
IEEE Transactions on Software Engineering, 1998.

F S f A l i S f R iFrom Safety Analysis to Software Requirements

Korsten M. Hansen,
A d P R

JUNBEOM YOO

Anders P. Ravn,
Victoria Stavridou

JUNBEOM YOO

Dependable Software Laboratory
KONKUK University

http://dslab.konkuk.ac.kr

2010.09.01

ContentsContents

1 I d i1. Introduction
2. Fault Trees
3. Duration Calculus
4. Fault Tree Semantics
5. Software Safety Requirements
6 Example6. Example
7. Concluding Remarks

Konkuk University 2

1 Introduction1. Introduction

N L d h• Nancy Leveson advocates that
– the use of system safety analysis techniques to derive system safety

constraints which must be satisfied by software requirements.
th ft i t t b f li d i d t i fid i– the software requirements must be formalized in order to raise confidence in
the verification.

Thi t d d th id b• This paper extended these ideas by
– demonstrating how fault trees resulting from safety analysis can be

interpreted directly as requirements.
li ki f lt t l i t d l t b i i th t b th– linking fault tree analysis to program development, by requiring that both use
the same system model.

• By using a common model, it is possible to use the results of the fault tree analysis
directly, when specifying and designing the software. y p y g g g

• It is also possible to prove formally that a program is safe, i.e., that it does not
cause the system to violate its safety requirements.

Konkuk University 3

1 Introduction1. Introduction

C i d l f k• Common semantic model = common framework
– using state variables, denoting functions of time, as in conventional dynamic

system theory
Th ti hi h d l l ti ti i t t– The properties which we can model are relations among time varying states.

• To specify such relations we use a real-time interval logic, the duration calculus.

• But, engineers are unfamiliar with formal specification.

• The underlying dynamic systems framework and the ability to illustrate
duration calculus formulas by timing diagrams has helped to overcome
the problem.

Konkuk University 4

1 1 Related Work1.1 Related Work

Th i i li f l l i d i l• There is an extensive literature on fault tree analysis and supporting tools,
but only recently have there been attempts to relate it to software.

• A partial order semantics of fault trees: [8]
• A petri net semantics of fault trees: [7]

• A modal μ-calculus semantics of fault trees: [1]

A f li i f f i di h [16]• A formalizing of structure of systems using ordinary set theory: [16]

• Fault trees as a program verification(assessing) techniques: [14,15]p g (g) q []

Konkuk University 5

2 Fault Trees2. Fault Trees

F lt t l i [32] i d d ti f t l i t h i hi h i• Fault tree analysis [32] is a deductive safety analysis technique which is
applied during the design phase.

– a top-down approach whose input consists of knowledge of the
system’s functions as well as its failure modes and their effectssystem s functions as well as its failure modes and their effects.

– The result of the analysis is a set of combinations of component failures that
can result in a specific malfunction.

• The approach is graphical, constructing fault trees using standardized
symbols.

• A fault tree is not a model of all possible causes for system failure; but
given a particular failure, it reveals the possible combinations of
component failures that may lead to this failure.

• Fault tree analysis is basically a qualitative model, but it is also often
used in probabilistic analysis.

Konkuk University 6

2 Fault Trees2. Fault Trees

• The problem with this tree is that it allows several different interpretations.
S ti 3 t l ti i t l l i th d ti l l [33] t

Konkuk University 7

• Section 3 presents a real-time interval logic, the duration calculus [33], to
make such ambiguous interpretations precise.

3 Duration Calculus3. Duration Calculus

F li i f f l• Formalization of fault tress
– AND- , OR- gates : fairly straightforward – Boolean connectivities of

Propositional logic
E t t b i– Events : not obvious

• In some cases, correspond to
– state transition
– state occurrence– state occurrence
– time of occurrence

• A common thread in this paper is that
– Events are observed while time passes, i.e., over finite intervals of time, when p

certain state patterns occur, suggesting the use of a real-time, interval logic.

