
Fault-Based Testing

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 1

Learning objectivesLearning objectives

• Understand the basic ideas of fault based • Understand the basic ideas of fault-based
testing

How knowledge of a fault model can be used to – How knowledge of a fault model can be used to
create useful tests and judge the quality of test
casescases

– Understand the rationale of fault-based testing well
enough to distinguish between valid and invalid usesg g

• Understand mutation testing as one application
of fault-based testing principlesof fault based testing principles

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 2

Let’s count marbles a lot of marblesLet s count marbles ... a lot of marbles

• Suppose we have a big • Suppose we have a big
bowl of marbles. How
can we estimate how
many?

– I don’t want to count
every marble individually
I have a bag of 100 other – I have a bag of 100 other
marbles of the same size,
but a different color

– What if I mix them? Photo credit: (c) KaCey97007
on Flickr, Creative Commons
license

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 3

Estimating marblesEstimating marbles

• I mix 100 black marbles • I mix 100 black marbles
into the bowl
– Stir well ...

• I draw out 100 marbles
at random

• 20 of them are black

• How many marbles were
in the bowl to begin with?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 4

Estimating Test Suite QualityEstimating Test Suite Quality

• Now instead of a bowl of marbles I have a • Now, instead of a bowl of marbles, I have a
program with bugs
I dd 100 b• I add 100 new bugs

• Assume they are exactly like real bugs in every way
• I make 100 copies of my program each with one of my 100 • I make 100 copies of my program, each with one of my 100

new bugs

• I run my test suite on the programs with seeded I run my test suite on the programs with seeded
bugs ...
– and the tests reveal 20 of the bugs ... and the tests reveal 20 of the bugs
– (the other 80 program copies do not fail)

• What can I infer about my test suite?
(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 5

• What can I infer about my test suite?

Basic AssumptionsBasic Assumptions

• We’d like to judge effectiveness of a test suite • We d like to judge effectiveness of a test suite
in finding real faults, by measuring how well it
finds seeded fake faultsfinds seeded fake faults.

• Valid to the extent that the seeded bugs are
t ti f l brepresentative of real bugs

– Not necessarily identical (e.g., black marbles are
not identical to clear marbles); b t the differences not identical to clear marbles); but the differences
should not affect the selection

• E g if I mix metal ball bearings into the marbles and pull • E.g., if I mix metal ball bearings into the marbles, and pull
them out with a magnet, I don’t learn anything about how
many marbles were in the bowl

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 6

Mutation testingMutation testing

• A mutant is a copy of a program with a • A mutant is a copy of a program with a
mutation

• A mutation is a syntactic change (a seeded bug)• A mutation is a syntactic change (a seeded bug)
– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs
A mutant is killed if it fails on at least one test • A mutant is killed if it fails on at least one test
case

• If many mutants are killed, infer that the test
suite is also effective at finding real bugs

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 7

suite is also effective at finding real bugs

What do I need to believe?What do I need to believe?

• Mutation testing uses seeded faults (syntactic • Mutation testing uses seeded faults (syntactic
mutations) as black marbles
D it k ? Wh t t I ? • Does it make sense? What must I assume?

• What must be true of black marbles, if they are to be useful
in counting a bowl of pink and red marbles? in counting a bowl of pink and red marbles?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 8

Mutation testing assumptionsMutation testing assumptions

• Competent programmer hypothesis: • Competent programmer hypothesis:
– Programs are nearly correct

• Real faults are small variations from the correct program• Real faults are small variations from the correct program
• => Mutants are reasonable models of real buggy programs

• Coupling effect hypothesis: • Coupling effect hypothesis:
– Tests that find simple faults also find more complex

faultsfaults
• Even if mutants are not perfect representatives of real

faults, a test suite that kills mutants is good at finding real
f l faults too

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 9

Mutation OperatorsMutation Operators

• Syntactic change from legal program to legal • Syntactic change from legal program to legal
program

• So: Specific to each programming language. C++ mutations p p g g g g
don’t work for Java, Java mutations don’t work for Python

• Examples:
– crp: constant for constant replacement

• for instance: from (x < 5) to (x < 12)
• select from constants found somewhere in program text• select from constants found somewhere in program text

– ror: relational operator replacement
• for instance: from (x <= 5) to (x < 5)() ()

– vie: variable initialization elimination
• change int x =5; to int x;

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 10

Live MutantsLive Mutants

• Scenario: • Scenario:
– We create 100 mutants from our program

We run our test suite on all 100 mutants plus the – We run our test suite on all 100 mutants, plus the
original program
The original program passes all tests – The original program passes all tests

– 94 mutant programs are killed (fail at least one test)
6 mutants remain alive– 6 mutants remain alive

• What can we learn from the living mutants?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 11

How mutants surviveHow mutants survive

• A mutant may be equivalent to the original • A mutant may be equivalent to the original
program
– Maybe changing (x < 0) to (x <= 0) didn’t change the Maybe changing (x 0) to (x 0) didn t change the

output at all! The seeded “fault” is not really a
“fault”.

D i i h h i i l b • Determining whether a mutant is equivalent may be easy or
hard; in the worst case it is undecideable

• Or the test suite could be inadequateOr the test suite could be inadequate
– If the mutant could have been killed, but was not, it

indicates a weakness in the test suite
– But adding a test case for just this mutant is a bad

idea. We care about the real bugs, not the fakes!

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 12

Variations on MutationVariations on Mutation

• Weak mutation• Weak mutation
• Statistical mutation

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 13

Weak mutationWeak mutation

• Problem: There are lots of mutants Running • Problem: There are lots of mutants. Running
each test case to completion on every mutant is
expensiveexpensive

• Number of mutants grows with the square of program size

• Approach: • Approach:
– Execute meta-mutant (with many seeded faults)

together with original programtogether with original program
– Mark a seeded fault as “killed” as soon as a

difference in intermediate state is founddifference in intermediate state is found
• Without waiting for program completion
• Restart with new mutant selection after each “kill”

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 14

Statistical MutationStatistical Mutation

• Problem: There are lots of mutants Running • Problem: There are lots of mutants. Running
each test case on every mutant is expensive

• It’s just too expensive to create N2 mutants for a program of • It s just too expensive to create N2 mutants for a program of
N lines (even if we don’t run each test case separately to
completion)

• Approach: Just create a random sample of
mutants
– May be just as good for assessing a test suite

• Provided we don’t design test cases to kill particular
t t (hi h ld b lik l ti l i ki t bl k mutants (which would be like selectively picking out black

marbles anyway)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 15

In real lifeIn real life ...

• Fault based testing is a widely used in • Fault-based testing is a widely used in
semiconductor manufacturing

With good fault models of typical manufacturing – With good fault models of typical manufacturing
faults, e.g., “stuck-at-one” for a transistor

– But fault-based testing for design errors is more – But fault-based testing for design errors is more
challenging (as in software)

• Mutation testing is not widely used in industry• Mutation testing is not widely used in industry
– But plays a role in software testing research, to

compare effectiveness of testing techniquescompare effectiveness of testing techniques

• Some use of fault models to design test cases is
important and widely practiced

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 16

important and widely practiced

SummarySummary

• If bugs were marbles • If bugs were marbles ...
– We could get some nice black marbles to judge the

quality of test suitesquality of test suites

• Since bugs aren’t marbles ...
M t ti t ti t t bli ti – Mutation testing rests on some troubling assumptions
about seeded faults, which may not be statistically
representative of real faultsrepresentative of real faults

• Nonetheless ...
A model of typical or important faults is invaluable – A model of typical or important faults is invaluable
information for designing and assessing test suites

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 17

