
Automating Analysis and Test

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 1

Learning objectivesLearning objectives

• Understand the main purposes of automating • Understand the main purposes of automating
software analysis and testing
Id tif ti iti th t b f ll ti ll • Identify activities that can be fully or partially
automated

• Understand cost and benefit trade-offs in
automation

• Separate publicity from important features in
descriptions of commercial A&T toolsp

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 2

Three Potential Roles of AutomationThree Potential Roles of Automation

• Necessary for introducing a task• Necessary for introducing a task
– example: coverage tools enable measuring structural

coverage of test suitescoverage of test suites

• Useful to reduce cost
l t d l t l d th t – example: capture and replay tools reduce the costs

of reexecuting test suites

Useful to increase (human) productivity• Useful to increase (human) productivity
– example: software inspection is a manual activity,

but tools to organize and present information and but tools to organize and present information and
manage communication increase the productivity of
people

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 3

people

Approaching AutomationApproaching Automation

• Prioritize automation steps based on • Prioritize automation steps based on
– variations in impact, maturity, cost, scope of the

technologytechnology
– fit and impact on the organization and process

Three (non orthogonal) dimensions for • Three (non-orthogonal) dimensions for
automation

l d t t f th ti it– value and current cost of the activity
– extent to which the activity requires or is made less

expensive by automationexpensive by automation
– cost of obtaining or constructing tool support

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 4

Automation Costs Vary EnormouslyAutomation Costs Vary Enormously

• Some tools are so simple to develop that they are • Some tools are so simple to develop that they are
justifiable even if their benefits are modest
– example: generate test cases from finite state machine modelsp g

• Some tools that would be enormously valuable are
simply impossible
– example: identify exactly which parts of a program can never

be executed (a provably undecidable problem)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 5

Costs May Depend on ScopeCosts May Depend on Scope

• Sometimes a general-purpose tool is only marginally • Sometimes a general purpose tool is only marginally
more difficult to produce than a tool specialized for
one projectp j
– example: general capture and replay for Windows applications

vs capture and replay for a specific Windows application
I t t i th g l t l h th t b ild it – Investment in the general-purpose tool, whether to build it or
to buy it, can be amortized across projects

• In other cases, simple, project-specific tools may be In other cases, simple, project specific tools may be
more cost effective
– Tool construction is often a good investment in a large project
– example: simulators to permit independent subsystem testing

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 6

Focusing Where Automation PaysFocusing Where Automation Pays

• Simple repetitive tasks are often straightforward to Simple repetitive tasks are often straightforward to
automate
– humans are slow and make errors in repetitive tasks

• But ...judgment and creative problem solving remain
outside the domain of automation

• Example: Humans are • Example: Humans are
– Very good at identifying relevant execution scenarios that

correspond to test case specifications
– Very inefficient at generating large volumes of test cases or

identifying erroneous results within a large set of outputs from
regression tests

• Automating the repetitive portions of the task reduces
costs, and improves accuracy as well

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 7

Planning: The Strategy LevelPlanning: The Strategy Level

• Prescribes tools for key elements of the quality process Prescribes tools for key elements of the quality process
• Can include detailed process and tool prescriptions
• Recommends different tools contingent on aspects of a g p

project
– (application domain, development languages, size, overall

quality)quality,...)

• Often included in the A&T strategy: tools for
– Organizing test design and execution g g g
– Generating quality documents
– Collecting metrics

Managing regression test suites– Managing regression test suites

• Less often included: tools for
– Generating test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 8

g
– Dynamic analysis

Planning: The Project LevelPlanning: The Project Level

• The A&T Plan IndicatesThe A&T Plan Indicates
– Tools inherited from the strategy
– Additional tools selected for that project

F t i d t l th A&T l t i l d For new or customized tools, the A&T plan must include
• Costs (including training)
• Implied activities
• Potential risks

