
ACM Transactions on Software Engineering and Methodology, 1996.

Automated Consistency Checking ofAutomated Consistency Checking of
Requirements Specifications

CONSTANCE L. HEITMEYER,
RALPH D JEFFORDS

JUNBEOM YOO

RALPH D. JEFFORDS,
BRUCE G. LABAW

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.09.09

AbstractAbstract

Thi ti l d ib f l l i t h i ll d i t h ki fThis article describes a formal analysis technique, called consistency checking, for
automatic detection of errors, such as type errors, nondeterminism, missing cases, and
circular definitions, in requirements specifications. The technique is designed to
analyze requirements specifications expressed in the SCR (Software Cost Reduction)analyze requirements specifications expressed in the SCR (Software Cost Reduction)
tabular notation. As background, the SCR approach to specifying requirements is
reviewed. To provide a formal semantics for the SCR notation and a foundation for
consistency checking, a formal requirements model is introduced; the model

t ft t fi it t t t t hi h d t llrepresents a software system as a finite-state automaton, which produces externally
visible outputs in response to changes in monitored environmental quantities. Results
of two experiments are presented which evaluated the utility and scalability of our
technique for consistency checking in a real-world avionics application. The role of ec que o co s s e cy c ec g a ea o d a o cs app ca o e o e o
consistency checking during the requirements phase of software development is
discussed.

Konkuk University 2

ContentsContents

1 I d i1. Introduction
2. Review of the SCR Method
3. Formal Requirements Modelq
4. Automated Consistency Checking
5. Applying Consistency Checks
6 Related Work6. Related Work
7. Requirements Process
8. Concluding Remarks

Konkuk University 3

1 Introduction1. Introduction

E i i i d d l• Errors in requirements are pervasive, dangerous, and costly.

• Given the high frequency of requirements errors, the serious accidents g q y q
they may cause, and the high cost of correcting them late, techniques for
improving the quality of requirements documents and for early detection
of requirements errors are crucial.

• One promising approach to reducing requirements errors is to apply• One promising approach to reducing requirements errors is to apply
formal methods during the requirements phase of software development.

– Formal specification
Formal analysis– Formal analysis

Konkuk University 4

1 Introduction1. Introduction

Th SCR (S f C R d i) i h d i d d• The SCR (Software Cost Reduction) requirements method was introduced
more than a decade ago to specify the software requirements of real-
time embedded systems unambiguously and concisely.

• Designed for use by engineers, the SCR method has been successfully
applied to a variety of practical systems

– avionics systems, such as the A-7 Operational Flight Program
– a submarine communications system
– safety-critical components of the Darlington nuclear power plant in Canada

• While the above applications of SCR rely mostly on manual techniques• While the above applications of SCR rely mostly on manual techniques,
effective use of the method in industrial settings will require powerful
and robust tool support.

Konkuk University 5

1 Introduction1. Introduction

T b f l i d l i i l l f l• To be useful in developing practical systems, not only must formal
methods provide rigor, in addition they must be supported by robust,
well-engineered tools.

• We are developing a suite of prototype tools for the SCR
– Specification editor
– Simulator
– Formal analysis tools

• Consistency checker : for domain-independent properties
• Verifier : for critical application properties

Konkuk University 6

1 Introduction1. Introduction

Al h h h i h ki i ll i h f d h b• Although the consistency checking is usually straightforward, the number
of times the properties need to be checked in practical requirements
specifications can become very large, and thus reviewers must spend

id bl ti d ff t if i th t th ifi ti h thconsiderable time and effort verifying that the specifications have the
properties.

• An industrial-strength formal method should be
– Usable by engineers,
– Scalable, and
– Cost effective.

• Automated consistency checking as described in this article is anAutomated consistency checking as described in this article is an
important step in developing such a method for requirements
specification.

Konkuk University 7

2. Review of the SCR Method
2.1 Background

Th f i t d t i t d ib ll t bl t• The purpose of a requirements document is to describe all acceptable system
implementations.

