Reliability Engineering and System Safety, No.71, 2001

Analysis and Synthesis of the Behavior of Complex Programmable Electronic Systems in Conditions of Failure

Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner

JUNBEOM YOO

Dependable Software Laboratory KONKUK University

http://dslab.konkuk.ac.kr

Contents

- Introduction
 - Basic Concept
 - Classical Safety Analysis Techniques
 - Limitation of Classic Techniques
- Overview of the Proposed Method: HiP-HOPS
 - FFA+
 - Hierarchical Modeling
 - IF-FMEA
 - FTA
- Conclusions

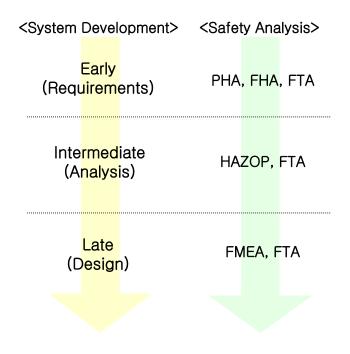
Safety

Safety is freedom from accidents or losses. (Leveson 1995)

Relative definition of safety

- All hazard cannot be eliminated.
- Often, hazard elimination requires sacrificing some other goals
- It makes sense, "It is absolutely safe from a particular hazard."

Hazard


Hazard is a state or set of conditions of a system that together with other conditions in the environment, will lead inevitably to an accident.

Hazard analysis investigates factors related to accidents.

- To identify and assess potential hazards
- To identify the conditions that can lead to hazard, so that the hazard can be eliminated or controlled.

Classical Safety Analysis Techniques

- 1. Preliminary Hazard Analysis (PHA)
- 2. Functional Hazard Assessment (FHA)
- 3. Hazard and Operability study (HAZOP)
- 4. Failure Mode and Effects Analysis (FMEA)
- 5. Fault Tree Analysis (FTA)

1. Preliminary Hazard Analysis (PHA)

Hazard	Effect (accident)	Severity	Co-effectors	Exposure to danger	Avoidance of danger
Loss of Braking	Death or serious injury to occupants of the vehicle, other vehicles or pedestrians	Critical	High speed travel and requirement to slow down or stop	Frequent = 1e-2 [1/h]	Unlikely to avoid danger
Uneven Braking	Directional instability. Death or serious injury to occupants of the vehicle, other vehicles or pedestrians	Critical	Heavy traffic, Hazardous road condition	Frequent = 1e-2 [1/h]	Likely to avoid danger

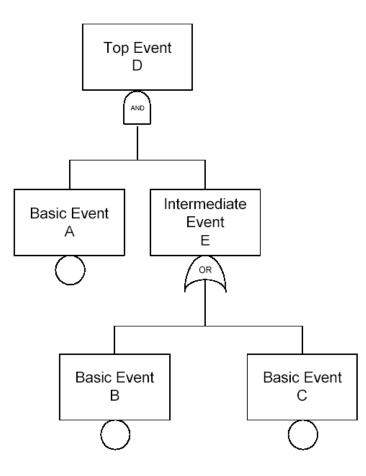
Table 2-5: Preliminary Hazard Analysis table

2. Functional Hazard Assessment (FHA)

Function	Failure Condition (Hazard Description)	Phase	Effects of failure Condition on Aircraft/Crew	Classification	Reference to Supporting Model	Verifica- tion
Decelerate Aircraft on the Ground	1. Loss of Deceleration Capability	Landing /Run to take off/ Taxi	See Below			
	1.a. Unannuciated loss of deceleration capability	Landing/ Run to take off	Crew is unable to decelerate the aircraft, resulting in a high speed overrun	Catastrophic		Aircraft Fault Tree
	1.b. Annuciated loss of deceleration capability	Landing	Crew selects more suitable airport, notifies emergency ground support, and prepares occupants for landing overrun	Hazardous	Emergency landing procedures in case of loss of stopping capability	Aircraft Fault Tree
	1.c. Unannuciated loss of deceleration capability	Taxi	Crew is unable to stop the aircraft on the taxiway or gate resulting in low speed contact with terminal, aircraft, or vehicles	Major		

3. Hazard and Operability study (HAZOP)

Guide Word	Deviation	Possible Causes	Consequences	Action Required
NONE	No flow	No hydrocarbon available from storage	Loss of feed to reactor. Polymer formed in heat exchanger	 Ensure good communication with storage area Install low level alarm on settling tank
		Transfer pump fails (motor fault, loss of power, impeller corroded etc.)	As above	Covered by 2)
MORE	More flow	Level control valve fails to open, or Level Control Valve bypassed in error	Settling tank overfills	 3) Install high level alarm 4) Check size of overflow 5) Establish locking-off procedure for Level Control Valve bypass when not in use
	More Pressure	Isolation valve or Level Control Valve closed when pump running	Line subjected to full pump pressure	6) Install kickback on pumps
	More Temperature	High intermediate storage temperature	Higher pressure in transfer line and settling tank	 Install warning of high temperature at intermediate storage


