
Program Analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 1

Learning objectivesLearning objectives

• Understand how automated program analysis • Understand how automated program analysis
complements testing and manual inspection

Most useful for properties that are difficult to test– Most useful for properties that are difficult to test

• Understand fundamental approaches of a few
t ti t h irepresentative techniques

– Lockset analysis, pointer analysis, symbolic testing,
d i d l t ti A l f dynamic model extraction: A sample of
contemporary techniques across a broad spectrum
Recognize the same basic approaches and design – Recognize the same basic approaches and design
trade-offs in other program analysis techniques

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 2

Why AnalysisWhy Analysis

• Exhaustively check properties that are difficult • Exhaustively check properties that are difficult
to test

Faults that cause failures – Faults that cause failures
• rarely
• under conditions difficult to controlunder conditions difficult to control

– Examples
• race conditions
• faulty memory accesses

• Extract and summarize information for
inspection and test design

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 3

Why automated analysisWhy automated analysis

• Manual program inspection• Manual program inspection
– effective in finding faults difficult to detect with

testingtesting
– But humans are not good at

• repetitive and tedious tasks• repetitive and tedious tasks
• maintaining large amounts of detail

• Automated analysisAutomated analysis
– replace human inspection for some class of faults
– support inspection by support inspection by

• automating extracting and summarizing information
• navigating through relevant information

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 4

g g g

Static vs dynamic analysisStatic vs dynamic analysis

• Static analysis• Static analysis
– examine program source code

• examine the complete execution space• examine the complete execution space
• but may lead to false alarms

• Dynamic analysis• Dynamic analysis
– examine program execution traces

• no infeasible path problem• no infeasible path problem
• but cannot examine the execution space exhaustively

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 5

Concurrency faultsConcurrency faults
• Concurrency faults

– deadlocks: threads blocked waiting each other on a lock
– data races: concurrent access to modify shared resources

• Difficult to reveal and reproduce• Difficult to reveal and reproduce
– nondeterministic nature does not guarantee repeatibility

• Prevention
– Programming styles

• eliminate concurrency faults by restricting program constructs
• examples• examples

– do not allow more than one thread to write to a shared item
– provide programming constructs that enable simple static checks

(e.g., Java synchronized)(g , y)

• Some constructs are difficult to check statically
• example

C and C++ libraries that implement locks

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 6

– C and C++ libraries that implement locks

Memory faultsMemory faults

• Dynamic memory access and allocation faults• Dynamic memory access and allocation faults
– null pointer dereference

illegal access– illegal access
– memory leaks

C f l• Common faults
– buffer overflow in C programs
– access through dangling pointers
– slow leakage of memory

• Faults difficult to reveal through testing
– no immediate or certain failure

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 7

ExampleExample
} else if (c == '%') {} () {

int digit_high = Hex_Values[*(++eptr)];

int digit_low = Hex_Values[*(++eptr)];

• fault
– input string terminated by an hexadecimal digitp g y g
– scan beyond the end of the input string and corrupt

memory
f l h f h f h – failure may occur much after the execution of the
faulty statement

hard to detect• hard to detect
– memory corruption may occur rarely

lead to failure more rarely

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 8

– lead to failure more rarely

Memory Access FailuresMemory Access Failures
(explicit deallocation of memory - C,C++)

• Dangling pointers: deallocating memory accessible through pointers
• Memory leak: failing to deallocate memory not accessible any more

– no immediate failure – no immediate failure
– may lead to memory exhaustion after long periods of execution

• escape unit testing
• show up only in integration system test actual use• show up only in integration, system test, actual use

• can be prevented by using
– program constructs

saferC (dialect of C used in avionics applications) limited use of dynamic • saferC (dialect of C used in avionics applications) limited use of dynamic
memory allocation -> eliminates dangling pointers and memory leaks
(restriction principle)

– analysis toolsy
• Java dynamic checks for out-of-bounds indexing and null pointer dereferences

(sensitivity principle)
– Automatic storage deallocation (garbage collection)

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 9

Symbolic TestingSymbolic Testing

• Summarize values of variables with few • Summarize values of variables with few
symbolic values

example: analysis of pointers misuse– example: analysis of pointers misuse
• Values of pointer variables: null, notnull, invalid, unknown
• other variables represented by constraints other variables represented by constraints

