Program Analysis

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 1

Learning objectives

e Understand how automated program analysis
complements testing and manual inspection

- Most useful for properties that are difficult to test

e Understand fundamental approaches of a few
representative techniques

- Lockset analysis, pointer analysis, symbolic testing,
dynamic model extraction: A sample of
contemporary techniques across a broad spectrum

- Recognize the same basic approaches and design
trade-offs in other program analysis techniques

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 2

\AM/lhivw Anahrcie
VVvi |y m\Ii |C1|)’D|D

o Exhaustively check properties that are difficult
to test
- Faults that cause failures

e rarely
e under conditions difficult to control

- Examples
e race conditions
» faulty memory accesses

e Extract and summarize information for
inspection and test design

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 3

\I\I \ 7 | 1tArm A
VVvi |y ULUIIICA

e Manual program inspection

- effective in finding faults difficult to detect with
testing

- But humans are not good at
e repetitive and tedious tasks
e maintaining large amounts of detail

o Automated analysis
- replace human inspection for some class of faults

- support inspection by
e automating extracting and summarizing information

e navigating through relevant information

AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 4

e Static analysis

- examine program source code
» examine the complete execution space
e but may lead to false alarms

e Dynamic analysis
- examine program execution traces

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 5

CAanmnrirrannmsvs A
UILIVUUIT I T |by iau

~+

e Concurrency faults
- deadlocks: threads blocked waiting each other on a lock
- data races: concurrent access to modify shared resources

« Difficult to reveal and reproduce
- nondeterministic nature does not guarantee repeatibility

e Prevention
- Programming styles
» eliminate concurrency faults by restricting program constructs

e examples
- do not allow more than one thread to write to a shared item

- provide programming constructs that enable simple static checks
(e.g., Java synchronized)

e Some constructs are difficult to check statically

e example
RS - C and C++ libraries that implement locks

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 6

—
>
;
~

|In
UliLlo

E
<

 Dynamic memory access and allocation faults
- null pointer dereference
- illegal access
- memory leaks

o« Common faults
- buffer overflow in C programs
- access through dangling pointers
- slow leakage of memory
e Faults difficult to reveal through testing
e~ NO iIMMediate or certain failure

it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 7

E/
LA

n

|qJ

} else 1T (c == "%") {
int digit _high = Hex Values[*(++eptr)];
int digit low = Hex Values[*(++eptr)];

 fault
- input string terminated by an hexadecimal digit

- scan beyond the end of the input string and corrupt
memory

- failure may occur much after the execution of the
faulty statement

e hard to detect

- memory corruption may occur rarely
i - lead to failure more rarely

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 8

NMAoarm

N Fal C
IVICII11U I

ANr~rncce Aaitlhhirac
y MULUC OO AIlIUI TO

(explicit deallocation of memory - C,C++)
» Dangling pointers: deallocating memory accessible through pointers

« Memory leak: failing to deallocate memory not accessible any more
- no immediate failure

- may lead to memory exhaustion after long periods of execution
e escape unit testing
« show up only in integration, system test, actual use

e can be prevented by using

- program constructs

» saferC (dialect of C used in avionics applications) limited use of dynamic
memory allocation -> eliminates dangling pointers and memory leaks
(restriction principle)

- analysis tools

« Java dynamic checks for out-of-bounds indexing and null pointer dereferences
(sensitivity principle)

- Automatic storage deallocation (garbage collection)

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 9

\llnl
MU

YYylll

s ave
O IU

e Summarize values of variables with few
symbolic values

- example: analysis of pointers misuse
e Values of pointer variables: null, notnull, invalid, unknown
» other variables represented by constraints

e Use symbolic execution to evaluate conditional
statements
e Do not follow all paths, but

