
|

SesS o System Design

Two important activities during design
1. Decomposition
2. Refinement

Decomposition
— Process of partitioning a system into smaller modules
— Interface specifications specify interfaces between modules

Refinement
— Process of refining modules at one level to modules at a lower level
— Each refinement step should prove that a specification(program) at one level
satisfies a higher level specifications
* Program transformation, Program synthesis, Inferential programming

— Formal methods and formal specification languages can state proof
obligations(assumptions) precisely

Konkuk University 20

I It"f\t"
USCD 3. System Verification

« System verification
— Showing that a system satisfies its specification

e Formal Verification
— Using formal specifications to verify a system
— Cannot completely verify an entire system,

— But can certainly verify smaller and critical part of system.
» Gypsy, HDM(Hierarchical Development Method), FDM(Formal Development Method)
* M-EVES(Environment for Verifying and Emulating Software)
» HOL(Higher Order Logic)

« Difficulties in formal system verification
— Should state explicitly assumptions about its environment : Not easy!
— "Bounds of Formal Methods”

Konkuk University 21

uUSesS 4 System Validation

* Formal methods can aid in system testing and debugging

» Specification alone :
— Used to generate test cases for black-box testing
— For boundary condition tests

« Specification along with implementation
— Used to generate test cases

AAA A ~e~all, ~ I~ A ~AA
— AUUILUlally, CLall e uscu

-~ e f

Path testing

Unit testing
Integration testing
Etc.

Konkuk University

22

I It"f\t"
U DL S 5. System Documentation

« Formal specification
— Captures “What"” rather than "How"
— Serves as a communication medium between
» Clients and Specifiers
« Specifiers and Implementers
« Among members of an implementation team

| |
|

SES = System Analysis and Evaluation

System analysis and evaluation
— After system has been built and tested,
— Critical analysis of its functionality and performance should be done

* Does the system do what the customer wants?
» Does it do it fast enough?

— Formal method used in the development can help formulate and answer
these questions

Most formal methods have not yet been applied to specifying large-
scale software and hardware systems
— Size of the specification
— Complexity of the specificand
 Internal complexity

» Interface complexity

Konkuk University

24

M

-
Q)

-
Q)
0)
—
M
-
—t,
(@)
W

n

Formal method’s characteristics influence the style in which a user applies
it

— Whether its language is graphical or textual

— Whether its underlying logic is first-order or high-order

— Etc.

Formal method reflects a combination of many different characteristics:
1. Model-oriented vs. Property-oriented

2. Visual languages

3. Executable

4. Tool-supported

CNaracCt)

er ICS 1. Model-oriented vs. Property-oriented

 Model-oriented methods
— Define system’s behavior directly by constructing a model of the system

1. For sequential systems
» Parnas’ statemechines, VDM, Z, SCR, NuSCR
2. For concurrent and distributed systems
o Petri Nets, CCS, Hoare's CSP, Unity, I/O automata
» Temporal logic, Lamport's transition axiom method, LOTOS

* Property-oriented methods
— Define system'’s behavior indirectly by stating a set of properties using axioms

1. Axiomatic methods
» lota, OBJ, Anna, Larch

2. A|gebraic methods Algebraic specification of abstract data types can handle :
- Error values
e Act One - Nondeterminism
- parameterization

Konkuk University 26

ICS 2. Visual Languages

Visual specification languages
— Any one who contains graphical elements in their syntactic domains

Many examples

Petri nets : for concurrent systems

— Statecharts : for specifying state transitions in reactive systems

Semiformal methods

Multiple interpretations or text attached
Jackson's method (UML)

SASD, OOD

Requirements Engineering Methodology

Konkuk University

Full

I N
h.

Message _arrvad | i Busy
3 e
| Empty 1
(- |
Dane
‘“—-..________ |
Message _removed

| Mes:

/One-slot butfar |
oy

sage _serviced

Figure 3. State chart specification of a one-slot buffer.