• The software requirements document for the A-7 aircraft’s Operational Flight• The software requirements document for the A-7 aircraft s Operational Flight
Program was published in 1979 to demonstrate a systematic approach to
producing such a document.

• Faulk [1989] provided formal definitions for parts of the A-7 model.

• Using the original A-7 requirements document as a model, van Schouweng g q
[1990] published a system-level requirements specification for the Water
Level Monitoring System (WLMS), part of the shutdown system for a nuclear
power plant

• The Four-Variable Model of Parnas and Madey [1995] provides a formal
framework for the SCR method.

Konkuk University 8

2 2 Four Variable Model2.2 Four-Variable Model

Th F V i bl M d l ill d i Fi 1 d ib h i d• The Four-Variable Model, illustrated in Figure 1, describes the required
system behavior, including the required timing and accuracy, as a set of
mathematical relations on four sets of variables—monitored and

t ll d i bl d i t d t t d t itcontrolled variables and input and output data items.

Konkuk University 9

2 2 Four Variable Model2.2 Four-Variable Model

Th f i d d ll d i i d fi h i d• The use of monitored and controlled quantities to define the required
behavior (rather than input and output data items) keeps the
specification in the problem domain and allows a simpler specification.

• Like the Four-Variable Model, our requirements model can be used to , q
describe both system requirements and software requirements.

• Our model defines the system requirements by describing REQ the• Our model defines the system requirements by describing REQ, the
required relation between the monitored and controlled variables, and
the software requirements y describing SOFT, the required relation
between the input and output data items.between the input and output data items.

Konkuk University 10

2 3 SCR Constructs2.3 SCR Constructs

T if th l ti f th F V i bl M d l i ti l d• To specify the relations of the Four-Variable Model in a practical and
concise manner, four other constructs, each introduced in the A-7
requirements document [Heninger et al. 1978], are useful.

• A mode class is a state machine, defined on the monitored variables,
whose states are called system modes (or simply modes) and whose
transitions are triggered by events.transitions are triggered by events.

• A term is an auxiliary function defined on input variables, modes, or
other terms that helps make the specification concise. ot e te s t at e ps a e t e spec cat o co c se.

• A condition is a predicate defined on one or more system entities (a
system entity is an input or output variable, mode, or term) at some y y p p , ,)
point in time.

• An event occurs when any system entity changes value.y y y g

Konkuk University 11

2 3 SCR Constructs2.3 SCR Constructs

@T(Block=On)
 (the operator turns Block from Off to On)

@T(Block=On) WHEN WaterPres < Low

Konkuk University 12

@ (oc O) ate es o
 (the operator turns Block to On when water pressure is below Low).

2 4 SCR Tables2.4 SCR Tables

N l d i fi d b l ifi i f i• Not only do engineers find tabular specifications of requirements easy to
understand and to develop; in addition, tables can describe large
quantities of requirements information concisely.

• Each table defines a mathematical function.
– Condition table
– Event table
– Mode transition table

Konkuk University 13

2 4 SCR Tables2.4 SCR Tables

“If Pressure is TooLow, and WaterPres rises to Low, then Pressure
changes to Permitted.”

Konkuk University 14

2 4 SCR Tables2.4 SCR Tables

“If Pressure is TooLow, and Block becomes On when Reset is Off, thenIf Pressure is TooLow, and Block becomes On when Reset is Off, then
Overridden becomes true.”

The entry “False” in row 1 of Table II means that when the mode y
class is High no event can cause Overridden to become true.

“@T(Inmode)” in the second row of Table II means, “If the system

Konkuk University 15

enters TooLow or Permitted, then Overridden becomes false.”

2 4 SCR Tables2.4 SCR Tables

“If Pressure is High or Permitted, or if Pressure is TooLow and
O idd i t th S f t I j ti i OffOverridden is true, then SafetyInjection is Off;
if Pressure is TooLow, and Overridden is false, then SafetyInjection is
On.”

