
Functional testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 1

Learning objectivesLearning objectives

• Understand the rationale for systematic (non• Understand the rationale for systematic (non-
random) selection of test cases

Understand the basic concept of partition testing – Understand the basic concept of partition testing
and its underlying assumptions

Understand why functional test selection is a • Understand why functional test selection is a
primary, base-line technique

Wh t ifi ti b d titi t – Why we expect a specification-based partition to
help select valuable test cases

Distinguish functional testing from other • Distinguish functional testing from other
systematic testing techniques

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 2

Functional testingFunctional testing

• Functional testing: Deriving test cases from • Functional testing: Deriving test cases from
program specifications

• Functional refers to the source of information used in test • Functional refers to the source of information used in test
case design, not to what is tested

• Also known as:Also known as:
– specification-based testing (from specifications)
– black-box testing (no view of the code)black box testing (no view of the code)

• Functional specification = description of
intended program behaviorintended program behavior
– either formal or informal

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 3

Systematic vs Random TestingSystematic vs Random Testing

• Random (uniform):• Random (uniform):
– Pick possible inputs uniformly
– Avoids designer biasAvoids designer bias

• A real problem: The test designer can make the same
logical mistakes and bad assumptions as the program
designer (especially if they are the same person)designer (especially if they are the same person)

– But treats all inputs as equally valuable
• Systematic (non-uniform):• Systematic (non uniform):

– Try to select inputs that are especially valuable
– Usually by choosing representatives of classes that Usually by choosing representatives of classes that

are apt to fail often or not at all
• Functional testing is systematic testing

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 4

g y g

Why Not Random?Why Not Random?

• Non uniform distribution of faults• Non-uniform distribution of faults
• Example: Java class “roots” applies quadratic

ti equation

Incomplete implementation logic: Program does not
properly handle the case in which b2 - 4ac =0 and
a=0a=0

Failing values are sparse in the input space needles Failing values are sparse in the input space — needles
in a very big haystack. Random sampling is unlikely
to choose a=0.0 and b=0.0

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 5

to choose a 0.0 and b 0.0

Consider the purpose of testingConsider the purpose of testing ...

• To estimate the proportion of needles to hay • To estimate the proportion of needles to hay,
sample randomly

Reliability estimation requires unbiased samples for – Reliability estimation requires unbiased samples for
valid statistics. But that’s not our goal!

To find needles and remove them from hay • To find needles and remove them from hay,
look systematically (non-uniformly) for needles

U l th l t f dl i th h t k – Unless there are a lot of needles in the haystack, a
random sample will not be effective at finding them
We need to use everything we know about needles – We need to use everything we know about needles,
e.g., are they heavier than hay? Do they sift to the
bottom?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 6

Systematic Partition TestingSystematic Partition Testing

Failure (valuable test case)
Failures are sparse
i h f but dense in someFailure (valuable test case)

No failure
in the space of
possible inputs ...

... but dense in some
parts of the space

ue
s

in
pu

t v
al

u
k)

po

ss
ib

le
 i

ha
ys

ta
ck

pa
ce

 o
f p

(th
e

If we systematically test some
cases from each part, we will

Functional testing is one way of
drawing pink lines to isolate

Th
e

sp

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 7

p ,
include the dense parts

drawing pink lines to isolate
regions with likely failures

The partition principleThe partition principle

• Exploit some knowledge to choose samples that are • Exploit some knowledge to choose samples that are
more likely to include “special” or trouble-prone
regions of the input spaceg p p
– Failures are sparse in the whole input space ...
– ... but we may find regions in which they are dense

• (Quasi*-)Partition testing: separates the input space
into classes whose union is the entire space

*Quasi because: The classes may overlap» *Quasi because: The classes may overlap

• Desirable case: Each fault leads to failures that are
dense (easy to find) in some class of inputsdense (easy to find) in some class of inputs
– sampling each class in the quasi-partition selects at least one

input that leads to a failure, revealing the fault

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 8

– seldom guaranteed; we depend on experience-based heuristics

Functional testing: exploiting the
specification

• Functional testing uses the specification • Functional testing uses the specification
(formal or informal) to partition the input
spacespace
– E.g., specification of “roots” program suggests

division between cases with zero one and two real division between cases with zero, one, and two real
roots

• Test each category and boundaries between • Test each category, and boundaries between
categories

No guarantees but experience suggests failures – No guarantees, but experience suggests failures
often lie at the boundaries (as in the “roots”
program)

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 9

p g)

Why functional testing?Why functional testing?