27

cnNaracter DLILD 3. Executable

Executable Specification
— Can run on a computer

« Specifiers can use executable specifications
— To gain immediate feedback about the specification itself.
— To do rapid prototyping
— To test a specificand through symbolic execution of the specification

« Many examples
— Statecharts
— OBJ
— Prolog, Paisley
— Most recent ones

ICS 4. Tool-supported

* Model-Checking tools
— Let users construct a finite-state model of the system
— Then show a property holds in each state or state transition of the system
— EMC, SMV, SPIN

* Proof-checking tools
— Let users treat algebraic specifications as rewrite rules
e Larch Prover, Affirm, Reve
— Handling first-order logic
» Boyer-Moore Theorem Prover, FDM, HDM, m-EVES
— Handling higher-order logic
« HOL, LCF, OBJ

Abstract Data Type: Z, VDM, Larch
Concurrency: Temporal Logic, CSP, Transition Axioms

Konkuk University

30

v\ \V4aY a'a

SQUITIT LAITIPYICO

e 6 well-known formal methods (in 1990s)
— Abstract data type : Z, VDM, Larch
« Symbol table example
— Concurrency : Temporal Logic, CSP, Transition Axioms
« Unbounded buffer example

« When specifying the same problem with different methods, they look

— Remarkably similar

— Or totally different

— Due to
» Nature of the specificand
« Simplicity of the specificand
« Methods themselves

—
L,

\/
\'4

M
LJ

N

\'

3 different specifications for a symbol table

7z

ST = KEY 4> VAL
INIT:
st’: ST

st'={}

INSERT-
st,st": ST
k:KEY
v: VAL

k € dom(st) ~

st'=stuki=v]

LOOKUP
st st ST
k: KEY
v’ VAL

k € dom(st) ~
v’ =st(k) A
st’=st

DELETE
st st": ST
k:KEY

ke dom(st)
st'= k)< st

Figure 4. Z specification of a symbol
table,

VDM

ST = map Key to Val

INIT()
ext wrst: ST
postsi’ = [}

INSERT(& : Key,v: Val)
ext wrsr: ST

pre ke dom st

postst’ =st U (k > v]

LOOKUP(k: Key)v:
ext rd st: ST

pre k € dom sr
postv’ = si(k)

Vali

DELETE(& : Kev)
ext wrsr: ST
pre k € dom 51
postst’ = {k} < st

Figure 5. VDM specification of a sym-

bol table.

Konkuk University

/]

I ﬁlﬁﬁlf'\
I, LAirCn

Larch

symbol_table is data type based on S from SymTab

init = proc () returns (s: symbol_table)
ensures s’ = emp A new (s)

insert = proc (s: symbol_table k: key,v: val)
requires ~ isin(s,k)
modifies (s)
ensures s° = add(s.k,v)

lookup = proc (s: symbol_table.k : key) returns (v: val)
requires isin(s, k)
ensures v'= find(s.k)

delete = proc (s: symbol_table, k : key)
requires isin(s,k}
‘modifies (s)
ensures s’ = rem(s.k)

end symbol_table

SymTab: trait
introduces
emp: = 8
add: S K,V = 8§
rem: $,K - 8
find: S, K -V
isin: $,K - Bool

asserts

S generated by (emp, add)

S partitioned by (find, isin)

for all (s: S, k.kl : K,v: V)
rem(add(s,k,v).k1} == if k = k1 then s else add{rem({s,k},k.v)
find(add(s k,v).k1) == if k = k1 then v else find(s,k1)
isin(emp,k) == false
isin{add(s.k.v).k1) == (k = k1) v isin(s k1)

implies
converts (rem,find,isin) exempting (rem{emp).find(emp))
end SymTab

Figure 6. Larch specification of a symbol table.