The entry “False” in the first row means that SafetyInjection is never
On when Pressure is High or Permitted.

Konkuk University 16

2 4 SCR Tables2.4 SCR Tables

Whil di i bl d fi l f i bl d d• While condition tables define total functions, event tables and mode
transition tables may define partial functions.

– This is partly because some events cannot occur when certain conditions are
ttrue.

– An event may occur that does not change the value of a variable defined by
an event table or a mode transition table.

• In our formal requirements model (see below), we make the functions
defined by event tables and mode transition tables total by assigning a
variable its old value whenever the table does not explicitly define the
variable’s value.

Konkuk University 17

3 Formal Requirements Model3. Formal Requirements Model

T id i d d il d i f h SCR h d• To provide a precise and detailed semantics for the SCR method, our
model represents the system to be built as a finite-state automaton and
describes the input and output variables, conditions, events, and other

t t th t k SCR ifi ti i t f th t t tconstructs that make up an SCR specification in terms of that automaton.

• Our automaton model, a special case of the Four-Variable Model,
describes all monitored and controlled quantities, even those which are
naturally continuous, as discrete variables.

– Moreover, because our model abstracts away timing and imprecision, it
describes the “ideal” system behavior.

• The system requirements are easier to specify and to reason about if the
ideal behavior is defined first. Then, the required precision and timing
can be specified separately.

Konkuk University 18

3 1 System State3.1 System State

W h i f h f ll i• We assume the existence of the following sets.

Konkuk University 19

3 1 System State3.1 System State

A i f i h h i i• A system state s is a function that maps each entity name r in RF to a
value.

• More precisely, for all r ∈ RF: s(r) = v, where v ∈ TY(r). Thus, by
assumption, in any state s, the system is in exactly one mode from each
mode class, and each entity has a unique value.

Konkuk University 20

3 2 Conditions3.2 Conditions

Konkuk University 21

3 3 Events3.3 Events

Th “@ “ i d i• The “@T“ notation denotes various events.

• Primitive event : @T(r = v)@ ()
• Input event: if r ∈ IR
• Basic event: @T(c), where c is any simple condition
• Simple conditioned event: @T(c) when d ≡ @T(c) when d = c ˄ c’˄ d• Simple conditioned event: @T(c) when d ≡ @T(c) when d = c ˄ c ˄ d
• Conditioned event: composed of simple conditioned events connected

by the logical connectors ˅ and ˄.

• Any conditioned event can be expressed as a logical statement.

Konkuk University 22

3 4 System (Software System)3.4 System (Software System)

• A basic assumption, called the One-Input Assumption, is that exactly one
inp t e ent occ s at each state t ansitioninput event occurs at each state transition.

Konkuk University 23

3 5 Ordering the Entities3.5 Ordering the Entities

P i l d i ll i i i h• Partial ordering on all entities in the set RF.

• Example.p

– Partial ordering
R = < WaterPres, Block, Reset, Pressure, Overridden, SafetyInjection>

Konkuk University 24

3 6 Table Functions3.6 Table Functions

E h SCR bl d ib bl f i ll d hi h d fi• Each SCR table describes a table function, called Fi, which defines an
output variable, a term, or a mode class ri.

Konkuk University 25

3 7 Condition Tables3.7 Condition Tables

E h di i bl d ib i bl l i• Each condition table describes an output variable or term ri as a relation
ρi defined on modes, conditions, and values.

• The relation ρi must satisfy the following four properties:

Konkuk University 26

3 7 Condition Tables3.7 Condition Tables

Th f i i ll d d bl f• The function Fi is called a condition table function.

• Example. Based on the new state dependencies set {Pressure, Overridden}
and Table III, the condition table function for SafetyInjection, denoted F6,
is defined byis defined by

Konkuk University 27

3 8 Event Tables3.8 Event Tables

E h bl d ib i bl l i• Each event table describes an output variable or term ri as a relation ρi
between modes, conditioned events, and values.