– Using the duration calculus

Konkuk University 8

3 Duration Calculus3. Duration Calculus

Th fi i f li i b i• The first step in formalizing statements about a system is to construct a
system model.

• Time-domain model [18]
– A system is described by a collection of states which are functions of Time.

• To formalize the first statement, that gas leaks for more than 4 sec, we
use the following Boolean valued states,use t e o o g oo ea a ued states,

Gas, Flame : Time → {0, 1}

which express the presence of gas and flame as functions of time.

Konkuk University 9

3 Duration Calculus3. Duration Calculus

S b d b i i• Statements about a system are expressed by constraining states over
time.

Leak = Gas ˄ Flame
def

• When we consider a bounded time interval [b, e], we can measure the
duration of Leak within the interval byy

 Leak(t) dt
b

e

Konkuk University 10

3 Duration Calculus3. Duration Calculus

G l k f h 4 k 4• Gas leaks for more than 4 sec : Leak > 4

• 1 = 1 , abbreviated by l.y

• “The considered time interval is not longer than 30 seconds and gas
leaks for more than 4 sec”leaks for more than 4 sec.

(l 30) ˄ (Leak > 4)

• Ignition : Ignition = l ˄ l > 0Ignition : Ignition = l ˄ l > 0

• Subinterval property: D1 ; D2

S h ◇ E h □• Somewhere : ◇ , Everywhere : □

Konkuk University 11

3 Duration Calculus3. Duration Calculus

A f i S h ld h ld f bi i l f h• A safety constraint S should hold for an arbitrary interval of the system
lifetime.

• This can be expressed as: “There is no subinterval for which the formula
S holds.”

S = l 30 (Leak ≤ 4)def

S = (l 30) ˄ (Leak > 4)
• meaning that the observation interval is not longer than 30 sec and gas

leaks for more than 4 secleaks for more than 4 sec.

• The safety constraint for the gas-burner is thus ◇(S) which is
equivalent to �S .

Konkuk University 12

3 1 Duration Calculus Summary3.1 Duration Calculus, Summary

R f [10] [33]• Refer to [10], [33]

Konkuk University 13

4 Fault Tree Semantics4. Fault Tree Semantics

I l f l b i d (l) l i f l i h• In general, fault trees can be viewed as (temporal) logic formulas with
uninterpreted basic symbols.

4.1 Leaves
4.2 Intermediate Nodes
4 3 Edges4.3 Edges
4.4 Gates
4.5 Trees

Konkuk University 14

4 1 Leaves4.1 Leaves

Th l i f l ll d b• The leaves in a fault tree are called events, but
– in safety analysis, often meaning the occurrence of a specific system state
– in software engineering, meaning a transition between two states

– we use the term event in this article, we mean a state transition (the software
engineering interpretation of an event).

• We interpret a leaf node of a fault tree as a duration calculus formula.
– the constants true, false
– occurrence of a state P, i.e., P
– occurrence of an event, i.e., a transition to state P : P ; P
– elapse of a certain time, i.e., , l (30 + ε)
– a threshold of some duration, i.e., P ≤ 4 x ε

Konkuk University 15

4 1 Leaves4.1 Leaves

I i i l h h f i d h f i• It is crucial that the safety engineer and the software engineer agree on
the interpretation of the contents of leaves as formulas.

• This may for instance be done by interpreting the formulas as timing
diagrams.

Konkuk University 16

4 2 Intermediate Nodes4.2 Intermediate Nodes

I di d l f h di b• Intermediate nodes are merely names of the corresponding subtrees.
• The semantics of intermediate nodes is defined by the semantics of the

leaves, edges, and gates in the subtrees in which the intermediate nodes
are roots.

Konkuk University 17

4 3 Edges4.3 Edges

W h d fi h i f A b• We then define the semantics of A to be
A = B

• as logical identity, meaning that the system failure A occurs when the

def

g y g y
failure B occurs. (pessimistic interpretation)

• Optimistic interpretation :
A B

- A system failure may be avoided, y y ,
if the operator intervenes fast enough,
has enough luck, etc.