• Use symbolic execution to evaluate conditional
statementsstatements

• Do not follow all paths, but
l th t li it d d th– explore paths to a limited depth

– prune exploration by some criterion

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 10

Path Sensitive AnalysisPath Sensitive Analysis

• Different symbolic states from paths to the same location• Different symbolic states from paths to the same location
• Partly context sensitive

(depends on procedure call and return sequences) (depends on procedure call and return sequences)
• Strength of symbolic testing

combine path and context sensitivityp y
• detailed description of how a particular execution sequence leads to

a potential failure
• very costly • very costly
• reduce costs by memoizing entry and exit conditions

– limited effect of passed values on execution
l th l h th t diti diff f i – explore a new path only when the entry condition differs from previous

ones

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 11

Summarizing Execution PathsSummarizing Execution Paths

• Find all program faults of a certain kind• Find all program faults of a certain kind
– no prune exploration of certain program paths

(symbolic testing)(symbolic testing)
– abstract enough to fold the state space down to a

size that can be exhaustively exploredsize that can be exhaustively explored

• Example:
analyses based on finite state machines (FSM)analyses based on finite state machines (FSM)
– data values by states

operations by state transitions– operations by state transitions

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 12

Pointer AnalysisPointer Analysis

• Pointer variable represented by a machine with three Pointer variable represented by a machine with three
states:
– invalid value
– possibly null value
– definitely not null value

• Deallocation triggers transition from non-null to invalid• Deallocation triggers transition from non null to invalid
• Conditional branches may trigger transitions

– E.g., testing a pointer for non-null triggers a transition from g g p gg
possibly null to definitely non-null

• Potential misuse
Deallocation in possibly null state – Deallocation in possibly null state

– Dereference in possibly null
– Dereference in invalid states

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 13

Merging StatesMerging States

• Flow analysis• Flow analysis
merge states obtained along different execution paths
– conventional data flow analysis: merge all states encountered y g

at a particular program location
– FSM: summarize states reachable along all paths with a set of

statesstates

• Finite state verification techniques
never merge states (path sensitive) never merge states (path sensitive)
– procedure call and return:

• complete path- and context-sensitive analysis → too expensive
• throwing away all context information → too many false alarms
• symbolic testing: cache and reuse (entry, exit) state pairs

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 14

Buffer OverflowBuffer Overflow
…
int main (int argc, char *argv[]) {

h i l [] "2 2 2 2 2 "char sentinel_pre[] = "2B2B2B2B2B";
char subject[] = "AndPlus+%26%2B+%0D%";

char sentinel_post[] = "26262626";
char *outbuf = (char *) malloc(10);
i t t d

Output parameter
int return_code;

printf("First test, subject into outbuf\n");
return_code = cgi_decode(subject, outbuf);

i tf("O i i l % \ " bj t)

of fixed length
Can overrun the
output bufferprintf("Original: %s\n", subject);

printf("Decoded: %s\n", outbuf);
printf("Return code: %d\n", return_code);

i tf("S d t t [1] i t tb f\ ")

output buffer

printf("Second test, argv[1] into outbuf\n");
printf("Argc is %d\n", argc);

assert(argc == 2);
return_code = cgi_decode(argv[1], outbuf);

i tf("O i i l % \ " [1])printf("Original: %s\n", argv[1]);
printf("Decoded: %s\n", outbuf);
printf("Return code: %d\n", return_code);

}…

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 15

Dynamic Memory Analysis (with Purify)Dynamic Memory Analysis (with Purify)
[I] Starting main
[E] ABR: Array bounds read in printf {1 occurrence}

Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000
Thread ID: 0xd64

...
[] b d d i i f {1 }[E] ABR: Array bounds read in printf {1 occurrence}

Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000
Thread ID: 0xd64

...
[E] ABWL: Late detect array bounds write {1 occurrence}

Memory corruption detected, 14 bytes at 0x00e74b02
Address 0x00e74b02 is 1 byte past the end of a 10 byte block at 0x00e74af8
Address 0x00e74b02 points to a malloc'd block in heap 0x00e70000
63 memory operations and 3 seconds since last-known good heap state63 memory operations and 3 seconds since last known good heap state
Detection location - error occurred before the following function call

printf [MSVCRT.dll]
...

