Test Execution

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 1

| anarNninNm hin 'I- n/nce
LcAal I I U J ULIVCO
e Appreciate the purpose of test automation

- Factoring repetitive, mechanical tasks from creative,
human design tasks in testing

e Recognize main kinds and components of test
scaffolding

e Understand some key dimensions in test
automation design

- Design for testability: Controllability and
observability

- Degrees of generality in drivers and stubs
- Comparison-based oracles and self-checks

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 2

N

Ta Ta'
1VUI 1

Bhidalaakals Fa'|
LUITIALlll IU

N T
MAu I

net Evariit
Col LLATUUL
e Designing test cases and test suites Is creative
- Like any design activity: A demanding intellectual
activity, requiring human judgment
e Executing test cases should be automatic

- Design once, execute many times
e Test automation separates the creative human

process from the mechanical process of test
execution

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 3

Generation: From Test Case
Specifications to Test Cases

e Test design often yields test case
specifications, rather than concrete data
- Ex: *a large positive number”, not 420023
- EX: “a sorted sequence, length > 27, not “Alpha,
Beta, Chi, Omega”
e Other details for execution may be omitted

e Generation creates concrete, executable test
cases from test case specifications

: (c) 2007 Mauro Pezze & Michal Young Ch 17, slide 4

e \We could combine ...

- A combinatorial test case generation (like
genpairs.py) to create test data

e Optional: Constraint-based data generator to “concretize™
individual values, e.g., from “positive integer” to 42

- DDSteps to convert from spreadsheet data to JUnit
test cases

- JUnit to execute concrete test cases

e Many other tool chains are possible ...
- depending on application domain

SOFTWARE TESTING
4 s

Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license , slide 5

e Code produced to
support development
activities (especially
testing)

- Not part of the “product™”
as seen by the end user

- May be temporary (like
scaffolding in construction
of buildings

e Includes

- Test harnesses, drivers,
and stubs

Image by Kevin Dooley under Creative Commons license Ch 17, slide 6

Cnr\'F-F 1A
JUAIIUVUIUI

ng .
e Test driver

- A “main” program for running a test
e May be produced before a ““real” main program

e Provides more control than the “real” main program
- To driver program under test through test cases

e Test stubs
- Substitute for called functions/methods/objects

e Test harness

- Substitutes for other parts of the deployed
environment

A— e Ex: Software simulation of a hardware device

AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 7

CAantralla |n \l 9- NhcAavvina |r\ \l
VUILILIVIIAUI y UJOCI VAl y
Example: We want
GUI input (MVC “Controller”) automated tests, but
interactive input provides

limited control and graphical

! ‘ output provides limited
observability

Program Functionality

1l

Graphical ouput (MVC “View”)

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 8

CAantralla |n \l 9- Nhce serva Aty
LUl vliauvli y UMNOCI VA IJIL
GUI input (MVC “Controller™) Test driver
API
Program Functionality Log behavior
- 1l

A design for automated test
iIncludes provides interfaces
for control (API) and
observation (wrapper on
ut).

SUFTWARE ESTING
AND ANALYSIS

Capture wrapper

Graphical ouput (MVC “View”)

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 9

[FaYa
\

ANAvri
CI1ITI

1IN Ny
1L Ul

—'h

Spec

e How general should scaffolding be?
- We could build a driver and stubs for each test case

- ... or at least factor out some common code of the
driver and test management (e.g., JUnit)

- ... or further factor out some common support code,
to drive a large number of test cases from data (as
In DDSteps)

- ... or further, generate the data automatically from
a more abstract model (e.g., network traffic model)

e A question of costs and re-use
«weene — JUST @S for other kinds of software

AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 10

NrarnlAac
U1 AUITCO
e Did this test case succeed, or fail?

- No use running 10,000 test cases automatically if the
results must be checked by hand!

e Range of specific to general, again

- eX. Junit: Specific oracle (*“‘assert”) coded by hand
In each test case

- Typical approach: “comparison-based” oracle with
predicted output value

- Not the only approach!

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 11

f‘nmnr\rinnn_h C‘I\I‘I nrnnln
wullipaliovilirvaoctu vlauic
"""""""""""""""""""""" Test Harness
Test Case
with Comparison Based
Test Input Oracle
| Expected Output | +(Compare }|— Pass/Fail
__________________________________ \ /i
Program
Under Test

e With a comparison-based oracle, we need predicted

e = = --

output for each input

- Oracle compares actual to predicted output, and reports failure
If they differ

e Fine for a small number of hand-generated test cases

SOFTWARE TESTING

amee — E.0., fOr hand-written JUnit test cases

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 12

Coalf_-Chaoaclvrinn Cndoa ne Nrapele
OCII-CLIICCKITIg LOUUC ados Ulalic
Test Harness
Test Case Program
Test Input . Under Test ' e :
’ Self-checks » raidre
----------------------------------- /)| Notification

e An oracle can also be written as self-checks

- Often possible to judge correctness without predicting results
e Advantages and limits: Usable with large, automatically
generated test suites, but often only a partial check

- e.g., structural invariants of data structures
mmr 7 - ecognize many or most failures, but not all

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 13

I \l

Cantiirn annAdA Danl
VA IJ 1T Alliu I\T IJ y
e Sometimes there is no alternative to human
Input and observation
- Even if we separate testing program functionality

from GUI, some testing of the GUI is required
e We can at least cut repetition of human testing

e Capture a manually run test case, replay it
automatically
- with a comparison-based test oracle: behavior same
as previously accepted behavior

e reusable only until a program change invalidates it
e lifetime depends on abstraction level of input and output

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 14

Ciim \l
OUIIII 1y

e Goal: Separate creative task of test design from
mechanical task of test execution
- Enable generation and execution of large test suites
- Re-execute test suites frequently (e.g., nightly or

after each program change)

e Scaffolding: Code to support development and
testing
- Test drivers, stubs, harness, including oracles

- Ranging from individual, hand-written test case
drivers to automatic generation and testing of large
test suites

e — Capture/replay where human interaction is required

it L

(c) 2007 Mauro Pezze & Michal Young Ch 17, slide 15