Konkuk University 18

4 4 Gates4.4 Gates

W id h i f i di d d• We now consider the semantics of intermediate nodes connected to
other nodes through gates.

• AND
– A = B1 ˄ … ˄ Bn

def

• OR
- A = B1 ˅ … ˅ Bn

Konkuk University 19

4 4 Gates4.4 Gates

INHIBIT EXCLUSIVE OR• INHIBIT
- A = B1 ˄ … ˄ Bn

- Bn : a condition

• EXCLUSIVE OR
- A = (B1 ˄ (B2 ˅ … ˅ Bn))

˅
:

def def

:
˅

(Bn ˄ (B2 ˅ … ˅ Bn-1))

Konkuk University 20

4 4 Gates4.4 Gates

PRIORITY AND• PRIORITY AND
– A = B1 ˄ ◇(B2 ˄ ◇(B3 ˄ … ˄ ◇ Bn) …)

Konkuk University 21

4 5 Trees4.5 Trees

Th i f f l i d i d b h i f h• The semantics of a fault tree is determined by the semantics of the
leaves, the edges, and the gates, such that the semantics of intermediate
(not leaves) nodes are given by the semantics of the leaves, edges, and

t i th bt i hi h th i t di t d tgates in the subtrees in which the intermediate nodes are roots.

• The above procedure assigns semantics to fault trees in a compositional
style.

• The meaning of a composite tree is given by a temporal formula e ea g o a co pos te t ee s g e by a te po a o u a
denoting the meaning of the subtrees connected to the gate, while
leaves are assigned a formula independent of their position in the tree.

Konkuk University 22

5 Software Safety Requirements5. Software Safety Requirements

I d f fi d l i d i d h f i f• Instead of first developing a design, and then performing a safety
analysis, we propose that the design and the safety analysis should
proceed concurrently, thereby making it possible to let the fault tree

l i i fl th d ianalysis influence the design.

• In order to do this, the fault tree analysis and the system design must
use the same system model.

• Given a common model, the system safety requirements may be G e a co o ode , t e syste sa ety equ e e ts ay be
deduced from the fault tree analysis.

• Safety requirements derived this way can be used during system• Safety requirements, derived this way, can be used during system
development in order to validate the design, but they can also be used
in a constructive way by influencing the design.

Konkuk University 23

5 Software Safety Requirements5. Software Safety Requirements

F h f l i hi h h i i d S h f• For each fault tree in which the root is interpreted as S, the safety
commitment which the system should implement is

□ ¬S

• If we have n fault trees, the safety commitment is

□ S ∧ ∧ □ S□ ¬S ∧ … ∧ □ ¬S

i.e., the system should ensure that no top event in any fault tree ever
h ldholds.

Konkuk University 24

5 2 AND Gates5.2 AND-Gates

Th i i A• The semantics is A = B1 ˄ … ˄ Bn

• The safety commitment is ¬Ay
– corresponds to specifying that the components never satisfy their duration

formulas at the same time, i.e.,

□¬(B1 ˄ B2 ˄ … ˄ Bn)

• One way to implement this is y p

□¬ B1 ∨ □¬ B2 ˅ … ˅ □¬ Bn

– i.e., to design at least one of the components such that it always satisfies its
local safety commitment.

Konkuk University 25

5 2 AND Gates5.2 AND-Gates

Of h f i d l ll h i• Often, the software engineer does not control all the input components
to an AND-gate.

• For such components a safe approach is to assume the worst case,
namely that the component is in a critical state and thereby contributes
to violation of the safety commitment.

• If B1 is uncontrollable,
□¬(true ˄ B ˄ ˄ B) ≡ □¬(B ˄ ˄ B)□¬(true ˄ B2 ˄ … ˄ Bn) ≡ □¬(B2 ˄ … ˄ Bn)

– Software engineer should arrive at a conjunction of Bis which can be used in
the designthe design.