- explore paths to a limited depth
- prune exploration by some criterion

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 10

\ 7/ N N \l

D ns/N
I |VCH| y

th C
J

~ Nncoiti
caAll | L

ANCI
Cl10l1

e Different symbolic states from paths to the same location
e Partly context sensitive
(depends on procedure call and return sequences)

e Strength of symbolic testing
combine path and context sensitivity

» detailed description of how a particular execution sequence leads to
a potential failure

e very costly
e reduce costs by memoizing entry and exit conditions
- limited effect of passed values on execution

- explore a new path only when the entry condition differs from previous
ones

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 11

+he

Cirirmm / ~1 1t ~
O L all o

Ay = ya n D
uliiiiical |U vu I

1N
1Vl

e Find all program faults of a certain kind

- no prune exploration of certain program paths
(symbolic testing)

- abstract enough to fold the state space down to a
size that can be exhaustively explored

o Example°
N \ I‘\ acad An 'F 'I- 'I- tA marhinac (FCAA)
aall y IJAOSUTUNU Vll 11 | ICC OULAULU j1IAaudiitico \l J’V\’

- data values by states
- operations by state transitions

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 12

DAaint
I L

oY vy An \l
Ull | |

er Anaiys
e Pointer variable represented by a machine with three
states:
- invalid value

- possibly null value
- definitely not null value

e Deallocation triggers transition from non-null to invalid

e Conditional branches may trigger transitions
- E.g., testing a pointer for non-null triggers a transition from
possibly null to definitely non-null
e Potential misuse
- Deallocation in possibly null state
- Dereference in possibly null
- Dereference in invalid states

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 13

e Flow analysis
merge states obtained along different execution paths

- conventional data flow analysis: merge all states encountered
at a particular program location

- FSM: summarize states reachable along all paths with a set of
states
e Finite state verification techniques
never merge states (path sensitive)

- procedure call and return:
e complete path- and context-sensitive analysis — too expensive
« throwing away all context information — too many false alarms
» symbolic testing: cache and reuse (entry, exit) state pairs

SOFTWARE TESTING
it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 14

Diiffar My
DUIITI U

nvrflAwg
U vVCI 11UV

A"

int main (int argc, char *argv[]) {
char sentinel_pre[] = '"2B2B2B2B2B"';
char subject[] = "AndPlus+%26%2B+%0D%"";

char sentinel _post[] = 26262626 ;
char *outbuf = (char *) malloc(10);
int return_code;

Output parameter

of fixed length

printf(""First test, subject into outbuf\n™); Can overrun the
return_code = cgi_decode(subject, outbuf);

printf(""Original: %s\n", subject); CNJtpUt buffer

printf(*'Decoded: %s\n', outbuf);
printf("'Return code: %d\n', return_code);

printf("’Second test, argvjl] into outbuf\n™);
printf(""Argc i1s %d\n", argc);
assert(argc == 2);
return_code = cgi_decode(argv[1l], outbuf);
printf(""Original: %s\n', argv[1l]);
printf(*'Decoded: %s\n', outbuf);
printf("'Return code: %d\n', return_code);

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 15

~ NM~armn
O IVICIIIUV

BDIVialelaa

ylialll

[1] Starting main

[E] ABR: Array bounds read in printf {1 occurrence}
Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 i1s at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc™"d block In heap 0x00e70000
Thread ID: Oxd64

s An \l ciec ant
|y Hl y 19 \VVlll

T
"D

‘<:
-

[E] ABR: Array bounds read in printf {1 occurrence}
Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 i1s at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc®"d block In heap 0x00e70000
Thread ID: Oxd64

[E] ABWL: Late detect array bounds write {1 occurrence}
Memory corruption detected, 14 bytes at 0x00e74b02
Address 0x00e74b02 is 1 byte past the end of a 10 byte block at 0x00e74af8
Address 0x00e74b02 points to a malloc®"d block In heap 0x00e70000
63 memory operations and 3 seconds since last-known good heap state
Detection location - error occurred before the following function call

printf [MSVCRT.dII]
Allocation location ldentifies
mal loc [MSVCRT.d11]

the problem

tij Summary of all memory leaks... {482 bytes, 5 blocks}

[1] Exiting with code O (0x00000000)
SOFTWARE TESTING Process time: 50 milliseconds
_AND ANALYSIS [1] Program terminated ...

