
ACM Transactions on Software Engineering and Methodology, 1998.

M d l Ch ki L S ft S ifi tiModel Checking Large Software Specification
William Chan,
Richard J. Anderson,

JUNBEOM YOO

Paul Beame,
Steve Burns,
Francesmary Modugno,
David Notkin,
Jon D. ReeseJUNBEOM YOO

Dependable Software Laboratory
KONKUK University

Jon D. Reese

http://dslab.konkuk.ac.kr

2010.11.09

AbstractAbstract

I thi t i i i b li d l h ki tIn this paper, we present our experiences in using symbolic model checking to
analyze a specification of a software system for aircraft collision avoidance. Symbolic
model checking has been highly successful when applied to hardware systems. We
are interested in whether model checking can be effectively applied to large softwareare interested in whether model checking can be effectively applied to large software
specifications. To investigate this, we translated a portion of the state-based system
requirements specification of Traffic Alert and Collision Avoidance System II (TCAS II)
into input to a symbolic model checker (SMV). We successfully used the symbolic

d l h k t l b f ti f th t W tmodel checker to analyze a number of properties of the system. We report on our
experiences, describing our approach to translating the specification to the SMV
language, explaining our methods for achieving acceptable performance, and giving a
summary of the properties analyzed. Based on our experiences, we discuss the su a y o e p ope es a a y ed ased o ou e pe e ces, e d scuss e
possibility of using model checking to aid specification development by iteratively
applying the technique early in the development cycle. We consider the paper to be a
data point for optimism about the potential for more widespread application of

d l h ki t ft tmodel checking to software systems.

Konkuk University 2

ContentsContents

1 I d i1. Introduction
2. Model Checking
3. Translation Basics
4. Translation Rules
5. Obstacles
6 Results of Analysis6. Results of Analysis
7. Related Work
8. Discussion
9. Conclusion

Konkuk University 3

1 Introduction1. Introduction

H i fid i h ifi i i l l• How can we increase our confidence in the specifications, particularly
those of safety-critical systems?

• Formal methods offer opportunities for mechanical verification, but most
existing techniques either do not scale to large systems, require extensive
human guidance, or are limited to verifying simple (though important)
properties like deadlock freedom, consistency, and completeness.

• Symbolic model checking [15] based on binary decision diagrams (BDDs)
[10] is an efficient automatic verification technique that is simultaneously
capable of scaling and of verifying a wide range of properties.capable of scaling and of verifying a wide range of properties.

– It has been applied successfully to many industry-scale hardware circuits, but
not aggressively to the analysis of software specifications.

Konkuk University 4

1 Introduction1. Introduction

I hi d ib i i l i l• In this paper, we describe an experience in analyzing a large system
requirements specification using symbolic model checking.

• In our experiment, we translated a significant portion of a preliminary
version of the Traffic Alert and Collision Avoidance System II (TCAS II)
System Requirements Specification from the Requirements State Machine
Language (RSML) into input to the Symbolic Model Verifier (SMV).

• We were able to control the size of the BDDs representing the RSML e e e ab e to co t o t e s e o t e s ep ese t g t e S
specification so that we could analyze a number of properties.

– Robustness properties
– Safety-critical properties specific to the domainSafety critical properties specific to the domain

Konkuk University 5

1 Introduction1. Introduction

O bj i h ff i f d l h ki• Our objective was to test the effectiveness of model checking on
software systems with the hope that most or all of these techniques are
applicable to other situations.

• We stress two approaches that we found crucial in overcoming the
complexity and size of the specification,

– the use of nondeterministic modeling primarily to abstract nonlinear
arithmetic and to allow checking part of the specification

– the use of an iterative process to analyze the specification

• We also point out some limitations of the current model checking
techniques and tools, and suggest some future research directions.

Konkuk University 6

2 Model Checking2. Model Checking

M d l h ki i f l ifi i h i b d• Model checking is a formal verification technique based on state
exploration

– Given a state transition system and a property, model checking algorithms
h ti l l th t t t d t i h th th t ti fiexhaustively explore the state space to determine whether the system satisfies

the property.

Fig. 1. Model-checking a specification.

Konkuk University 7

2 1 The CTL Model Checking Problem2.1 The CTL Model Checking Problem

I l l i d l h ki i i i• In temporal-logic model checking, we are given a state transition system,
which models a software or hardware system, and a property specified as
a formula in a certain temporal logic, and determine whether the system

ti fi th f lsatisfies the formula.

• A common logic for model checking is the branching-time Computation
Tree Logic (CTL).

