Data flow testing

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 1

q

| N Ihinn 'I-\l
LT QA | |U J (02 §

faY e,
VCO

e Understand why data flow criteria have been
designed and used

e Recognize and distinguish basic DF criteria
- All DU pairs, all DU paths, all definitions

e Understand how the infeasibility problem
Impacts data flow testing

e Appreciate limits and potential practical uses
of data flow testing

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 2

Y/

Atnratinn
IVIULIVALIUI |

e Middle ground in structural testing
- Node and edge coverage don’t test interactions

- Path-based criteria require impractical number of
test cases
 And only a few paths uncover additional faults, anyway

- Need to distinguish “important’ paths

e Intinttinn C+atarmoant
= 11 |LU|L|U||- JLAl 8

N N int
CIlIITII L

C 1 v + +hr ||
O 111 | L

nh da
L ITUuUyii ua

aram +
clau LA

flow
- Value computed in one statement, used in another
- Bad value computation revealed only when it is used

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 3

NAata flAwas
L/AALA 11UVYV
@
x=.
=
| If

SOFTWARE TESTING
it L

e Value of x at 6 could be
computed at 1 or at 4

e Bad computation at 1 or
4 could be revealed only
If they are used at 6

e (1,6) and (4,6) are
def-use (DU) pairs
- defsatl,4
- use at 6

(c) 2007 Mauro Pezze & Michal Young

Ch 13, slide 4

TAarmoe
| H1H11o

e
e DU pair: a pair of definition and use for some
variable, such that at least one DU path exists
from the definition to the use
X = ... Is a definition of x
= ... X ... Isause of x

e DU path: a definition-clear path on the CFG
starting from a definition to a use of a same
variable

- Definition clear: Value is not replaced on path

- Note - loops could create infinite DU paths between
sy a def and a use

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 5

Nafinttinn_elaar nath
vciinuori-cical pati
e 1,2,3,5,6 Is a definition-
@ .- clear path from 1 to 6
- x is not re-assigned
{2 . ' between 1 and 6
|/\ « 1,2,4,5,6 1s hot a
3| @ X = ... definition-clear path
e 5\/ : from1to 6
i - the value of x is “killed”
'6 | (reassigned) at node 4
Qy=><+--- ' e (1,6) i1s a DU pair

because 1,2,3,5,6 is a
definition-clear path

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 6

I\Wa PaYa B EaYe
Hucquab

e All DU pairs: Each DU pair is exercised by at
least one test case

e All DU paths: Each simple (non looping) DU path
IS exercised by at least one test case

e All definitions: For each definition, there is at
least one test case which exercises a DU pair
containing It
- (Every computed value is used somewhere)

Corresponding coverage fractions can also be
SOFTWARE TESTING d efi n e d

it L

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 7

Difficult cases
e X[1]=...; ... ;Y =X[j]
- DU pair (only) if i==j
e P=&X;...;"Pp=99;...;0=X
- *p i1s an alias of x
e m.putFoo(...); ... ; y=n.getFoo(...);
- Are m and n the same object?
- Do m and n share a “foo” field?

e Problem of aliases: Which references are
e (@lways or sometimes) the same?

(c) 2007 Mauro Pezze & Michal Young

Ch 13, slide 8

NAat flAvas /N winth ctria
L/QLL 11

N~ ANN I ~Aarmnl ntiir
UVvv LUVC U VVILIl LUUI II|J /\ DLIULL

ala ures

e Arrays and pointers are critical for data flow analysis
- Under-estimation of aliases may fail to include some DU pairs
- Over-estimation, on the other hand, may introduce unfeasible

test obligations

e For testing, it may be preferrable to accept under-
estimation of alias set rather than over-estimation or
expensive analysis

- Controversial: In other applications (e.g., compilers), a
conservative over-estimation of aliases iIs usually required

- Alias analysis may rely on external guidance or other global
analysis to calculate good estimates

- Undisciplined use of dynamic storage, pointer arithmetic, etc.
s e may make the whole analysis infeasible

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 9

Infaancihilityy
IHTITAOSIMJIIL
| e Suppose cond has not
@ if (cond) changed between 1 and 5
T e Or the conditions could be
2 @ - different, but the first
| iImplies the second
e _
4 e Then (3,5) iIs not a
| ¢ (feasible) DU pair
@ if (cond) e But it is difficult or
/\ Impossible to determine
which pairs are infeasible
6 y =X+ 7
| e |nfeasible test

obligations are a problem

e NO test case can cover
SOFTWARE TESTING
AND ANALYSIS them

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 10

Infa |r\ \l
I1IITAOIVI

ITeasli y

e The path-oriented nature of data flow analysis
makes the infeasibility problem especially
relevant
- Combinations of elements matter!

- Impossible to (infallibly) distinguish feasible from

Infeasible paths. More paths = more work to check
manually.

e |n practice, reasonable coverage is (often, not
always) achievable

- Number of paths is exponential in worst case, but
often linear

e — All DU paths Is more often impractical

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 11

Ciim \l
OUIIII 1y

e Data flow testing attempts to distinguish
“Important” paths: Interactions between

statements

e Intermediate between simple statement and branch
coverage and more expensive path-based structural testing

e Cover Def-Use (DU) pairs: From computation of

value to Its use

e Intuition: Bad computed value is revealed only when it is
used
e Levels: All DU pairs, all DU paths, all defs (some use)

e Limits: Aliases, infeasible paths

e Worst case Is bad (undecidable properties, exponential
o blowup of paths), so pragmatic compromises are required

(c) 2007 Mauro Pezze & Michal Young Ch 13, slide 12