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 16

NMoarm

N v \n \l
IVICIIIUI

y Analys
e Instrument program to trace memory access

- record the state of each memory location

- detect accesses incompatible with the current state

» attempts to access unallocated memory
e read from uninitialized memory locations

- array bounds violations:
« add memory locations with state unallocated before and after each array
« attempts to access these locations are detected immediately

allocat Unallocated
f (unwritable and unreadable) ;

I eallocate
|
Allocated and uninitialized deallocate Allocated and initialized
(writable, but unreadable) (readable and writable)

D ANALYIS initialize

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 17

Nata Darnc
Lailta r\auco
e Testing: not effective

(nondeterministic interleaving of threads)

o Static analysis:
computationally expensive, and approximated
e Dynamic analysis:
can amplify sensitivity of testing to detect
potential data races
- avoid pessimistic inaccuracy of finite state verification
- Reduce optimistic inaccuracy of testing

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 18

\l alaal I/

i~r | Al ent An \l
y IAILIIUVU LLUUNOCL

M\ I alyo

e Lockset discipline: set of rules to prevent data races

- Every variable shared between threads must be protected by a
mutual exclusion lock

 Dynamic lockset analysis detects violation of the locking
discipline
- Identify set of mutual exclusion locks held by threads when
accessing each shared variable
- INIT: each shared variable is associated with all available locks
- RUN: thread accesses a shared variable

 intersect current set of candidate locks with locks held by the thread

- END: set of locks after executing a test = set of locks always held
by threads accessing that variable

== o empty set for v = no lock consistently protects v

AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 19

Simple lockset analysis: example

Thread Program trace Locks held Lockset(x)
{3 flck1, lck2} INIT:all locks for x
thread A | lock(lck1)
flck1} lck1 held
X=X+1
Intersect with
ek} ocks held
unlock(lck1}
U
tread B | lock{lck2}
{lck2} lck2 held
X=X+1
{3 Empty interfection
potentia
SOFTWARE TESTING unlOCk(lez} race
D‘.“.."_LY%'.‘S {}

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 20

Ll ndl N Al

pan ot
1 1Al | IU aliol

1N aNONoe
IL LAoCo
e simple locking discipline violated by
- initialization of shared variables without holding a lock
- writing shared variables during initialization without locks

- allowing multiple readers in mutual exclusion with single writers

Delay analysis
(Vigin) till after initialization
\

write second thread) Multiple writers
v . .
- < Exclusive }write/new thread report violations

read/write/first thread JA
(Shared-Modified)

read/new thread

rem i E_j Multiple readers

Shared ———writ
SOFTWARE TESTING LC S] ngl.e Wr] ter

it L
\|do not report violations

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 21

o Executions reveals information about a program
e Analysis

- gather information from execution

- synthesize models that characterize those executions

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 22

Example: AVL tree

private AvINode insert(Comparable x, AvINode t){

ifC t == null)
t = new AvINode(x, null, null);

else 1T(x.compareTo(t.element) < 0){
t.left = insert(x, t.left);
1IT(height(t.left) - height(t.right) == 2)

1T(x.compareTo(t.left.element) < 0)
t = rotateWithLeftChild(t);

else
t = doubleWithLeftChild(t);

Behavior model
at the end of
insert:

father > left

father < right

diffHeight one of
{-1,0,1}

SOFTWARE TESTING
AND ANALYSIS

}else 1T(x.compareTo(t.element) > 0){
t.right = insert(x, t.right);
1IT(height(t.right) - height(t.left) == 2)
1T(x.compareTo(t.right.element) > 0)
t = rotateWithRightChild(t);
else
t = doubleWithRightChild(t);

