ACM Transactions on Software Engineering and Methodology, 1996.

Automated Consistency Checking of
Requirements Specifications

CONSTANCE L. HEITMEYER,
RALPH D. JEFFORDS,
BRUCE G. LABAW

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.09.09

ANMNctvra~+
ALDULIaAdll

This article describes a formal analysis technique, called consistency checking, for
automatic detection of errors, such as type errors, nondeterminism, missing cases, and
circular definitions, in requirements specifications. The technique is designed to
analyze requirements specifications expressed in the SCR (Software Cost Reduction)
tabular notation. As background, the SCR approach to specifying requirements is
reviewed. To provide a formal semantics for the SCR notation and a foundation for
consistency checking, a formal requirements model is introduced; the model
represents a software system as a finite-state automaton, which produces externally
visible outputs in response to changes in monitored environmental quantities. Results
of two experiments are presented which evaluated the utility and scalability of our
technique for consistency checking in a real-world avionics application. The role of
consistency checking during the requirements phase of software development is
discussed.

R
O

© N o vk wh

)
—

M
—)
—

n

Introduction

Review of the SCR Method
Formal Requirements Model
Automated Consistency Checking
Applying Consistency Checks
Related Work

Requirements Process
Concluding Remarks

g
L.

[’}

R T ~F1 A
LI CLIVUII

T AII
111 U

O

Errors in requirements are pervasive, dangerous, and costly.

Given the high frequency of requirements errors, the serious accidents
they may cause, and the high cost of correcting them late, techniques for
improving the quality of requirements documents and for early detection

of requirements errors are crucial.

One promising approach to reducing requirements errors is to apply
formal methods during the requirements phase of software development.

— Formal specification
— Formal analysis

[’ Y

1 Tintr ~F1 A
L. LI1UI CLIUII

AAI []
Uu

 The SCR (Software Cost Reduction) requirements method was introduced

more than a decade ago to specify the software requirements of real-
time embedded systems unambiguously and concisely.

« Designed for use by engineers, the SCR method has been successfully
applied to a variety of practical systems

— avionics systems, such as the A-7 Operational Flight Program
— a submarine communications system

— safety-critical components of the Darlington nuclear power plant in Canada

* While the above applications of SCR rely mostly on manual techniques,

effective use of the method in industrial settings will require powerful
and robust tool support.

[’}

R T ~F1 A
LI CLIVUII

1 T AII
L. 111 U

O

« To be useful in developing practical systems, not only must formal
methods provide rigor, in addition they must be supported by robust,
well-engineered tools.

« We are developing a suite of prototype tools for the SCR
— Specification editor
— Simulator

— Formal analysis tools
Consistency checker : for domain-independent properties
Verifier : for critical application properties

[’ Y

R T ~F1 A
LI CLIVUII

1 T AII
L. 111 U

O

« Although the consistency checking is usually straightforward, the number
of times the properties need to be checked in practical requirements
specifications can become very large, and thus reviewers must spend
considerable time and effort verifying that the specifications have the
properties.

« An industrial-strength formal method should be
— Usable by engineers,
— Scalable, and
— Cost effective.

« Automated consistency checking as described in this article is an
important step in developing such a method for requirements
specification.

2. Review of the SCR Method
2.1 Background

The purpose of a requirements document is to describe all acceptable system
implementations.

The software requirements document for the A-7 aircraft's Operational Flight
Program was published in 1979 to demonstrate a systematic approach to
producing such a document.

Faulk [1989] provided formal definitions for parts of the A-7 model.

Using the original A-7 requirements document as a model, van Schouwen
[1990] published a system-level requirements specification for the Water
Level Monitoring System (WLMS), part of the shutdown system for a nuclear
power plant

The Four-Variable Model of Parnas and Madey [1995] provides a formal
framework for the SCR method.

D)
L

roOur-variapie IV Ui

D)
L

The Four-Variable Model, illustrated in Figure 1, describes the required
system behavior, including the required timing and accuracy, as a set of
mathematical relations on four sets of variables—monitored and
controlled variables and input and output data items.

System Input Output
i Data Data Controlled
Environment ”EMS Items Variables
—~— __,/\W__,/
k SGFT QuUT
"
REQ and NAT

Fig. 1. The Four-Variable Model.

Konkuk University

L. TOUITVvVdIIdVIC IVIUUCH

« The use of monitored and controlled quantities to define the required
behavior (rather than input and output data items) keeps the
specification in the problem domain and allows a simpler specification.

o Like the Four-Variable Model, our requirements model can be used to
describe both system requirements and software requirements.