• The relation ρi must satisfy the following four properties:

Konkuk University 28

3 8 Event Tables3.8 Event Tables

Th O I A i d h i b h• The One-Input Assumption and the two properties above ensure that Fi
is a function. The “no change” part of Fi’s definition (see below)
guarantees totality.

• The function Fi is called an event table function.

Konkuk University 29

3 8 Event Tables3.8 Event Tables

E l B h h ld d d i d h• Example. Both the old state dependencies set and the new state
dependencies set for Overridden, {Block, Reset, Pressure, Overridden} and
{Block, Reset, Pressure}, can be derived from Table II. Based on these sets

d T bl II th t t bl f ti f O idd i d fi d band Table II, the event table function for Overridden is defined by

Konkuk University 30

3 9 Mode Transition Tables3.9 Mode Transition Tables

T bl VI h i l f f d i i bl f i• Table VI shows a typical format for a mode transition table for an entity
ri that names a mode class Mμ(i).

• The relation ri must satisfy the following four properties:

Konkuk University 31

3 9 Mode Transition Table3.9 Mode Transition Table

I i h h d i i bl i h h f i T bl VI• It is easy to show that a mode transition table with the format in Table VI
can be expressed in the format shown in Table V for an event table.
Hence, a mode transition table can be expressed as an event table
f tifunction.

• Example. Based on Table I, the old and new dependencies sets for the
mode class Pressure are {WaterPres, Pressure} and {WaterPres}. Given
these sets and Table I, the table function for Pressure is defined by

Konkuk University 32

4 Automated Consistency Checking4. Automated Consistency Checking

C i h k• Consistency checks
– determine whether the specifications are well formed
– independent of a particular system state static analysis

Konkuk University 33

4 1 Checking for Disjointness and Coverage4.1 Checking for Disjointness and Coverage

Th i ll i h k h k f Di j i• The most computationally expensive checks are checks for Disjointness
and Coverage.

• To check these properties, the consistency checker determines whether a
logical expression is a tautology.

– To determine whether these logical expressions are tautologies, our tool
applies a tableaux-based decision procedure that encodes the algorithm in
Sm ll an [1968]Smullyan [1968].

• For example,
– to check two entries c1 and c2 in a row of a condition table for Disjointness,

the consistency checker evaluates the logical expression c1 ˄ c2 = false.
– To check the entries c1, c2, … , cn in a row of a condition table for Coverage,

the tool evaluates the logical expression c ˅ c ˅ c = truethe tool evaluates the logical expression c1 ˅ c2 ˅ … cn = true.

Konkuk University 34

4 1 Checking for Disjointness and Coverage4.1 Checking for Disjointness and Coverage

E l Ch ki h i f T bl VII difi i f h• Example. Checking the consistency of Table VII, a modification of the
condition table in Table III, reveals four errors.

– The third row has two type errors: SafetyInjection has the values Off and On,
t F l d Tnot False and True.

– The second row violates two properties of condition tables - namely,
Coverage (Overridden ˅ Overridden = Overridden true) and
Disjointness (Overridden ˄ Overridden = Overridden false)Disjointness (Overridden ˄ Overridden = Overridden false)

Konkuk University 35

4 1 Checking for Disjointness and Coverage4.1 Checking for Disjointness and Coverage

E l T bl VIII i i i f h bl i T bl II R i• Example. Table VIII is a variation of the event table in Table II. Running
the consistency checker detects a Disjointness error in the second row of
Table VIII.

I h ki f Di j i h i h k l h i– In checking for Disjointness, the consistency checker evaluates the expression,
[@T(Block=On) WHEN Reset=Off] ˄ [@T(Block=On) ˅ @T(Reset=On)] = false.