Allocation location
malloc [MSVCRT.dll]

Identifies
[]

...
[I] Summary of all memory leaks... {482 bytes, 5 blocks}
...
[I] Exiting with code 0 (0x00000000)

Process time: 50 milliseconds

the problem

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 16

[I] Program terminated ...

Memory AnalysisMemory Analysis
• Instrument program to trace memory access

– record the state of each memory location
– detect accesses incompatible with the current state

• attempts to access unallocated memory p y
• read from uninitialized memory locations

– array bounds violations:
• add memory locations with state unallocated before and after each array• add memory locations with state unallocated before and after each array
• attempts to access these locations are detected immediately

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 17

Data RacesData Races

• Testing: not effective• Testing: not effective
(nondeterministic interleaving of threads)
St ti l i• Static analysis:
computationally expensive, and approximated

• Dynamic analysis:
can amplify sensitivity of testing to detect
potential data races
– avoid pessimistic inaccuracy of finite state verification
– Reduce optimistic inaccuracy of testing

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 18

Dynamic Lockset AnalysisDynamic Lockset Analysis

• Lockset discipline: set of rules to prevent data racesLockset discipline: set of rules to prevent data races
– Every variable shared between threads must be protected by a

mutual exclusion lock
– ….

• Dynamic lockset analysis detects violation of the locking
disciplined sc pl e
– Identify set of mutual exclusion locks held by threads when

accessing each shared variable
INIT: each shared variable is associated with all available locks– INIT: each shared variable is associated with all available locks

– RUN: thread accesses a shared variable
• intersect current set of candidate locks with locks held by the thread

– END: set of locks after executing a test = set of locks always held
by threads accessing that variable

• empty set for v = no lock consistently protects v

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 19

Simple lockset analysis: exampleSimple lockset analysis: example
Thread Program trace Locks held Lockset(x)

{} {lck1 lck2} INIT:all locks for x{} {lck1, lck2}

thread A lock(lck1)

{lck1}

INIT:all locks for x

lck1 held

x=x+1

{lck1} Intersect with
locks held

unlock(lck1}

{}

d B l k{l k2}tread B lock{lck2}

{lck2}

x=x+1
lck2 held

x x 1

{}

unlock(lck2}
Empty intersection

potential
race

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 20

{}

Handling Realistic CasesHandling Realistic Cases

• simple locking discipline violated by • simple locking discipline violated by
– initialization of shared variables without holding a lock
– writing shared variables during initialization without locksg g
– allowing multiple readers in mutual exclusion with single writers

D l l iDelay analysis
till after initialization

(second thread) Multiple writers
report violations

Multiple readers
single writer

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 21

g
do not report violations

Extracting Models from ExecutionExtracting Models from Execution

• Executions reveals information about a program• Executions reveals information about a program
• Analysis

– gather information from execution
– synthesize models that characterize those executions

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 22

Example: AVL treeExample: AVL tree
private AvlNode insert(Comparable x, AvlNode t){

if(t == null)
t = new AvlNode(x, null, null);

else if(x.compareTo(t.element) < 0){
t.left = insert(x, t.left);
if(height(t.left) - height(t.right) == 2)if(height(t.left) height(t.right) 2)

if(x.compareTo(t.left.element) < 0)
t = rotateWithLeftChild(t);

else
t d bl WithL ftChild(t)t = doubleWithLeftChild(t);

}else if(x.compareTo(t.element) > 0){
t.right = insert(x, t.right);
if(height(t.right) - height(t.left) == 2)

Behavior model
at the end of
insert:

if(x.compareTo(t.right.element) > 0)
t = rotateWithRightChild(t);

else
t = doubleWithRightChild(t);

father > left
father < right
diffHeight one of t doubleWithRightChild(t);

} else
; // Duplicate; do nothing

t.height = max(height(t.left), height(t.right)) + 1;
t t

diffHeight one of
{-1,0,1}

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 23

return t;
}

Automatically Extracting ModelsAutomatically Extracting Models

• Start with a set of predicates • Start with a set of predicates
– generated from templates

instantiated on program variables– instantiated on program variables
– at given execution points