• The plan positions tools within the development
process and the analysis and test methodologyprocess and the analysis and test methodology
– Avoid waste of cost and effort from lack of contextualization

of the tools
E l t l f i d – Example: tools for measuring code coverage

• simple and inexpensive
• (if not properly contextualized) an annoyance, producing data not

t t d ti

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 9

put to productive use

Process Support:Process Support:
Planning & Monitoring

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 10

Automation in Process ManagementAutomation in Process Management

• Managing a process involves ... Managing a process involves ...
– planning a set of activities with appropriate cost and quality

trade-offs
it i g g t id tif i k l ibl– monitoring progress to identify risks as early as possible

– avoiding delays by adjusting the plan as needed

• ... and requires and requires ...
– human creativity and insight for which no tool can substitute

• Tools can support process management and improve
d i i ki bdecision making by
– organizing and monitoring activities and results
– facilitating group interactionfacilitating group interaction
– managing quality documents
– tracking costs

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 11

Classic Planning ToolsClassic Planning Tools

• Facilitate task scheduling, resource allocation, and cost Facilitate task scheduling, resource allocation, and cost
estimation by arranging tasks according to resource and
time constraints

• Can be specialized to A&T management with features • Can be specialized to A&T management with features
for deriving relations among tasks, launching tasks, and
monitoring completion of activities
E l t l t• Examples: tools to
– recognize delivery of a given artifact
– schedule execution of a corresponding test suitep g
– notify test designer of test results
– record the actual execution time of the activity
– signal schedule deviations to the quality managersignal schedule deviations to the quality manager

• Most useful when integrated in the analysis and test
environment

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 12

Version and Configuration Control ToolsVersion and Configuration Control Tools

• Analysis and testing involve complex relations • Analysis and testing involve complex relations
among a large number of artifacts
V i d fi ti t t l • Version and configuration management tools
– relate versions of software artifacts
– trigger consistency checks and other activities
– support analysis and testing activities like they

t l bl d il ti f l t d d lcontrol assembly and compilation of related modules
• example: trigger execution of the appropriate test suites

for each software modificationfor each software modification

• Improve efficiency in well-organized processes
– not a substitute for organization

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 13

– not a substitute for organization

MonitoringMonitoring

• Integrated quality tracking • Integrated quality tracking
– improves efficiency in a well-structured process,
– does not by itself bring order out of chaosdoes not by itself bring order out of chaos

• Progress must be monitored in terms of
– schedule (actual effort and completion times vs plan)schedule (actual effort and completion times vs plan)
– level of quality

• Quality of the final product • Quality of the final product
– cannot be directly measured before its completion
– but we can derive useful indications but we can derive useful indications

• example: orthogonal defect classification [see chapter 20]

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 14

Quality TackingQuality Tacking
• Essential function: recognize deviations from expectation as early g p y

as possible to reduce consequences
• Proxy measures

– must be computed early must be computed early
– must be interpreted in a way that avoids misleading conclusions or

distorted incentives
• Example: lines of code• Example: lines of code

• useful as a simple proxy for productivity
• must be carefully interpreted to avoid creating both an incentive for

verbosity and a disincentive for effective reusey

• Example: number of faults detected
• useful to detect deviations from the norm
• one should be as concerned about the causes of abnormally low numbers one should be as concerned about the causes of abnormally low numbers

as high

• Collection, summary, and presentation of data can be automated
• Design and interpretation cannot be automated

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 15

Design and interpretation cannot be automated

Managing PeopleManaging People

• People may work • People may work
– in different groups

in different companies– in different companies
– distributed across time zones and continents

A l i f f i ' i • A large proportion of a software engineer's time
is devoted to communication

• We need to
– facilitate effective communication
– limit disruptions and distractions of unmanaged

communication

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 16

Managing CommunicationManaging Communication

• Simple general-purpose tools (e-mail, chat, forum, ...)Simple general purpose tools (e mail, chat, forum, ...)
– balance synchronous with asynchronous communication
– examples

• When excessive interruptions slow progress, we may replace
synchronous with asynchronous communication

• Conversely, when communication is splintered into many small
exchanges punctuated by waits for reply we may replace exchanges punctuated by waits for reply, we may replace
asynchronous with synchronous communication

• Communication is most effective when all parties have
i di l i f iimmediate access to relevant information
– Task-specific tools can improve on general-purpose support
– Example: tools for distributed software inspections Example: tools for distributed software inspections

• Extend chat interfaces or forum with
– Managed presentation of the artifact to be inspected
– Appropriate portions of checklists and automated analysis results

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 17

Appropriate portions of checklists and automated analysis results

Measurement

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 18

MetricsMetrics

• Measuring progress & results is necessary for • Measuring progress & results is necessary for
managing processes

 b t ft t h t ll • ... but often we cannot measure what we really
care about
– e.g., actual progress toward goals or effort

remaining; projected reliability; ...