– AG safe : All reachable states are safe.
– AG AF stable : The system is stable infinitely often.
– AG (request ® AF response) : A request is always followed by a response

sometime in the future.
– AG EF restart : It is possible to restart the system in any reachable state.

Konkuk University 8

2 1 The CTL Model Checking Problem2.1 The CTL Model Checking Problem

F ll i i Q R I i f f Q• Formally, a state transition system <Q, R, I > consists of a set of states Q,
a state transition relation R ⊆ Q x Q, and a set of initial states I ⊆ Q.

• The set of states Q is often encoded by a set of state variables, such that
each state corresponds to some valuation for the variables and no
distinct states correspond to the same valuation.

• The system satisfies a formula if the formula holds at all initial states If• The system satisfies a formula if the formula holds at all initial states. If
not, a model checker typically attempts to find a counterexample.

Konkuk University 9

2 2 Symbolic Model Checking and BDDs2.2 Symbolic Model Checking and BDDs

I li i d l h ki h i h h l f CTL f l i• In explicit model-checking techniques, the truth value of a CTL formula is
determined in a graph-theoretic manner by traversing the state diagram,
with time complexity linear in the size of the state space and in the
l th f th f llength of the formula.

 State explosion problem

• Symbolic techniques: Instead of visiting individual states as in
conventional state space search, symbolic model checkers visit a set of
states at a time.

Konkuk University 10

2 2 Symbolic Model Checking and BDDs2.2 Symbolic Model Checking and BDDs

Wh h i fi i i h l f li• When the state space is finite, we can assume without loss of generality
that the state variables are boolean and there are only finitely many of
them.

• A predicate on these variables is simply a boolean function, which can be
represented by reduced ordered binary decision diagrams(BDDs).

• A number of BDD-based symbolic model checkers have een built, mainly
for hardware circuit verification.o a d a e c cu t e cat o .

Konkuk University 11

2 3 SMV2.3 SMV

SMV i CTL b li d l h k i BDD• SMV is a CTL symbolic model checker using BDDs to represent state sets
and transition relations.

– An SMV program consists of the description of a finite state transition system
d li t f CTL f land a list of CTL formulas.

 modulo 8 counter modulo-8 counter

 macro

Konkuk University 12

2 3 SMV2.3 SMV

T f d i i i SMV l• Two sources of nondeterminism in SMV are relevant to us.

1. An expression can be a set, and it nondeterministically valuates to a value
from that set.

2. when the initial or the next-state value of a variable is not specified, it
nondeterministically evaluates to a value of its type.

Konkuk University 13

3 Translation Basics3. Translation Basics

S i 3 1 i i f l i f RSML• Section 3.1 gives an informal overview of RSML,

• Section 3.2 provides intuition of the translation from RSML to SMV by p y
showing an example

• Section 4 describes general translation rulesSection 4 describes general translation rules.

Konkuk University 14

3 1 RSML Overview3.1 RSML Overview

RSML i hi l b d h di• RSML is a state-machine language based on statecharts, extending
conventional state diagrams with state hierarchies and broadcast
communications.

Konkuk University 15

3 1 1 State Hierarchy3.1.1 State Hierarchy

Konkuk University 16

3 1 2 Inputs and Events3.1.2 Inputs and Events

Th l i i i bl f h i l• The example contains two input variables from the environment, namely
alt (an integer) and switch (up, down, or test).

– The input alt represents the altitude of the aircraft, and switch is controlled by
th il tthe pilot.

• States in RSML are synchronized by events, which are broadcast to the
ti tentire system.

– u, v : generated by the environment and are called external events
– w : generated by the machine for internal synchronization

(i thi l l)(in this example only)

Konkuk University 17

3 1 3 Transitions3.1.3 Transitions

A i i i d i i i f• A transition is represented as an arrow originating from a source state to
a destination state.

• The idea is that if the machine is in the source state, the trigger occurs,
and the guarding condition is true (it is considered true if absent), then g g (),
the transition is enabled.

• Synchrony Hypothesis• Synchrony Hypothesis
– External events cascading of microsteps becomes stable a step
– During a step, no new external event may occur and the values of the inputs

remain unchangedremain unchanged.
– In other words, the machine runs infinitely faster than the environment. Once

the machine is stable, inputs can change and external events can again occur.

Konkuk University 18

3 1 4 AND/OR Tables3.1.4 AND/OR Tables

Th di di i f i i l fi i Fi 2 i• The guarding condition c of transition t10, too complex to fit in Fig. 2, is
shown in Fig. 4 as an AND/OR table, one of the features that distinguish
RSML.