* QOur model defines the system requirements by describing REQ, the
required relation between the monitored and controlled variables, and
the software requirements y describing SOFT, the required relation
between the input and output data items.

P,
4.

3 CFD r‘f\lf'\t'"l'lﬁl If'l't"
S IO\ CLUIISLTUCLLS

To specify the relations of the Four-Variable Model in a practical and
concise manner, four other constructs, each introduced in the A-7
requirements document [Heninger et al. 1978], are useful.

A mode class is a state machine, defined on the monitored variables,
whose states are called system modes (or simply modes) and whose
transitions are triggered by events.

A termis an auxiliary function defined on input variables, modes, or
other terms that helps make the specification concise.

A condition is a predicate defined on one or more system entities (a
system entity is an input or output variable, mode, or term) at some
point in time.

An event occurs when any system entity changes value.

Env

Mode

WaterPres

Pressure High

C) @ Overridden
Class \ / Term : Constants
TooLOow .
.’ Permitted

Safety Injection System

Block

Reset

Software

Low
Permit

Safety
Injection
— P

Env.

Fig. 2. Requirements specification for Safety Injection.

@T(Block=0n)
- (the operator turns Block from Off to On)

@T(Block=0On) WHEN WaterPres < Low
- (the operator turns Block to On when water pressure is below Low).

Konkuk University

12

T

/] ~
1d

P, Cri 2N
L. OLCIN\ Vi

€S

* Not only do engineers find tabular specifications of requirements easy to
understand and to develop; in addition, tables can describe large

quantities of requirements information concisely.

e Each table defines a mathematical function.

— Condition table
— Event table
— Mode transition table

7N CrD TahlAac
L.T OCI\ IdMVICO
Table I. Mode Transition Table for Pressure
Old Mode Event New Mode
TooLow @T(Haterp;es > Low) Permitted
Permitted @T(WaterPres > Permit) High
Permitted @T(WaterPres < Low) TooLow
High @T(WaterPres < Permit) Permitted

“If Pressure is TooLow, and WaterPres rises to Low, then Pressure
changes to Permitted.”

Konkuk University 14

DP97M CrD T-AI
Z.4 DUR 1dpies
Table II. Ewvent Table for Overridden
Moade Events
High False Q@T(Inmode)
TooLow, @T(Block=D0n) @T(Inmode) OR
Permitted WHEN Reset=0ff @T(Reset=0n)
Overridden True False

“If Pressure is TooLow, and Block becomes On when Reset is Off then
Overridden becomes true’”

The entry “False” in row 1 of Table II means that when the mode
class is High no event can cause Overridden to become frue.

"@T(Inmode)” in the second row of Table II means, “If the system
enters TooLow or Permitted, then Overridden becomes false.”

Konkuk University

15

Table III. Condition Table for Safetylnjection

Mode Conditions
High, Permitted True False
TooLow Overridden NOT Overridden
Safety Injection 0ff On

“If Pressure is High or Permitted, or if Pressure is TooLow and
Overridden is true, then Safetylnjection is Off;
if Pressure is TooLow, and Overridden is false, then Safetylnjection is

Oon.'

The entry "False” in the first row means that Safetylnjection is never
On when Pressure is High or Permitted.

Konkuk University 16

/1

P, Crp T
L. OLCIN\

~ A
1dJl

€S

« While condition tables define total functions, event tables and mode
transition tables may define partial functions.
— This is partly because some events cannot occur when certain conditions are
true.

— An event may occur that does not change the value of a variable defined by
an event table or a mode transition table.

e In our formal requirements model (see below), we make the functions
defined by event tables and mode transition tables total by assigning a
variable its old value whenever the table does not explicitly define the
variable’s value.

I: Vv I
I |

Ofma

II 7\ VYN If'\'l'
L

J. ne LI CIIICTIILS IV UL

« To provide a precise and detailed semantics for the SCR method, our
model represents the system to be built as a finite-state automaton and
describes the input and output variables, conditions, events, and other
constructs that make up an SCR specification in terms of that automaton.

» Our automaton model, a special case of the Four-Variable Model,
describes all monitored and controlled quantities, even those which are
naturally continuous, as discrete variables.

— Moreover, because our model abstracts away timing and imprecision, it
describes the “ideal” system behavior.