Model-oriented

Base (Also property-oriented) Model-oriented Property-oriented
Readability Good Normal Bad
Specifiability Bad Normal Good
Size Normal Compact Long

i Syntax Analyzer
Tool-Support Proof Checker B N/A Larch Prover

Konkuk University 33

Concurrency:
Temporal Logic, CSP Transition Axioms

« 3 different specifications for an unbounded buffer

Transition Axioms

Temporal Logic
maodule BUFFER with subroutines PUT, GET

state functions:
({right!m) = & {left!m))]
buffer : f messs
({rightim) A© & (right!m"}) = & ((leftim) » © & (eftim")) @ p:’f: message or NULL
({leftim) A @& {lefttm’)) = (m = m’) (3) gval - message or NULL
((leftim)) = O (rightim}) @ initial conditions:

lbuffert =0
Figure 7. Temporal logic specification of an unbounded buffer. uffe

safety properties

1.{a) at{PUT) = parg = PUT.PAR
(b) after(PUT) = parg = NULL
2.(a) at{GET) = gval = NULL
(b} after{GET) = GET.PAR = gval

CSP 3. allowed changes to buffer
parg when in(PUT)
gval when in(GET)
(a) | BUFFER]:in(PUT} ~ parg # NULL —
BUFFER=P _, parg’ = NULL A buffer’ = buffer * parg
where P __ = left?m — P_,_ (b) u[BUFFER]:fﬂ[GET}lA gval :JNULL_A,!bu}ferb 00—
and P ., = (left?n = P o n ., | Tightlm — Ps) gval’ # NULL A buffer = gval’ = buffer

BUFFER sat (right < left) A (if right = left then left ¢ ref else right € ref) liveness properties

4. in{PUT) A lbufferl< min ~2 after(PUT)
Figure 8. CSP program and specification of an unbounded buffer. 5. in(GET) A lbufferl> 0 ~> after(GET)

Figure 9. Transition axiom specification of an unbounded buffer.

Konkuk University

34

Concurrency:
Temporal Logic, CSP Transition Axioms

_ Temporal Logic (1980) CSP (1985) Transition Axioms (1983)

Base
Readability
Specifiability
Size

Tool-Support

Property-oriented

Normal
Bad

Compact

Many related tools

Model-oriented (for specifying)
Property-oriented (for proving)

Normal
Bad

Compact

Proof Checker B

Konkuk University

Model-oriented (for specifying)
Property-oriented (for proving)

Good
Good
Long

N/A

35

Bounds of Formal Methods

Between the Ideal and Real Worlds
Assumptions about the Environment

Konkuk University

36

I

+hA TA
LIIT 1Ul

€d

Formal methods are
— Based on mathematics

dllu I\Cdl vVUIIUDS

— But not entirely mathematical

Two important boundaries between the mathematical and the real world

Informal
requirements

Y

Formal
specification

Abstract
model

Figure 10. Mapping informal require-

ments for a formal specification.

Figure 11. Mapping the real world to
an abstract model.

Konkuk University

37

N\ c
AS

I Vv

~+ Ir'\ BE s -|-|r\ muysziyr m A
IIIIJ J L

tne cnvironment

Oons aoo

There is a boundary between a real system and its environment
— Environment is out of the scope of formal specifications (Open System)
— Except, Gist specification language
« Environment = System
« Environment is a set of assumptions
« System is a set of constraints on its behaviors placed by specifiers

— Implicit assumptions in programming language areas
— Specifiers should make explicit as many assumptions as possible.

Hazard Analysis

— Identify a system'’s safety-critical components
 FTA, FMEA, HAZOP

— A complementary technique to formal methods

Formal Methods
Challenges

Konkuk University

39

C
=

sl &'

~ Al N/
ulllidl

A+
IVICL

AAI‘
1HOUUDS

In a strict mathematical sense,
— Formal methods differ greatly from one another
In a practical sense,
— Formal methods do not differ radically from one another

Formal methods can be used
1. Identify

« Deficiencies in informal requirements
» Discrepancies between a specification and an implementation
« Errors in existing programs and systems
2. Specify
* Medium-sized and nontrivial problems
e Functional behavior
3. Provide
» Deeper understanding of the behavior of systems

Konkuk University

40

1.

2.

f‘lnl
|\

1dlENgES

Specifying nonfunctional behavior

— Reliability, safety, real-time, performance, human factors
Combining different methods

— Domain specific + General

— Formal + Informal

Building more usable and robust tools

— Can manage large specifications

— Can perform more complicated semantic analysis
Bu |r*lmg cpnrlﬂrnhnn libraries

— Reuse in general or domain-specific purpose
Formal methods based software development
Scale up existing techniques

Educating and training