M t i (h id) • Metrics are proxy measures (rough guides)
based on what we can measure
– Anything that is correlated with the real measure of

interest under typical conditions
U ll i lib ti t l l diti

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 19

– Usually require calibration to local conditions

Static Metrics: SizeStatic Metrics: Size

• Static metrics measure some software properties, often Static metrics measure some software properties, often
to estimate other properties (i.e., as proxies for things
we can’t measure)

• Size is the most basic property
– strongly correlated with schedule and cost
– several possible variations depending on white space – several possible variations, depending on white space,

comments, programming style

• Course measures include counts of modules or
i t finterfaces
– functions, methods, formal parameters, etc

• Many more complex measures • Many more complex measures ...
– but lines of code is about as good (or bad) as complex measures

for judging effort

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 20

Measuring ComplexityMeasuring Complexity

• Intuitive rationale: If we could measure how • Intuitive rationale: If we could measure how
complicated a program or its parts were, we
could ...
– Focus test & analysis on most error-prone parts of a

system
– Make better plans and schedules
– Consider redesign of excessively complex subsystems

• But we can’t measure true (logical) complexity
directly.

• Control flow complexity is a proxy.

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 21

Cyclomatic complexityCyclomatic complexity

• Among attempts to measure complexity only • Among attempts to measure complexity, only
cyclomatic complexity is still commonly collected

cyclomatic complexity V(g)
=

number of independent paths through the control flow
graphg p
=

e - n + 2e n 2
(edges - nodes + 2)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 22

Cyclomatic metrics and complexityCyclomatic metrics and complexity

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 23

Interpreting Cyclomatic ComplexityInterpreting Cyclomatic Complexity

• V(g) < 20 V(g) < 20
– Low to moderate cyclomatic complexity
– simple program

• V(g) > 20
– high cyclomatic complexity

complex programs– complex programs

• V(g) > 50
– very high cyclomatic complexity y g y p y
– programs very difficult or impossible to thoroughly test

• Cyclomatic vs logical complexity
i f l l fl – sign of complex control flow structure

– does not capture other aspects of logical complexity that can
lead to difficulty in testing

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 24

Metrics & Quality StandardsMetrics & Quality Standards

• Quality standards• Quality standards
– May be prescribed (e.g., by contract)

May be adopted voluntarily as guidance– May be adopted voluntarily as guidance

• A quality standard like ISO/IEC 9126 requires
t f i d litmeasurement of user-perceived quality

– but doesn’t say how to measure it

• To implement ...
We must find objective indicators (metrics) for
each required quality

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 25

ISO/IEC 9126 Metrics (level 1)ISO/IEC 9126 Metrics (level 1)

Functionality Ability to meet explicit and implicit functional Functionality Ability to meet explicit and implicit functional
requirements

Reliability Ability to provide the required level of service
h h f i d d i when the software is used under appropriate

conditions

Usability Ease of understanding teaching and usingUsability Ease of understanding, teaching, and using

Efficiency Ability to guarantee required performance
under given conditionsg

Maintainability Ability to be updated, corrected, and modified

Portability Ability to be executed in different environments Portability Ability to be executed in different environments
and interoperate with other software

Broad qualities require refinement and mapping to

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 26

objectively measurable properties

Automating Program Analysis TestAutomating Program Analysis, Test
Case Generation, and Test Execution

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 27

Test Case Generation and ExecutionTest Case Generation and Execution

• Automation is important because• Automation is important because
– It is large fraction of overall test and analysis costs

can become a scheduling bottleneck near product – can become a scheduling bottleneck near product
delivery deadlines