« The system requirements are easier to specify and to reason about if the
ideal behavior is defined first. Then, the required precision and timing
can be specified separately.

Clll oldl

We assume the existence of the following sets.

—MS is the union of N nonempty, pairwise disjoint sets, namely, M, M,,
... » My, called mode classes. Each member of a mode class 1s called a
mode.

—T'S 1s a union of data types, where each type is a nonempty set of values.
—VS = MSUTS is the set of entity values.

—RF 1s a set of entity names. RF is partitioned into four subsets: MR, the
set of mode class names; IR, the set of input variable names; GR, the set
of term names; and OR, the set of output variable names. For all r € RF,
TY(r) C VS 1is the type (i.e., the set of possible values) of the entity
named r. For all r € MR, there exists ¢ such that TY(r) = M;; we say
that r is the mode class name corresponding to M,.

Konkuk University

19

P,
D.

1 C\If‘“l'f\m C'I"'\'l'f\
1 Oyolllll oldlc

A system state s is a function that maps each entity name r in RF to a
value.

More precisely, for all » & RF: s(r) = v, where v & TY(r). Thus, by
assumption, in any state s, the system is in exactly one mode from each
mode class, and each entity has a unique value.

Example. In the sample system, the set of entity names RF is defined by
RF = [Block, Reset, WaterPres, Pressure, Safetylnjection, Overridden).

The type definitions include

TY(Pressure) = {ToolLow, Permitted, Highj
TY(WaterPres) = {0, 1, 2, ..., 2000}
TY(Overridden) = (true, false)

TY(Block) = {On, Off}.

Konkuk University 20

Qo

N

R
O
-
Q.
O
>
n

Conditions are defined on the values of entities in RF. A simple condition 1s
true, false, or a logical statement r © v, where r € RF is an entity name; ©
€ {=, #, =, <, =, =} is a relational operator; and v € TY(r) is a constant
value.? A condition is a logical statement composed of simple conditions
connected in the standard way by the logical connectives A, v, and -.

Konkuk University

21

Qo

o
i
<
(¢))
D)
—
N

The “@T" notation denotes various events.

Primitive event : @T(r = v)

Input event: if r € IR

Basic event: @T(c), where ¢ is any simple condition

Simple conditioned event: @T(c) when d = @T(c) whend = —c AN c’Nd

Conditioned event: composed of simple conditioned events connected
by the logical connectors v and A.

Any conditioned event can be expressed as a logical statement.

U

\If" N\ Y C’\£+\AI"\ eV Y C\ I(‘+I\M\
YD Clll \oVILvvdIC JYDLCHU
A system (software system) 1is a 4-tuple, = (E™, S, s,, T), where

—FE™ 1s a set of input events,

—8 is the set of possible system states,

—s, 1s a special state called the initial state, and

—T, the system transform, is a partial function® from E™ X S into S.

A basic assumption, called the One-Input Assumption, is that exactly one
input event occurs at each state transition.

Konkuk University 23

2 C NvrAAa
J.9 UIUC

¥\ 7~

I\ Elf'\
Iy 11T LI

—+
D
Vg

» Partial ordering on all entities in the set RF.

 Example.
Table ITII. Condition Table for Safetylnjection

Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection off

— Partial ordering
R = < WaterPres, Block, Reset, Pressure, Overridden, Safetylnjection>

Konkuk University

3 f‘: ﬁlf'\lf\ I:II f"l' 'aY aYe
5.0 1dDie runctions

« Each SCR table describes a table function, called F, which defines an
output variable, a term, or a mode class r.

J./ CUIIUILIVIT 1dJITO

« Each condition table describes an output variable or term r; as a relation

p; defined on modes, conditions, and values.
Table IV. Condition Table—Typical Format

Modes Conditions
my C1.1 €1,z ‘e Cl,p
LY (:2,1 62'2 e Cg,p
My Cn,]_ Cﬂ,? M Cﬂ.,P
ri U1 k) ce Up

« The relation p, must satisfy the following four properties:

(1) The m; and the v, are unique.

(2) Uy m; = M,

(3) For all j: vE_, ¢;» = true (Coverage: the disjunction of the conditions
in each row of the table 1s true).

(all modes 1n the associated mode class are included).

(4) For all j, &, I, B # I; ¢;;, ~ c¢;; = false (Disjointness: the pairwise
conjunction of conditions 1n a row of the table 1s always false).

