
Data flow testing

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 1

Learning objectivesLearning objectives

• Understand why data flow criteria have been • Understand why data flow criteria have been
designed and used
R i d di ti i h b i DF it i• Recognize and distinguish basic DF criteria
– All DU pairs, all DU paths, all definitions

• Understand how the infeasibility problem
impacts data flow testing

• Appreciate limits and potential practical uses
of data flow testingg

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 2

MotivationMotivation

• Middle ground in structural testing• Middle ground in structural testing
– Node and edge coverage don’t test interactions

Path based criteria require impractical number of – Path-based criteria require impractical number of
test cases

• And only a few paths uncover additional faults anyway• And only a few paths uncover additional faults, anyway

– Need to distinguish “important” paths

• Intuition: Statements interact through data • Intuition: Statements interact through data
flow

Value computed in one statement used in another– Value computed in one statement, used in another
– Bad value computation revealed only when it is used

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 3

Data flow conceptData flow concept

x =
1

• Value of x at 6 could be 2
if

x =4

• Value of x at 6 could be
computed at 1 or at 4

• Bad computation at 1 or

2

3
x =

...

.... Bad computation at 1 or
4 could be revealed only
if they are used at 65

y = x + ...
6 • (1,6) and (4,6) are

def-use (DU) pairs
– defs at 1,4
– use at 6

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 4

TermsTerms

• DU pair: a pair of definition and use for some • DU pair: a pair of definition and use for some
variable, such that at least one DU path exists
from the definition to the usefrom the definition to the use
x = ... is a definition of x
 x is a use of x= ... x ... is a use of x

• DU path: a definition-clear path on the CFG
t ti f d fi iti t f starting from a definition to a use of a same

variable
– Definition clear: Value is not replaced on path
– Note – loops could create infinite DU paths between

 d f d

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 5

a def and a use

Definition-clear pathDefinition-clear path

• 1 2 3 5 6 is a definition-• 1,2,3,5,6 is a definition
clear path from 1 to 6
– x is not re-assigned

x =
1

g
between 1 and 6

• 1,2,4,5,6 is not a
d fi iti l th

if

4

2

3 definition-clear path
from 1 to 6

the value of x is “killed”

x = 43

5
– the value of x is killed

(reassigned) at node 4

• (1,6) is a DU pair

...

y = x + ...
6

(,) p
because 1,2,3,5,6 is a
definition-clear path

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 6

Adequacy criteriaAdequacy criteria

• All DU pairs: Each DU pair is exercised by at • All DU pairs: Each DU pair is exercised by at
least one test case
All DU th E h i l (l i) DU th • All DU paths: Each simple (non looping) DU path
is exercised by at least one test case

• All definitions: For each definition, there is at
least one test case which exercises a DU pair
containing it
– (Every computed value is used somewhere)

Corresponding coverage fractions can also be
defined

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 7

Difficult casesDifficult cases

• x[i] = ; ; y = x[j]• x[i] = ... ; ... ; y = x[j]
– DU pair (only) if i==j

 & * 99 • p = &x ; ... ; *p = 99 ; ... ; q = x
– *p is an alias of x

• m.putFoo(...); ... ; y=n.getFoo(...);
– Are m and n the same object?
– Do m and n share a “foo” field?

• Problem of aliases: Which references are
(always or sometimes) the same?

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 8

(always or sometimes) the same?

Data flow coverage with complex structuresData flow coverage with complex structures

• Arrays and pointers are critical for data flow analysis• Arrays and pointers are critical for data flow analysis
– Under-estimation of aliases may fail to include some DU pairs
– Over-estimation, on the other hand, may introduce unfeasible , , y

test obligations

• For testing, it may be preferrable to accept under-
ti ti f li t th th ti ti estimation of alias set rather than over-estimation or

expensive analysis
Controversial: In other applications (e g compilers) a – Controversial: In other applications (e.g., compilers), a
conservative over-estimation of aliases is usually required

– Alias analysis may rely on external guidance or other global
analysis to calculate good estimates

– Undisciplined use of dynamic storage, pointer arithmetic, etc.
may make the whole analysis infeasible

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 9

may make the whole analysis infeasible

InfeasibilityInfeasibility

• Suppose cond has not • Suppose cond has not
changed between 1 and 5

• Or the conditions could be
if (cond)1

different, but the first
implies the second

• Then (3 5) is not a

x = 32

4 • Then (3,5) is not a
(feasible) DU pair

• But it is difficult or

...4

if (cond)5
impossible to determine
which pairs are infeasible

• Infeasible test
y = x + 6 7

Infeasible test
obligations are a problem

• No test case can cover
th

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 10

them

InfeasibilityInfeasibility

• The path-oriented nature of data flow analysis • The path oriented nature of data flow analysis
makes the infeasibility problem especially
relevant
– Combinations of elements matter!
– Impossible to (infallibly) distinguish feasible from p (y) g

infeasible paths. More paths = more work to check
manually.

I ti bl i (ft t • In practice, reasonable coverage is (often, not
always) achievable

Number of paths is exponential in worst case but – Number of paths is exponential in worst case, but
often linear

– All DU paths is more often impractical

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 11

All DU paths is more often impractical

SummarySummary

• Data flow testing attempts to distinguish • Data flow testing attempts to distinguish
“important” paths: Interactions between
statements

• Intermediate between simple statement and branch
coverage and more expensive path-based structural testing

C D f U (DU) i F t ti f • Cover Def-Use (DU) pairs: From computation of
value to its use

• Intuition: Bad computed value is revealed only when it is • Intuition: Bad computed value is revealed only when it is
used

• Levels: All DU pairs, all DU paths, all defs (some use)

• Limits: Aliases, infeasible paths
• Worst case is bad (undecidable properties, exponential

blowup of paths) so pragmatic compromises are required

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 12

blowup of paths), so pragmatic compromises are required