Table 2-7: HAZOP table

4. Failure Mode and Effects Analysis (FMEA)

Component	Failure Mode	Subsystem Effects	Vehicle Effects	Haz	Failure rate [1/h]	Comments
Vehicle Speed Sensor	No signal	Vehicle speed will always be calculated as zero	 No speed indication Mileometer not incremented Electronic gearbox control may select too low gear, possibly resulting in wheel lockup or transmission damage 	Min Min Maj	5E-5	Effect 3) requires simultaneous failure of engine load calculation and mechanical interlocks on gearbox
Vehicle Speed Sensor	Noisy (too Many edges)	Calculated vehicle speed will be too high. If edges arrive at higher rate than specified, they will be lost	 4.Indicated speed greater than actual 5.Mileometer over-reads 6.Electronic gearbox control may select too high gear, possible resulting in stall 	Min Min Min	3E-5	Effect 6) is hard to detect via engine load calculation, unless noise is extreme
Vehicle Speed Sensor	Intermit- tent	Calculated vehicle speed will be too low	7.Speed indicated lower than actual8.Mileometer under-reads9.As 3)	Min Min Maj	4E-5	See above

Table 2-8: Failure Mode and Effect Analysis table

5. Fault Tree Analysis (FTA)

Limitation of Classic Techniques

As the complexity of modern programmable electronic systems increases, the applications of classical techniques is becoming increasingly more problematic.

Problems issued:

- Inconsistent
- Untraceable
- Unmanageable

Limitation of Classic Techniques

1. Inconsistent

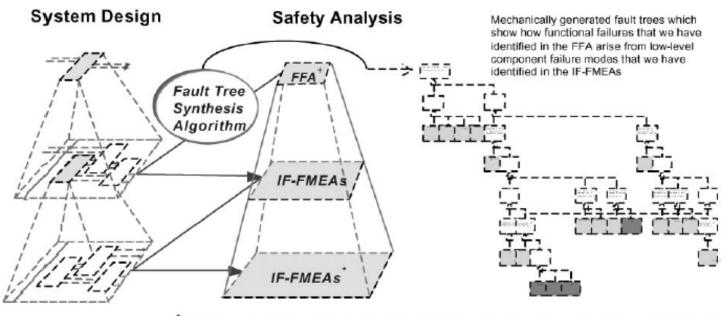
- These techniques are based on different design notations as the development lifecycle.
- Updates are not kept well.

2. Untraceable

- These analysis remains fragmented, so the results are incomplete.
- HW / SW analysis are separated, so the relationship between HW and SW often remains vague and unsolved.

3. Unmanageable

- Fault tree analysis : consistent, traceable
- But, FTA is exert-dependent, laborious, non-systematic, error-prone, and voluminous


HiP-HOPS

Hierarchically Performed Hazard Origin and Propagation Study

Characteristics:

- Integrated assessment of hierarchically described system.
- From functional level to lower HS/SW design level.
- Modify and incorporate classical techniques.
- Early: FFA+ (Extended FFA)
- Later: IF-FMEA (Interface Focused FMEA)
- Across: FTA (Mechanically generated)
- Tool supported.

HiP-HOPS

* FFA: Functional Failure Analysis (Analysis of the failure behaviour of the system at the functional level) * IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

Fig. 2. Overview of design and safety analysis in HiP-HOPS.

Early: FFA+

Standard FFA process (SAE ARP-4761, 1996)

- 1. Identification and listing of all system functions
- 2. Precise definition of purpose and behavior of each function
- 3. Examination of each function for potential failure modes in three classes:
 - Loss of function (omission)
 - Function provided when not required (commission)
 - Incorrect operation of function (malfunction)
- 4. Determine of the effects of each failures
- 5. Determination of the severity of each functional failures
- 6. Compilation of the results in tabular form [function, failure mode, contributing factors, effects, severity]

Early: FFA+

Proposed FFA+ process

- 1. Construct a function block diagram, which identifies system functions and their dependencies
- 2. Remove any avoidable dependencies between functions
- 3. Identify single functional failures examining each function:
 - Loss of function
 - Inadvertent delivery of function
 - malfunction
- 4. Assess single function failures
 - Determine any contributing factors (I.e. environmental factors)
 - Determine the effects and severity of failure
 - Determine potential mechanisms for detection and recovery
 - Compile the results in a tabular form
 - [failure mode, contributing factors, effect, severity, detection, recovery, recommendation]
- 5. Identify unique, plausible combination of multiple functional failures
 - Identify unique combinations by examining symmetries and exclusivity.
 - Examining by applying other plausibility criteria
- 6. Assess multiple functional failures in step 4.