Konkuk University

26

./ CUIIUILIVII CIIJIC'D

« The function F, is called a condition table function.

U if v_:?=1|:}"r'l m; .-"\.-C_,-l}

ri= Fr'{:"r.".'l:' " yr'.n.'::' = E{Z if \-'r_|,=1 l:}llrl ?H A C-"z}

v, 1f vii(yi1=m;nAc;,)

« Example. Based on the new state dependencies set {Pressure, Overridden}
and Table III, the condition table function for Safetylnjection, denoted F,,
is defined by

Safetylnjection=

Off if Pressure = High v Pressure = Permitted v
Fs(Pressure, Overridden) = (Pressure = TooLow ~ Overridden = frue)

On if Pressure = ToolLow ~ Overridden = false

Konkuk University 27

\ W} ~t+ T
L

Cy/o Al
LVCII 1dil

2 Q AC
9.0 CoS

« Each event table describes an output variable or term r, as a relation p,
between modes, conditioned events, and values.

Table V. Event Table—Typical Format

Modes Events
LIS €11 €12 s €1.p
mao €21 €22 ce €2,p
Mg €n,1 €n,2 - Cn,p
Ti L1 U2 e Up

« The relation p, must satisfy the following four properties:

(1) The m; and the v, are unique.
(2) For all j, k, I, k # I; e;, ~ e;; = false (Disjointness: the pairwise
conjunction of events in a row of the table is always false).

Konkuk University

28

P,
®)

\7

Cv/innt T
LVCIIL

A~ A
1dll

o 7\
o CoS

The One-Input Assumption and the two properties above ensure that F,
is a function. The “no change” part of F;s definition (see below)

guarantees totality.

The function F; is called an event table function.

f

Uy if V; L lx; = m; A G;’.l}
'[_:'_.;, if '\-"_:1 1 {I,-_l = m--.l- s B_J'.Z}
_ ' Y
'rr - F {xr'_l 3 xr'_n!,'? yi.]? 3 Y .ra] -
Uy if V_? 1 (x;;= m; s B_J'-P}

\ i otherwise (i.e., no change).

Konkuk University

29

\ W} ~t+ T
L

Cy/o Al
LVCII 1dil

2 Q AC
9.0 CoS

« Example. Both the old state dependencies set and the new state
dependencies set for Overridden, {Block, Reset, Pressure, Overridden} and
{Block, Reset, Pressure}, can be derived from Table II. Based on these sets
and Table II, the event table function for Overridden is defined by

Owerridden’'=
F.i(Block, Reset, Pressure, Overridden, Block', Reset’, Pressure’)=

rtrue if (Pressure = TooLow ~ Block' = On ~ Block = Off &
Reset = Off) v (Pressure = Permitted ~ Block’ = On ~
Block = Off ~» Reset = Off)

false if (Pressure = TooLow ~ Reset’ = On » Reset = Off) v
" (Pressure = Permitted ~ Reset’ = On A Reset = Off) v
(Pressure’ = High A Pressure # High) v
((Pressure’ = Permitted v Pressure’ = TooLow) ~
= (Pressure = Permitted « Pressure = TooLow))

LDverridden otherwise

Konkuk University 30

A Tlf' m
U 1

on Ta

20 NMAAA + A
9. VUC L I

€S

ans

« Table VI shows a typical format for a mode transition table for an entity
r; that names a mode class M,

Table VI. Mode Transition Table—Typical Format

Old Mode Event New Mode
"y 1.1 1.1
£1,2 mi,2
€1,kq LS
Mn €n,1 M1
En,2 i 2
ﬂﬂ,k“ mn;kn

« The relation », must satisfy the following four properties:

(1) The m; are unique.

(2) For all kE#1,m;, # m;, and for all j and for all &, m; # m; .

(3) For all j, k, I, k # I; e; , ~ e;; = false {Dlsjnlntness the pairwise
conjunction Df cnndltmned events in a row of the table is always false).

(4) Let m, be the initial mode. Then, M, C {m | @*(m,, m)}, where
®(m,, my) if and only if p;(m,, e, my) for some ¢ and @* is the

reflexive and transitive closure of ¢ (Reachability: each mode must be
reachable from the initial mode).

P,
®)

U 1 LIVII CIIJIC'

O NAAA ~~NC
JVUC' allo

It is easy to show that a mode transition table with the format in Table VI

can be expressed in the format shown in Table V for an event table.
Hence, a mode transition table can be expressed as an event table
function.