Konkuk University 19

3 2 Translating the Example3.2 Translating the Example

I S i 3 2 l h RSML l b SMV d• In Section 3.2, we translate the RSML example above to SMV code.
• The complete SMV program is shown in Appendix A.

– SMV Variables
– RSML Transitions
– Inputsp
– Prev and Timing Constraints

Konkuk University 20

Konkuk University 21

Konkuk University 22

4 Translation Rules4. Translation Rules

T l i h l i f RSML SMV ll d• To explain the translation from RSML to SMV more generally and
precisely, we first formally define an RSML machine as a state transition
system given in Section 2.1, based on the operational semantics of RSML
b L t lby Leveson et al.

Konkuk University 23

4.1 RSML Machines as State Transition
Systems

RSML S• RSML States
• Global States
• Initial Global States
• RSML Transitions
• Global Transitions

Konkuk University 24

4 2 Translate Global States4.2 Translate Global States

Konkuk University 25

4 3 Translate Deterministic Transitions4.3 Translate Deterministic Transitions

Konkuk University 26

4 4 Translate Nondeterministic Transition4.4 Translate Nondeterministic Transition

Konkuk University 27

4 5 Translate Timing Constraints4.5 Translate Timing Constraints

Si i i h b d h d l i i i• Since time grows without bound, the underlying state transition system
in general has an infinite number of global states and BDD based model
checking becomes inapplicable.

• Fortunately, many common cases can be handled.

Konkuk University 28

4 6 Translate Prev4.6 Translate Prev

Wh h l f PREV() f i i d d h• When the value of PREV(y) for some input y is needed, we use the
following code:

Konkuk University 29

4 7 Miscellaneous4.7 Miscellaneous

O h RSML C• Other RSML Constructs
• Granularity of Global Transitions
• Alternative Semantics

Konkuk University 30

5 Obstacles5. Obstacles

Af d i d h l i l i h i i h d• After we derived the translation rules in the previous section, we had to
overcome a number of obstacles to make model-checking the TCAS II
specification feasible.

• TCAS II
– The first obstacle to analysis was its sheer size.
– Own-Aircraft has close interactions with another state machine called Other-

Aircraft.

• BDDs
– To use BDDs, we had to assume that these inputs are bounded integers.

• SMV
– BDD size and linear arithmetic
– Counterexample searchCounterexample search

Konkuk University 31

6 Results of Analysis6. Results of Analysis

Konkuk University 32

6 1 Transition Consistency6.1 Transition Consistency

T i i i• Transition consistency
– AG ! (t9 & t12)

• Soundness of the Analysis

Konkuk University 33

6 2 Function Consistency6.2 Function Consistency

Th l f h f i Di l d M d l G l h i Fi 10 i• The value of the function Displayed-Model-Goal, shown in Fig. 10, is
displayed to the pilot when an event called Composite-RA-Evaluated-
Event occurs.

Konkuk University 34

6 3 Step Termination6.3 Step Termination

• AG EF stable

• which means that the machine is stable infinitely often. In other words, it
can only stay unstable for a finite number of microsteps.

Konkuk University 35

6 4 Inhibition of Resolution Advisories6.4 Inhibition of Resolution Advisories

Konkuk University 36

6 5 Output Agreement6.5 Output Agreement

Konkuk University 37

7 Related Work7. Related Work

C S di• Case Studies

• Approaches to Fighting State Explosionpp g g p

• Consistency and Completeness

• Hybrid Systems

Konkuk University 38

8 Discussion8. Discussion

F ibili• Feasibility
– Restriction to Finite States
– Regularity
– Scale

• Model Checking as a Design Toolg g
– Understanding and Documentation
– Iterative Development

• Tool Integration
• Properties to Check

N li A ith ti• Nonlinear Arithmetic
• More Case Studies

Konkuk University 39

9 Conclusion9. Conclusion

W h h h l f l i• We have shown how to translate part of a large system requirements
specification into input to a symbolic model checker, and check several
nontrivial properties.

• Our approach to analyzing the specification iteratively, by modeling some
components nondeterministically and then refining them, proved to be
powerful.

– These are critical steps towards realizing symbolic model checking as an
effective tool in the process of analyzing and developing software

ifi tispecifications.

• We believe that this investigation contributes to an increase in optimism
h b li d l h ki di d i di dthat symbolic model checking can overcome predicted impediments and
thus be successful in the analysis of realistic software specifications.

Konkuk University 40

