
Test Execution

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 1

Learning objectivesLearning objectives

• Appreciate the purpose of test automation• Appreciate the purpose of test automation
– Factoring repetitive, mechanical tasks from creative,

human design tasks in testingg g
• Recognize main kinds and components of test

scaffolding g
• Understand some key dimensions in test

automation designg
– Design for testability: Controllability and

observability
– Degrees of generality in drivers and stubs
– Comparison-based oracles and self-checks

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 2

Automating Test ExecutionAutomating Test Execution

• Designing test cases and test suites is creative• Designing test cases and test suites is creative
– Like any design activity: A demanding intellectual

activity requiring human judgmentactivity, requiring human judgment

• Executing test cases should be automatic
D i t ti– Design once, execute many times

• Test automation separates the creative human
 f h h i l f process from the mechanical process of test

execution

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 3

Generation: From Test Case
Specifications to Test Cases

• Test design often yields test case • Test design often yields test case
specifications, rather than concrete data

Ex: “a large positive number” not 420023– Ex: “a large positive number”, not 420023
– Ex: “a sorted sequence, length > 2”, not “Alpha,

Beta Chi Omega”Beta, Chi, Omega

• Other details for execution may be omitted
G i bl • Generation creates concrete, executable test
cases from test case specifications

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 4

Example Tool Chain for Test
Case Generation & Execution

• We could combine • We could combine ...
– A combinatorial test case generation (like

genpairs py) to create test datagenpairs.py) to create test data
• Optional: Constraint-based data generator to “concretize”

individual values, e.g., from “positive integer” to 42

– DDSteps to convert from spreadsheet data to JUnit
test cases

– JUnit to execute concrete test cases

• Many other tool chains are possible ...
– depending on application domain

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 5Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license

ScaffoldingScaffolding

• Code produced to • Code produced to
support development
activities (especially (p y
testing)
– Not part of the “product”

 b th d as seen by the end user
– May be temporary (like

scaffolding in construction g
of buildings

• Includes
– Test harnesses, drivers,

and stubs

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 6Image by Kevin Dooley under Creative Commons license

ScaffoldingScaffolding ...

• Test driver• Test driver
– A “main” program for running a test

• May be produced before a “real” main program• May be produced before a real main program
• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs
– Substitute for called functions/methods/objectsSubstitute for called functions/methods/objects

• Test harness
Substitutes for other parts of the deployed – Substitutes for other parts of the deployed
environment

• Ex: Software simulation of a hardware device

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 7

Controllability & ObservabilityControllability & Observability
Example: We want

t t d t t b t GUI input (MVC “Controller”) automated tests, but
interactive input provides
limited control and graphical
output provides limited output provides limited
observability

Program Functionality

Graphical ouput (MVC “View”)

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 8

Controllability & ObservabilityControllability & Observability

GUI input (MVC “Controller”) Test driver

API

Program Functionality Log behavior

Capture wrapperA design for automated test
includes provides interfaces

Graphical ouput (MVC “View”)for control (API) and
observation (wrapper on
ouput).

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 9

Generic or Specific?Generic or Specific?

• How general should scaffolding be?• How general should scaffolding be?
– We could build a driver and stubs for each test case

 or at least factor out some common code of the – ... or at least factor out some common code of the
driver and test management (e.g., JUnit)

 or further factor out some common support code – ... or further factor out some common support code,
to drive a large number of test cases from data (as
in DDSteps)p)

– ... or further, generate the data automatically from
a more abstract model (e.g., network traffic model)

• A question of costs and re-use
– Just as for other kinds of software

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 10

Just as for other kinds of software

OraclesOracles

• Did this test case succeed or fail?• Did this test case succeed, or fail?
– No use running 10,000 test cases automatically if the

results must be checked by hand!results must be checked by hand!

• Range of specific to general, again
 JU it S ifi l (“ t”) d d b h d – ex. JUnit: Specific oracle (“assert”) coded by hand

in each test case
Typical approach: “comparison based” oracle with – Typical approach: comparison-based oracle with
predicted output value

– Not the only approach! Not the only approach!

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 11

Comparison-based oracleComparison-based oracle

• With a comparison-based oracle, we need predicted With a comparison based oracle, we need predicted
output for each input
– Oracle compares actual to predicted output, and reports failure

if they differ

• Fine for a small number of hand-generated test cases
E f h d itt JU it t t

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 12

– E.g., for hand-written JUnit test cases

Self-Checking Code as OracleSelf-Checking Code as Oracle

• An oracle can also be written as self-checksAn oracle can also be written as self checks
– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically g g , y
generated test suites, but often only a partial check
– e.g., structural invariants of data structures

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 13

– recognize many or most failures, but not all

Capture and ReplayCapture and Replay

• Sometimes there is no alternative to human • Sometimes there is no alternative to human
input and observation

Even if we separate testing program functionality – Even if we separate testing program functionality
from GUI, some testing of the GUI is required

We can at least cut repetition of human testing• We can at least cut repetition of human testing
• Capture a manually run test case, replay it

t ti llautomatically
– with a comparison-based test oracle: behavior same

 i l t d b h ias previously accepted behavior
• reusable only until a program change invalidates it
• lifetime depends on abstraction level of input and output

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 14

• lifetime depends on abstraction level of input and output

SummarySummary

• Goal: Separate creative task of test design from • Goal: Separate creative task of test design from
mechanical task of test execution
– Enable generation and execution of large test suitesEnable generation and execution of large test suites
– Re-execute test suites frequently (e.g., nightly or

after each program change)
• Scaffolding: Code to support development and

testing
– Test drivers, stubs, harness, including oracles
– Ranging from individual, hand-written test case

d i t t ti g ti d t ti g f l g drivers to automatic generation and testing of large
test suites

– Capture/replay where human interaction is required

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 15

Capture/replay where human interaction is required