Early: FFA+

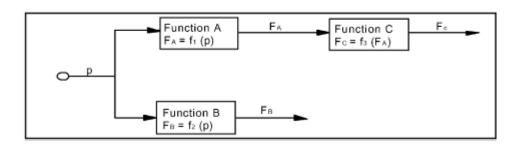
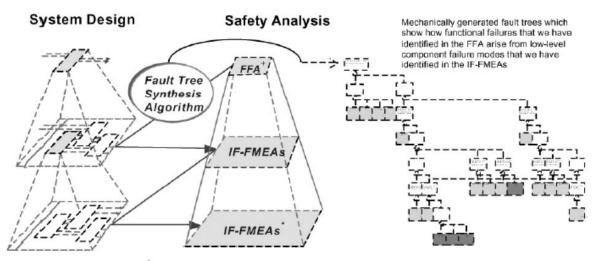


Fig. 4. Example functional model.

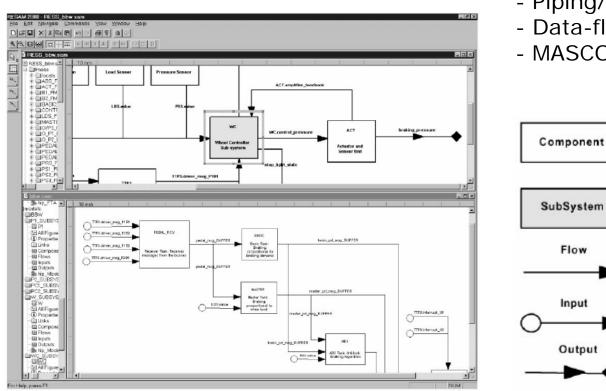

Dependencies found by FFA+:

- Between A and B (common source P)
 → Duplication of input sensor P
- 2. Between A and C (functional input from A) \rightarrow Range validation check of F_A

Early: FFA+

Special features of FFA+:

- 1. Function block diagram
- 2. Removal of multiple dependencies
- 3. Failure detection and recovery recommendation
- 4. Reflected on a successive system design



* FFA: Functional Failure Analysis (Analysis of the failure behaviour of the system at the functional level) * IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

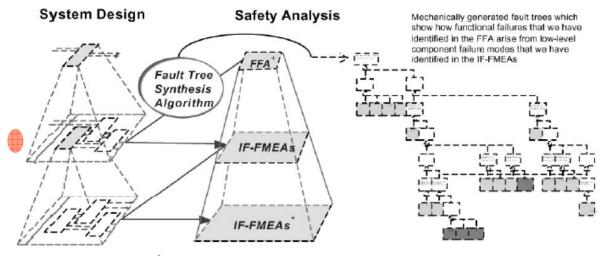
Fig. 2. Overview of design and safety analysis in HiP-HOPS.

Hierarchical Modeling

Use a kind of Flow Diagram derived from original design notation.

- Engineering schematics
- Piping/instrumentation diagram
- Data-flow diagram
- MASCOT diagram

Flow

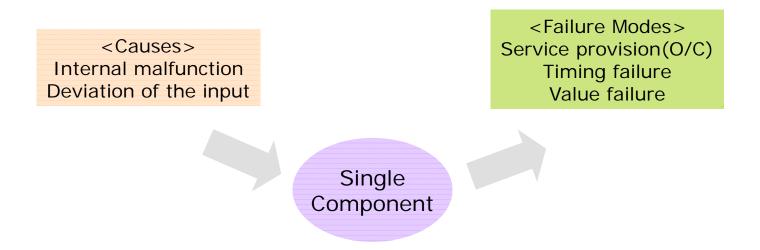

Input

Output

Hierarchical Modeling

Special features of Hierarchical Modeling:

- 1. Precise relationship between original design and proposed flow diagram
- 2. Static structural model/analysis only

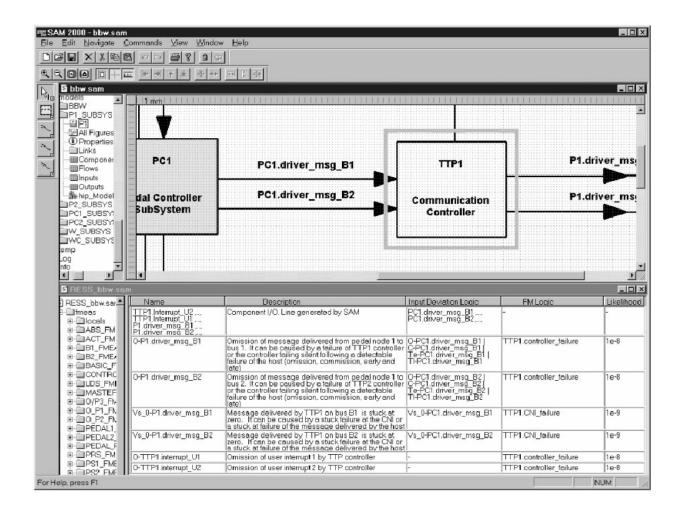


FFA: Functional Failure Analysis (Analysis of the failure behaviour of the system at the functional level) IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

Fig. 2. Overview of design and safety analysis in HiP-HOPS.