– This expression is not a tautology. (Not disjointed)

Konkuk University 36

4 1 Checking for Disjointness and Coverage4.1 Checking for Disjointness and Coverage

• Because the expression does not evaluate to false, the specified behavior
is nondeterministic, i.e., there is at least one pair of states (s, s’), where
the event expression evaluates to true.

– In particular, if in TooLow or Permitted mode the operator turns Block on
when Reset is off, the system may nondeterministically change Overridden to
true or to false.

Konkuk University 37

4 1 Checking for Disjointness and Coverage4.1 Checking for Disjointness and Coverage

S h k h d h ki i h f d• Some checks, such as syntax and type checking, are straightforward.

• However, more complex are checks that depend on definitions, other p p
than type definitions, in different parts of the specification or checks that
require deductive reasoning.

• We have provided a semantic framework to reason formally about
assumptions such as Permit > Low that underlie a specificationassumptions, such as Permit > Low, that underlie a specification.

– Because, in general, mechanical evaluation of such expressions is undecidable,
we are devising algorithms to identify and evaluate decidable subsets of these
expressions under a set of assumptions (see Bharadwaj [1996] for details).p p (j [])

– For the general case, the tool may need user feedback to complete certain
checks.

Konkuk University 38

4 2 Efficiency of Our Technique4.2 Efficiency of Our Technique

Th l i f d b i t h k i it ffi i t• The analysis performed by our consistency checker is quite efficient
because it is based on static checks of components of an SCR
requirements specification rather than some form of reachability analysis.

– Although tautology checking may have worst-case behavior that isAlthough tautology checking may have worst case behavior that is
exponential in the size of the expression [Garey and Johnson 1979], we expect
this not to occur in practice.

– In particular, the use of modes to partition the system state means that
Di j i t d C h ki i d d i t ll i d d tDisjointness and Coverage checking is decomposed into small, independent
subproblems.

• Our experience with consistency checking is that the number of• Our experience with consistency checking is that the number of
subproblems and the size of each subproblem grow rather slowly.

• In contrast, using state reachability techniques, such as model checking,
to check for Disjointness and Coverage would be more expensive,to check for Disjointness and Coverage would be more expensive,
because the cost of reachability analysis increases exponentially with the
size of the specification

Konkuk University 39

4 3 Prototype Consistency Checker4.3 Prototype Consistency Checker

Th di ifi i d h h i h k• The user edits a specification and then runs the consistency checker to
test for selected properties.

– The tool runs the selected checks, listing any errors it finds.
– The user may select one of the listed errors to display the parts of the

specification that produced the error (e.g., the specific rows or entries of the
relevant table).
In the case of a Coverage or a Disjointness error the tool also displays a– In the case of a Coverage or a Disjointness error, the tool also displays a
counterexample.

Konkuk University 40

5 Applying Consistency Checks5. Applying Consistency Checks

5 1 Ch k C di i T bl5.1 Checks on Condition Tables
5.2 Checks on Mode Transition Tables
5.3 Manual vs. Automated Checks

Konkuk University 41

6 Related Work6. Related Work

6 1 D i i T bl P6.1 Decision Table Processors
6.2 Tablewise
6.3 RSML
6.4 Consistency Checking in Tablewise, RSML, and SCR
6.5 Mechanical Proof Systems
6 6 Model Checking6.6 Model Checking
6.7 Detecting Errors by Inspection

Konkuk University 42

7 Requirements Process7. Requirements Process

W i i h f ll i f d l i i• We envision the following process for developing requirements
specifications.

Konkuk University 43

8 Concluding Remarks8. Concluding Remarks

T l f i h ki b hi hl ff i f d i• Tools for consistency checking can be highly effective for detecting errors
in requirements specifications.

• Using properly designed tools for consistency checking is significantly
cheaper than using people.

• Computer-based analysis requires an explicit formal semantics, such as
that provided by our requirements model. This semantics provides the
basis for algorithms that do the analysis.bas s o a go t s t at do t e a a ys s.

• The formal method on which our tools are based scales up.

Konkuk University 44