} else

. // Duplicate; do nothing
t.height = max(height(t.left), height(t.right)) + 1;

return t;

3

Ch 19, slide 23

(c) 2007 Mauro Pezze & Michal Young

m+ \l /

HEda
LUITIALUIU y

A
MA\u

f"l'

(C!
<

o Start with a set of predicates
- generated from templates
- instantiated on program variables
- at given execution points

e Refine the set by eliminating predicates
violated during execution

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 24

Dradiratn tamnlatace
ricuitalc weiiijiatco
over one variable
constant X=a
uninitialized X=uninit
small value set x={a,b,c}
over a single numeric variable
in a range X>a,Xxs<b,asx<b
nonzero x=0
modulus x=a(mod b)
nonmodulus xza(mod b)
over the sum of two numeric variables
linear relationship | y=ax+b
ordering X<Y, X <Y, X=Y, XZY
relationship

it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 25

N\

Cvnanr iy A\/l +vAan
LATUU |||U MVL LITCT

private static void testCaseSingleValues() {

AviTree t = new AviTree();

t.insert(new Integer(5)); —;X\\\\
t.insert(new Integer(2)); The model depends
t.insert(new Integer(7)); on the test cases

}

private static void testCaseRandom(int nTestCase) {
AviTree t = new AvliTree();

for (int 1 = 1; 1 < nTestCase; i+t+) {
int value=(int)Math.round(Math.random()*100);
t.insert(new Integer(value));

}

}

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 26

Narnv/ad Madale useless (redundant)
L/CIIVCU IVIUUCIO information
model for testCaseSingleValues | model for tes%
father one of {2, 5, 7} father >=0 ~
left == left >= 0 additional information:
right == father > left i all elements are
leftHeight == rightHeight father < right non-negative
rightHeight == diffHeight left < right elements are
leftHeight == fatherHeight >= 0 inserted correctly
rightHeight == leftHeight >= 0
fatherHeight one of/{0,\1} rightHeight >= 0
fatherHeight > leftHeight
limited validity fatherHeight > rightHeight the tree
of the test case: fatherHeight > diffHeight Is balanced
the tree is perfectly rightHeight >= diffHeight
balanced diffHeight one of {-1,0,1}
P leftHeight - rightHeight + diffHeight ==

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 27

NMndel
VIUI

e Model:

- not a specification of the program
- not a complete description of the program behavior
- a representation of the behavior experienced so far

e conditions may be coincidental

- true only for the portion of state space explored so far

- estimate probability of coincidence as the number of
times the predicate is tested

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 28

Example of C

||p |

oincidental Probability
father >= 0 probability of coincidence:
0.5 if verified by a single execution
0.5" if verified by n executions.
threshold of 0.05
two executions with father =7
father = 7 valid
father >= 0 not valid (high coincidental probability)
two additional execution with father positive
father = 7 invalid
father >= 0 valid

father >= 0 valid for testCaseRandom (300 occurences)
smi not for testCaseSingleValues (3 occurences)

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 29

T

cE:
S-
o
-s
g
—
o)

<

e Testing
- validate tests thoroughness
e Program analysis
- understand program behavior
e Regression testing
- compare versions or configurations
e Testing of component-based software
- compare components in different contexts
e Debugging

s - |dentify anomalous behaviors and understand causes

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 30

Ciim \l
OUIIII 1y

e Program analysis complements testing and
inspection
- Addresses problems (e.g., race conditions, memory
leaks) for which conventional testing is ineffective

- Can be tuned to balance exhaustiveness, precision,
and cost (e.g., path-sensitive or insensitive)

- Can check for faults or produce information for
other uses (debugging, documentation, testing)

o A few basic strategies

- Build an abstract representation of program states
-wcee DY MonNitoring real or simulated (abstract) execution

it L

(c) 2007 Mauro Pezze & Michal Young Ch 19, slide 31