Designing a test suite • Designing a test suite
– involves human creativity

d• Instantiating and executing test cases
– is a repetitive and tedious task
– can be largely automated to

• reduce costs
l h l

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 28

• accelerate the test cycle

Automated Testing - StagesAutomated Testing - Stages

• Push the creative work as far forward as • Push the creative work as far forward as
possible

E g designing functional test suites is part of the – E.g., designing functional test suites is part of the
specification process

– At each level from systems requirements through – At each level, from systems requirements through
architectural interfaces and detailed module
interfaces

• Construct scaffolding with the product
• Automate instantiation and execution• Automate instantiation and execution

– So they are not a bottleneck
So they can be repeated many times

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 29

– So they can be repeated many times

Static Analysis and ProofStatic Analysis and Proof

• Effective for• Effective for
– Quick and cheap checks of simple properties

• Example: simple data flow analyses can identify anomalous • Example: simple data flow analyses can identify anomalous
patterns

– Expensive checks necessary for critical propertiesp y p p
• Example: finite state verification tool to find

synchronization faults

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 30

Design for VerificationDesign for Verification

• Decompose Verification Problems• Decompose Verification Problems
– Design: enforce design rules to accommodate

analysisanalysis
• example: encapsulate safety-critical properties into a

safety kernel

– Verification: focus on encapsulated or simplified
property

• example:
• prove safety properties of the (small) kernel
• check (cheaply automatically) that all safety related • check (cheaply, automatically) that all safety-related

actions are mediated by the kernel

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 31

Undecidability and Automated AnalysisUndecidability and Automated Analysis
• Some tools report false alarms in addition to real violations of the p

properties they check
– example: data flow analyzers

• Some tools avoid false alarms but may also fail to detect all
i l iviolations
– example: bug finders

• Some tools are heavyweight with respect to requirement for skilled
h i t ti d g id t id t g f human interaction and guidance to provide strong assurance of
important general properties
– examples

Finite state verification systems (model checkers)– Finite state verification systems (model checkers)
• can verify conformance between a model of a system and a specified

property
• require construction of the model and careful statement of the property

– Theorem provers
• execute with interactive guidance
• requires specialists with a strong mathematical background to formulate

the problem and the property interactively select proof strategies

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 32

the problem and the property interactively select proof strategies

Complex analysis toolsComplex analysis tools

• Verifiers based on theorem proving• Verifiers based on theorem proving
– verify a wide class of properties

require extensive human interaction and guidance– require extensive human interaction and guidance

• Finite state verification tools
– restricted focus
– execute completely automatically
– almost always require several rounds of revision to

properly formalize a model and property to be
checkedchecked

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 33

Simple analysis toolsSimple analysis tools

• Restricted to checking a fixed set of simple propertiesRestricted to checking a fixed set of simple properties
– do not require any additional effort for specification

• Type checkers• Type checkers
– typically applied to properties that are syntactic = enforce a

simple well-formedness rule
violations are easy to diagnose and repair – violations are easy to diagnose and repair

– Often rules are stricter than one would like
• Data flow analyzers

– sensitive to program control and data flow
– often used to identify anomalies rather than simple,

unambiguous faults
• Checkers of domain specific properties

– Web site link checkers
–

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 34

…

Cognitive Aids

Supporting creative, human processespp g , p

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 35

Cognitive Aids: Problems to AddressCognitive Aids: Problems to Address

• Nonlocality• Nonlocality
– Information that requires a shift of attention

Example: following a reference in one file or page to – Example: following a reference in one file or page to
a definition on another
creates opportunities for human error– creates opportunities for human error

• Information clutter
I f ti b d b f di t ti – Information obscured by a mass of distracting
irrelevant detail

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 36

Cognitive Aids: ApproachesCognitive Aids: Approaches

• Nonlocality and clutter• Nonlocality and clutter
– increase the cognitive burden of inspecting complex

artifacts (requirements statements, program code, (q , p g ,
test logs,…)

– decrease effectiveness and efficiency
• Can be reduced by automatically focusing and

abstracting from irrelevant detail
• Browsing and visualization aids

– Often embedded in other tools and customized to
t ti l t ksupport particular tasks