Example. Based on Table I, the old and new dependencies sets for the
mode class Pressure are {WaterPres, Pressure} and {WaterPres}. Given
these sets and Table I, the table function for Pressure is defined by

Pressure’ =
F, (Pressure, WaterPres, WaterPres') =

rTDGLDW if Pressure = Permitted ~ WaterPres' < Low
WaterPres < Low

High if Pressure = Permitted ~ WaterPres’ = Permit »
WaterPres zPermit

Permitted 1if {Pressure = ToolLow ~ WaterPres’ = Low ~
WaterPres Low) v (Pressure = High ~
WaterPres' < Permit ~ WaterPres < Permit)

LF’ressure otherwise.

32

/]
4

AN
[] H

+
L

O

Vv

Aa+tAanA ctarn~s (ClhA
111AdlLTU U DOLC| ILy CIlIC

e ons

Consistency checks
— determine whether the specifications are well formed

— independent of a particular system state - static analysis

—Proper Syntax. Each component of the specification has proper syntax.
For example, each condition and event is well formed.

—Type Correctness. Each variable has a defined type, and all type defini-
tions are satisfied. For example, given any expression of the form r = v,
where r is an entity and v a value, v € TY(r) must hold.

—Completeness of Variable and Mode Class Definitions. The value of each
controlled variable, term, and mode class is defined. (Most variables will
be defined by tables, but standard mathematical definitions may be given
for some controlled variables and terms.)

—Initial Values. Initial values are defined for all mode classes, input
variables, terms, and output variables. Initial values are not required for
entities defined by condition tables, since they can be derived from the
tables.

—Reachability. Every mode in a mode class is statically reachable from
the initial mode of the mode class. This is a check of Property (4) for
Mode Transition Tables.

—Diszjointness. To make the specifications deterministie, each condition,
event, and mode transition table must satisfy the Disjointness property.
That is, in a given state, each controlled variable, mode class, and term is
defined uniquely.

—Coverage. KEach condition table satisfies the Coverage property. That is,
each variable described by a condition table is defined everywhere in its
domain.

—Lack of Circularity. No circularities exist among the new dependencies
sets. This property checks that the entities are partially ordered.

(C)

33

4.1 Checking for Disjointness and Coverage

* The most computationally expensive checks are checks for Disjointness
and Coverage.

« To check these properties, the consistency checker determines whether a
logical expression is a tautology.

— To determine whether these logical expressions are tautologies, our tool

applies a tableaux-based decision procedure that encodes the algorithm in
Smullyan [1968].

* For example,

— to check two entries ¢; and ¢, in a row of a condition table for Disjointness,
the consistency checker evaluates the logical expression ¢, A ¢, = false.

— To check the entries ¢, Cor o 1 Gy in a row of a condition table for Coverage,
the tool evaluates the logical expression ¢, vV ¢, V ... ¢, = true.

4.1 Checking for Disjointness and Coverage

Example. Checking the consistency of Table VII, a modification of the
condition table in Table II, reveals four errors.

— The third row has two type errors: Safetylnjection has the values Off and On,
not False and True.

— The second row violates two properties of condition tables - namely,
Coverage (Overridden v Overridden = Overridden # true) and
Disjointness (Overridden A Overridden = Overridden # false)

Table VII. Modified Table for Safety Injection

Mode Conditions
High, Permitted True False
TooLow Overridden Overridden
Safety Injection Falee True

Konkuk University 35

4.1 Checking for Disjointness and Coverage

« Example. Table VIII is a variation of the event table in Table II. Running
the consistency checker detects a Disjointness error in the second row of
Table VIIL

— In checking for Disjointness, the consistency checker evaluates the expression,
[@T(Block=0On) WHEN Reset=0ff] A [@T(Block=0n) v @T(Reset=0n)] = false.

— This expression is not a tautology. (= Not disjointed)

Table VIII. Modified Table for Overridden

Mode Events
High False @T(Inmode)
TooLow, @T(Block=0n) @T(Block=0n) OR
Permitted WHEN Reset=0ff @T{Reset=0n)
Overridden True False B

Konkuk University 36

4.1 Checking for Disjointness and Coverage

[@T(Block = On) WHEN Reset = Off] » [@T(Block = On) v

@T(Reset = On)]
= [@T(Block = On) WHEN Reset = Off »~ @T(Block = On)] v [@T(Block =
On) WHEN Reset = Off ~ @T(Reset = On)] (Distributive Law)

= |[Block = Off » Block" = On A Reset = Off » Block = Off a
Block” = On] « [Block = Off A~ Block” = On ~ Reset = Off
Reset = Off A Reset’ = On] (By (1))

= |[Block = Off » Block” = On » Reset = Off] v false
(One-Input Assumption)

= Block = Off ~ Block” = On ~ Reset = Off
false

-

» Because the expression does not evaluate to false, the specified behavior
is nondeterministic, i.e., there is at least one pair of states (s, s'), where
the event expression evaluates to true.