– Otherwise, we must conclude that the system is inherently unsafe.

Konkuk University 26

5 3 OR Gates5.3 OR-Gates

Th i i A• The semantics is A = B1 ˅ … ˅ Bn

• The safety commitment is ¬Ay
– expresses that the system only satisfies its safety commitments if all its

components satisfy their local safety commitments.

□¬(B1 ˅ B2 ˅ … ˅ Bn) ≡ □¬ B1 ˄ □¬ B2 ˄ … ˄ □¬ Bn

Konkuk University 27

5 3 OR Gates5.3 OR-Gates

N h h f i l h fi• Now suppose that the software engineer cannot control the first
component, i.e., whether that component satisfies B1 or not, is outside
the scope of the design of the program.

M ki h f h i f B b i B b hi h– Making the safe choice of B1 being true causes □¬B1 to be false which
trivially implies that the safety commitment is violated.

– Making a tacit assumption of B1 being false is very poor judgment, which
essentially ignores the results of safety analysisessentially ignores the results of safety analysis.

• The only reasonable option is to weaken the requirements specification.
T k h d i h l f h i h □ B• To make the design team as a whole aware of the assumption that □¬B1
is true.

– Asm Com has been weakened to
– Asm ˄ □¬B1 Com
– The software engineer should alert the appropriate persons to the fact that

the system requirements have been weakened.

Konkuk University 28

5 4 PRIORITY AND Gates5.4 PRIORITY AND-Gates

Th i i A ◇(◇(◇))• The semantics is A = B1 ˄ ◇(B2 ˄ ◇(B3 ˄ … ˄ ◇ Bn) …)

• The safety commitment is ¬Ay

□¬ (B1 ˄ ◇(B2 ˄ ◇(B3 ˄ … ˄ ◇ Bn) …))
≡ □¬ B ˅ □¬ B ˅ ˅ □¬ B≡ □¬ B1 ˅ □¬ B2 ˅ … ˅ □¬ Bn

• This may either be done by making the implementation such that
– the Bis do not occur in the specified order or
– one of the Bis does not occur at all, i.e., that B1 is holds.

• If one of the Bi is uncontrollable,
– the same as the previous interpretation.

Konkuk University 29

6 Example6. Example

S f A S f
def• Safe = Asm Safe_com

• Asm = □ ¬Signal_bypass(tpo, sst)
˄ □ O t id t (t i tl k)

def

˄ □¬Outside_route(sst, intlck)
˄ □¬(On-routes(tpo, sst, intlck)

˄ Reverses(tpo, sst, intlck))

• Safe_com = □¬(On_route(sst, intlck)
˄ Overlap_routes(intlck)

˄ (Error_point(tpo, sst, intlck)

def

˅ Error_signaling(top, sst, intlck)))

Konkuk University 30

7 Concluding Remarks7. Concluding Remarks

W h li k d f l i h i f l l i• We have linked one safety analysis technique, fault tree analysis, to
requirements specification so that software safety requirements can be
derived directly from the system safety requirements.

• In the development of safety critical systems, this means that the
software may be proven to satisfy the system safety requirements.

Konkuk University 31

7 Concluding Remarks7. Concluding Remarks

A i i i i h h f i i l d• A very interesting opportunity exists where the software is implemented
in a logic language. The semantics of fault trees may then be given in
that logic, possibly using explicit encoding of time for temporal

ti It th b f ibl t h k th i t fproperties. It may then be feasible to check the consistency of
systematically derived requirements directly against the program using
automated tools.

• In the development of safety critical systems, this means that the
software may be proven to satisfy the system safety requirements.

• We have extended the ideas presented in this paper in [9] where we also
have shown how to derive safety requirements from event trees and y q
cause-consequence diagrams.

Konkuk University 32