• The base-line technique for designing test cases• The base line technique for designing test cases
– Timely

• Often useful in refining specifications and assessing g p g
testability before code is written

– Effective
fi d l f f lt (g i i g l gi) th t • finds some classes of fault (e.g., missing logic) that can
elude other approaches

– Widely applicabley pp
• to any description of program behavior serving as spec
• at any level of granularity from module to system testing.

E i l– Economical
• typically less expensive to design and execute than

structural (code-based) test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 10

Early functional test designEarly functional test design

• Program code is not necessary• Program code is not necessary
– Only a description of intended behavior is needed
– Even incomplete and informal specifications can be Even incomplete and informal specifications can be

used
• Although precise, complete specifications lead to better

test s itestest suites

• Early functional test design has side benefits
Often reveals ambiguities and inconsistency in spec– Often reveals ambiguities and inconsistency in spec

– Useful for assessing testability
• And improving test schedule and budget by improving specAnd improving test schedule and budget by improving spec

– Useful explanation of specification
• or in the extreme case (as in XP), test cases are the spec

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 11

Functional versus Structural:
Classes of faults

• Different testing strategies (functional • Different testing strategies (functional,
structural, fault-based, model-based) are most
effective for different classes of faultseffective for different classes of faults

• Functional testing is best for missing logic
f ltfaults
– A common problem: Some program logic was simply

forgottenforgotten
– Structural (code-based) testing will never focus on

code that isn’t there! code that isn t there!

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 12

Functional vs structural test:
granularity levels

• Functional test applies at all granularity levels:• Functional test applies at all granularity levels:
– Unit (from module interface spec)

Integration (f API b t)– Integration (from API or subsystem spec)

– System (from system requirements spec)

R i (f i b hi)– Regression (from system requirements + bug history)

• Structural (code-based) test design applies to
l i l ll f relatively small parts of a system:

– Unit
– Integration

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 13

Steps: From specification to test casesSteps: From specification to test cases

• 1 Decompose the specification• 1. Decompose the specification
– If the specification is large, break it into independently

testable features to be considered in testing

• 2. Select representatives
– Representative values of each input, orp p ,
– Representative behaviors of a model

– Often simple input/output transformations don’t describe a
system. We use models in program specification, in program
design, and in test design

• 3 Form test specifications• 3. Form test specifications
– Typically: combinations of input values, or model behaviors

• 4 Produce and execute actual tests

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 14

• 4. Produce and execute actual tests

From specification to test casesFrom specification to test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 15

Simple example: Postal code lookupSimple example: Postal code lookup

• Input: ZIP code (5-digit
US Postal code)US Postal code)

• Output: List of cities
Wh t • What are some
representative values (or
classes of value) to test?

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 16

classes of value) to test?

Example: Representative valuesExample: Representative values

Simple example with
one input one outputone input, one output

• Correct zip code Note prevalence of boundary Correct zip code
– With 0, 1, or many cities

• Malformed zip code

values (0 cities, 6 characters)
and error cases

p
– Empty; 1-4 characters; 6 characters; very long
– Non-digit characters

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 17

– Non-character data

SummarySummary

• Functional testing i e generation of test • Functional testing, i.e., generation of test
cases from specifications is a valuable and
flexible approach to software testingpp g
– Applicable from very early system specs right

through module specifications
• (quasi-)Partition testing suggests dividing the

input space into (quasi-)equivalent classes
– Systematic testing is intentionally non-uniform to

address special cases, error conditions, and other
small placessmall places

– Dividing a big haystack into small, hopefully uniform
piles where the needles might be concentrated

(c) 2007 Mauro Pezzè & Michal Young Ch 10, slide 18

p g