Later: IF-FMEA

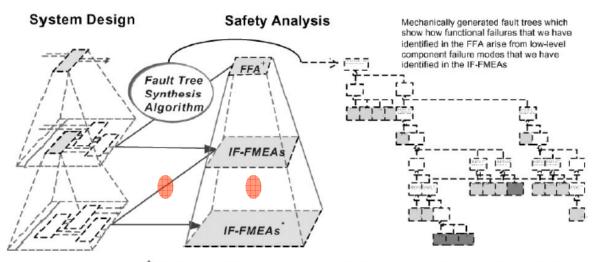
Interface Focused FMEA on a single component.



Later: IF-FMEA

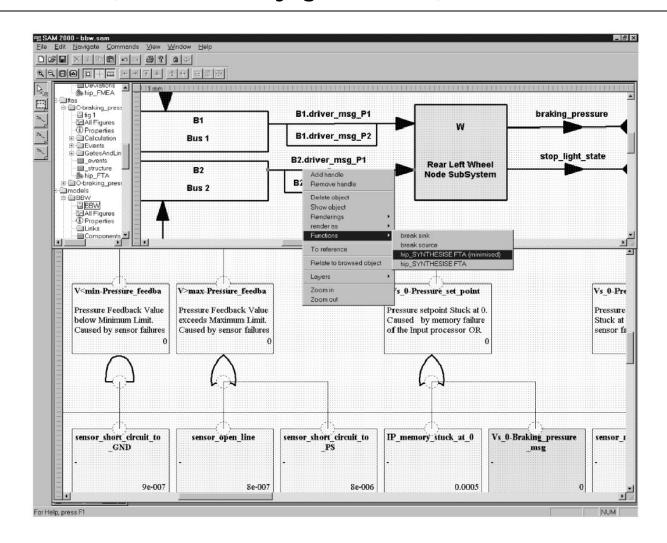
sensor_a sensor_b Sensor_b Task						
Output Failure Mode	Description	Input Deviation Logic	Component Malfunction Logic	+ (f/h)		
O-pedal_output	Omission of <i>Pedal</i> output (driver's message). It can be caused by task malfunction or out of range failures of both pedal sensors.	(V>max-sensor_a V <min-sensor_a) &<br="">(V>max-sensor_b V<min-sensor_b)< td=""><td>processor_ failure operating_ system_ failure</td><td>1.00E-07 9.00E-07</td></min-sensor_b)<></min-sensor_a)>	processor_ failure operating_ system_ failure	1.00E-07 9.00E-07		
Vs_0- pedal_output	Pedal output (driver's message) stuck at 0. It can be caused by memory stuck at 0 failures, or by stuck at minimum failures of both pedal sensors.		Memory_ stuck_at_0	2.00E-06		

Fig. 8. Model and fragment of the IF-FMEA of the pedal task.


Later: IF-FMEA

Later: IF-FMEA

Special features of IF-FMEA:


- Obscure relationships marked
- 2. No concern about updating of IF-FMEAs and the effects

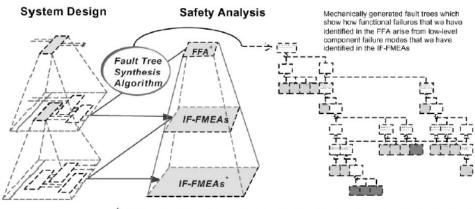

* FFA: Functional Failure Analysis (Analysis of the failure behaviour of the system at the functional level)
 * IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

Fig. 2. Overview of design and safety analysis in HiP-HOPS.

Across: FTA (mechanically generated)

Characteristic of HiP-HOPS

* FFA: Functional Failure Analysis (Analysis of the failure behaviour of the system at the functional level) * IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

1. Consistent

Fig. 2. Overview of design and safety analysis in HiP-HOPS.

- Based on one design notation: Flow diagram
- Updates are kept well.
- 2. Traceable
 - Uses complete design model. (No fragments)
 - HW / SW analysis are integrated
- 3. Manageable
 - Mechanically generated fault tree analysis
 - Selective generation

Conclusion and Future Work

HiP-HOPS:

- Provides consistent, traceable, and manageable safety analysis model
- Some limitations
- Can help safety analysts systematically with tool-support.

Future Work:

- Extends to interactive and dynamic system