R fi h b li i i di • Refine the set by eliminating predicates
violated during execution

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 24

Predicate templatesPredicate templates
over one variable
constant x=aconstant x a
uninitialized x=uninit
small value set x={a,b,c}

over a single numeric variable
in a range x≥a,x≤b,a≤x≤b
nonzero x 0nonzero x≠0
modulus x=a(mod b)
nonmodulus x≠a(mod b)
over the sum of two numeric variables

linear relationship y=ax+b

ordering
relationship

x≤y,x<y,x=y,x≠y

…

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 25

Executing AVL treeExecuting AVL tree
private static void testCaseSingleValues() {

AvlTree t = new AvlTree();
t.insert(new Integer(5));
t.insert(new Integer(2)); The model depends

 th t t t.insert(new Integer(7));
}

i t t ti id t tC R d (i t T tC) {

on the test cases

private static void testCaseRandom(int nTestCase) {
AvlTree t = new AvlTree();

for (int i 1; i < nTestCase; i++) {for (int i = 1; i < nTestCase; i++) {
int value=(int)Math.round(Math.random()*100);
t.insert(new Integer(value));

}}
}

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 26

Derived Models useless (redundant)Derived Models
model for testCaseSingleValues model for testCaseRandom

information

father one of {2, 5, 7} father >= 0
left == 2 left >= 0
right == 7 father > left

additional information:
all elements are right == 7 father > left

leftHeight == rightHeight father < right
rightHeight == diffHeight left < right elements are

non-negative

leftHeight == 0 fatherHeight >= 0
rightHeight == 0 leftHeight >= 0
fatherHeight one of {0, 1} rightHeight >= 0

inserted correctly

g { , } g g
fatherHeight > leftHeight
fatherHeight > rightHeight
fatherHeight > diffHeight

limited validity
of the test case:

the tree
is balancedfatherHeight > diffHeight

rightHeight >= diffHeight
diffHeight one of {-1,0,1}

of the test case:
the tree is perfectly

balanced

is balanced

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 27

leftHeight - rightHeight + diffHeight == 0

Model and Coincidental ConditionsModel and Coincidental Conditions

• Model:• Model:
– not a specification of the program

not a complete description of the program behavior– not a complete description of the program behavior
– a representation of the behavior experienced so far

di i b i id l• conditions may be coincidental
– true only for the portion of state space explored so far
– estimate probability of coincidence as the number of

times the predicate is tested

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 28

Example of Coincidental ProbabilityExample of Coincidental Probability

father >= 0 probability of coincidence: father > 0 probability of coincidence:
0.5 if verified by a single execution
0.5n if verified by n executions.y

threshold of 0.05
two executions with father =7

father = 7 valid
father >= 0 not valid (high coincidental probability)

two additional execution with father positive
father = 7 invalid

lidfather >= 0 valid
father >= 0 valid for testCaseRandom (300 occurences)

not for testCaseSingleValues (3 occurences)

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 29

not for testCaseSingleValues (3 occurences)

Using Behavioral ModelsUsing Behavioral Models

• Testing• Testing
– validate tests thoroughness

P l i • Program analysis
– understand program behavior

• Regression testing
– compare versions or configurations

• Testing of component-based software
– compare components in different contextsco pa e co po e ts d e e t co te ts

• Debugging
– Identify anomalous behaviors and understand causes

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 30

– Identify anomalous behaviors and understand causes

SummarySummary

• Program analysis complements testing and • Program analysis complements testing and
inspection

Addresses problems (e g race conditions memory – Addresses problems (e.g., race conditions, memory
leaks) for which conventional testing is ineffective

– Can be tuned to balance exhaustiveness precision – Can be tuned to balance exhaustiveness, precision,
and cost (e.g., path-sensitive or insensitive)

– Can check for faults or produce information for Can check for faults or produce information for
other uses (debugging, documentation, testing)

• A few basic strategiesA few basic strategies
– Build an abstract representation of program states

by monitoring real or simulated (abstract) execution

(c) 2007 Mauro Pezzè & Michal Young Ch 19, slide 31

by monitoring real or simulated (abstract) execution