• Pretty-printing and program slicing
• Diagrammatic representations

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 37

Diagrammatic representations

Diagrammatic Representations
Example: Code Crawler

Characteristics of classes in
class hierarchy summarized class hierarchy summarized
and represented by color,

width, and height

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 38

Related Tools: Version controlRelated Tools: Version control,
Debugging

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 39

Version ControlVersion Control

• Record versions and releases of each part of an Record versions and releases of each part of an
evolving software system
– From very simple version management (CVS, SVN) to very

complex configuration management systemscomplex configuration management systems

• Useful for maintaining test artifacts (plans, test cases,
logs, etc.)g ,)
– Test artifacts are versioned with the product

• Integrate with process support
– E.g., it is possible to trigger re-testing on changes, or require

successful test before committing to baseline

• Provide historical information for tracing faults across Provide historical information for tracing faults across
versions and collecting data for improving the process

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 40

Debugging ≠ TestingDebugging ≠ Testing

• Testing = detecting the presence of software faults• Testing = detecting the presence of software faults
• Debugging = locating, diagnosing, and repairing faults
• Responsibility for testing and debugging typically fall to • Responsibility for testing and debugging typically fall to

different individuals
• Debugging starts with a set of test cases• Debugging starts with a set of test cases

– A small, simple test case that invariably fails is far more
valuable in debugging than a complex scenario, particularly one
h f il d d di ifi d di ithat may fail or succeed depending on unspecified conditions

– larger suites of single-purpose test cases are better than a
small number of comprehensive test casesp

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 41

Run-time Debugging ToolsRun-time Debugging Tools

• All modern deguggers • All modern deguggers ...
– Allow inspection of program state
– Pause execution

• at selected points (breakpoints)
• when certain conditions occur (watchpoints)

after a fixed number of execution steps• after a fixed number of execution steps

– Provide display and control at the level of program source code

• Specialized debugging support may include Specialized debugging support may include
– Visualization (e.g., for performance debugging)
– Animation of data structures
– Differential debugging compares a set of failing executions to

other executions that do not fail

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 42

Automation Strategy

(summary)(y)

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 43

Choosing and Integrating toolsChoosing and Integrating tools

• Tools and approaches must fit ... Tools and approaches must fit ...
– development organization, process, and application domain

• Simple rule: Identify significant costs (money or
schedule) for automation
– Example: automated module testing

• of little use for organizations using the Cleanroom process• of little use for organizations using the Cleanroom process
• essential for organizations using XP

– Example:
g i ti b ildi g f t iti l ft j tif • organizations building safety-critical software can justify

investment in sophisticated tools for verifying the properties of
specifications and design organization that builds rapidly evolving
mass market applications is more likely to benefit from good mass market applications is more likely to benefit from good
support for automated regression testing

• Also consider activities that require automation
Missed by analysis of current testing & analysis costs

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 44

– Missed by analysis of current testing & analysis costs

Think StrategicallyThink Strategically

• Evaluate investments in automation beyond a • Evaluate investments in automation beyond a
single project and beyond the quality team
R i t l j t d• Reusing common tools across projects reduces
– cost of acquiring and installing tools
– cost of learning to use them effectively
– impact on project schedule

• Think globally
– Often quality tools have costs and benefits for other

parts of the software organization

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 45

SummarySummary

• Automation • Automation
– Can improve the efficiency of some quality activities

Is a necessity for implementing others– Is a necessity for implementing others
– Os never a substitute for a rational, well-organized

quality processquality process
– Can incrementally improve processes that makes the

best use of human resourcesbest use of human resources
– Must be carefully evaluated to balance costs and

benefitsbe e ts

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 46

Optional SlidesOptional Slides

The following slides are not crucial to understandinge o o g s des a e ot c uc a to u de sta d g
the core ideas of the chapter, but may be used by instructors
who wish to cover some details in more detail.