— In particular, if in TooLow or Permitted mode the operator turns Block on

when Reset is off, the system may nondeterministically change Overridden to
true or 1o false.

Konkuk University 37

4.1 Checking for Disjointness and Coverage

« Some checks, such as syntax and type checking, are straightforward.

 However, more complex are checks that depend on definitions, other
than type definitions, in different parts of the specification or checks that
require deductive reasoning.

« We have provided a semantic framework to reason formally about
assumptions, such as Permit > Low, that underlie a specification.
— Because, in general, mechanical evaluation of such expressions is undecidable,

we are devising algorithms to identify and evaluate decidable subsets of these
expressions under a set of assumptions (see Bharadwaj [1996] for details).

— For the general case, the tool may need user feedback to complete certain
checks.

1

-c-c ~\ 7 -ﬂ If'\ ﬂ
il Iy Ul I IIIbI

/1 7))
.4

« The analysis performed by our consistency checker is quite efficient
because it is based on static checks of components of an SCR
requirements specification rather than some form of reachability analysis.

— Although tautology checking may have worst-case behavior that is

exponential in the size of the expression [Garey and Johnson 1979], we expect
this not to occur in practice.

— In particular, the use of modes to partition the system state means that
Disjointness and Coverage checking is decomposed into small, independent
subproblems.

» Our experience with consistency checking is that the number of
subproblems and the size of each subproblem grow rather slowly.

« In contrast, using state reachability techniques, such as model checking,
to check for Disjointness and Coverage would be more expensive,
because the cost of reachability analysis increases exponentially with the
size of the specification

|’ \ 7 If'\ IIAIF

n \l r. 7\ ~ r 'Y e
r CHILY CIITUKCI

yp" LOnsi St

/1 2
.0

» The user edits a specification and then runs the consistency checker to
test for selected properties.
— The tool runs the selected checks, listing any errors it finds.

— The user may select one of the listed errors to display the parts of the
specification that produced the error (e.g., the specific rows or entries of the
relevant table).

— In the case of a Coverage or a Disjointness error, the tool also displays a
counterexample.

E \I

A~nhviine
J. APYMI Iy

k<

5.1 Checks on Condition Tables
5.2 Checks on Mode Transition Tables
5.3 Manual vs. Automated Checks

_T

U')

~ la+aA \A/Arl,
U. IdlCU

Related Work

6.1 Decision Table Processors

6.2 Tablewise

6.3 RSML

6.4 Consistency Checking in Tablewise, RSML, and SCR
6.5 Mechanical Proof Systems

6.6 Model Checking

6.7 Detecting Errors by Inspection

7 BRani
/. NCQYu

ICIIICIILS TFTULCOS

We envision the following process for developing requirements
specifications.

(1) A formal notation, such as the SCR notation, is used to specify the
requirements.

(2) An automated consistency checker is used to check the specification for
syntax and type correctness, coverage, determinism, and other applica-
tion-independent properties.

(3) The specification is executed symbolically using a simulator to ensure
that it captures the customers’ intent.

(4) In the later stages of the requirements phase, mechanical support is
used to analyze the specification for application properties. Initially, a
small subset with fixed parameters and only a few states is extracted
from the specification, and a tool, such as a model checker, is used to
detect violations of the properties. This may be repeated, each time
with a different or larger subset. Once there is sufficient confidence in
the specification, a mechanical proof system may be used to verify the
complete requirements specification or, more likely, safety-critical com-
ponents.”

Konkuk University

43

Q
O.

§

~liiA
IUUl

\
n

C AN
CONC

ng R

Tools for consistency checking can be highly effective for detecting errors
in requirements specifications.

Using properly designed tools for consistency checking is significantly
cheaper than using people.

Computer-based analysis requires an explicit formal semantics, such as
that provided by our requirements model. This semantics provides the
basis for algorithms that do the analysis.

The formal method on which our tools are based scales up.