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 47

Static Metrics: SizeStatic Metrics: Size
• Static metrics measure some software properties, often to p p ,

estimate other properties (i.e., as proxies for things we can’t
measure)

• SizeSize
– most basic property of software
– strongly correlated with schedule and cost

several possible variations depending on white space comments

Size Size of the source file, measured in bytes

Li All i l i t f li i d fil

– several possible variations, depending on white space, comments,
programming style

Lines All-inclusive count of lines in source code file

LOC Lines of code, excluding comment and blank lines

Effective lines of code excluding comments blank eLOC Effective lines of code, excluding comments, blank
lines, and stand-alone braces or parenthesis

lLOC Logical lines of code, that is, statements as identified
b l i l t h i l

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 48

by logical separators such as semicolons

Static Metrics:
Complexity and Readability

• Complexity may be as important as sheer size• Complexity may be as important as sheer size
• Example proxy measures for complexity and readability:

CDENS Comment density: comment lines/eLOC CDENS Comment density: comment lines/eLOC

Blocks Number of basic blocks: sequences of statements with
one entry point, one exit point, and no internal branches

AveBlockL Average number of lines per basic block

NEST Control structure nesting level: minimum, maximum, and
averageaverage

Loops Number of loops

Int1 Number of first order intervals

MOI Maximum order of intervals

LCSAJ Number of linear code sequences [see chapter 5]

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 49

BRANCH Number of branches in the control flow graph

Coarse Measurements of SizeCoarse Measurements of Size

• Consider interfaces between unitsConsider interfaces between units
• Examples

Number of defined functions (or Functions Number of defined functions (or
methods, procedures, ...)
Number of formal parameters of FPar Number of formal parameters of
functions

FRet Number of return points of functionsFRet Number of return points of functions

IComplex Interface complexity: FPar + FRet

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 50

Complexity of Object-Oriented CodeComplexity of Object-Oriented Code
WMC Weighted methods per class

 f th l iti f th d i ll l di id d b th sum of the complexities of methods in all classes, divided by the
number of classes
parametric with respect to a measure of complexity in methods

DIT Depth of the inheritance tree of a class

NOC Number of children (subclasses) of a class

RFC Response for a classRFC Response for a class
number of methods that may be executed in response to a
method call to an object of the class
(transitive closure of the calling relation)(transitive closure of the calling relation)

CBO Coupling between object classes
number of classes with which the class is coupled

LCOM Lack of cohesion in methods
number of methods with pairwise disjoint sets of instance
variables referenced within their respective method bodies

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 51

variables referenced within their respective method bodies

ISO/IEC 9126 Metrics - level 2 (1/3)ISO/IEC 9126 Metrics - level 2 (1/3)

Functionalityu ct o al ty
Suitability Ability to provide the required functionality

Accuracy Ability to provide correct results

Interoperability Ability to interact with other products

Security Ability to protect access to private data and
l l fguarantee a level of service

Reliability
Maturity Ability to avoid failures

Fault Tolerance Ability to maintain a suitable level of functionality
 i th f t l f ileven in the presence of external failures

Recoverability Ability to recover data and resume function after a
failure

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 52

ISO/IEC 9126 Metrics - level 2 (2/3)ISO/IEC 9126 Metrics - level 2 (2/3)

UsabilityUsab l ty
Understandability Ease of understanding the product

Learnability Ease of training users

Operability Ease of working with the product

Attractiveness Degree of appreciation by users

Efficiency
Time Behavior Ability to satisfy average and maximum response

time requirements

Resource Amount of resources needed for executing the Resource
Utilization

Amount of resources needed for executing the
software

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 53

ISO/IEC 9126 Metrics - level 2 (3/3)ISO/IEC 9126 Metrics - level 2 (3/3)
Maintainability
Analyzability Ease of analyzing the software to reveal faults

Changeability Ease of changing the software

Interoperability Ability to interact with other products

Stability Ability to minimize the effects of changes

Testability Ease of testing the softwareTestability Ease of testing the software

Portability
Adaptability Ability to be adapted to new environments

Installability Ease of installing the software

Co-existence Ability to share resources with other products

Replaceability Ability to be replaced by other products

(c) 2007 Mauro Pezzè & Michal Young Ch 23, slide 54

