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In this paper, we present our experiences in using symbolic model checking to
analyze a specification of a software system for aircraft collision avoidance. Symbolic
model checking has been highly successful when applied to hardware systems. We
are interested in whether model checking can be effectively applied to large software
specifications. To investigate this, we translated a portion of the state-based system
requirements specification of Traffic Alert and Collision Avoidance System II (TCAS II)
into input to a symbolic model checker (SMV). We successfully used the symbolic
model checker to analyze a number of properties of the system. We report on our
experiences, describing our approach to translating the specification to the SMV
language, explaining our methods for achieving acceptable performance, and giving a
summary of the properties analyzed. Based on our experiences, we discuss the
possibility of using model checking to aid specification development by iteratively
applying the technique early in the development cycle. We consider the paper to be a
data point for optimism about the potential for more widespread application of
model checking to software systems.
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How can we increase our confidence in the specifications, particularly
those of safety-critical systems?

Formal methods offer opportunities for mechanical verification, but most
existing techniques either do not scale to large systems, require extensive
human guidance, or are limited to verifying simple (though important)
properties like deadlock freedom, consistency, and completeness.

Symbolic model checking [15] based on binary decision diagrams (BDDs)
[10] is an efficient automatic verification technique that is simultaneously
capable of scaling and of verifying a wide range of properties.

— It has been applied successfully to many industry-scale hardware circuits, but
not aggressively to the analysis of software specifications.
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In this paper, we describe an experience in analyzing a large system
requirements specification using symbolic model checking.

In our experiment, we translated a significant portion of a preliminary
version of the Traffic Alert and Collision Avoidance System II (TCAS 1I)
System Requirements Specification from the Requirements State Machine
Language (RSML) into input to the Symbolic Model Verifier (SMV).

We were able to control the size of the BDDs representing the RSML
specification so that we could analyze a number of properties.

— Robustness properties
— Safety-critical properties specific to the domain

Konkuk University 5
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« Our objective was to test the effectiveness of model checking on
software systems with the hope that most or all of these techniques are
applicable to other situations.

* We stress that we found crucial in overcoming the
complexity and size of the specification,

— the use of nondeterministic modeling primarily to abstract nonlinear
arithmetic and to allow checking part of the specification

— the use of an iterative process to analyze the specification

« We also point out some limitations of the current model checking
techniques and tools, and suggest some future research directions.
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* Model checking is a formal verification technique based on state
exploration
— Given a state transition system and a property, model checking algorithms

exhaustively explore the state space to determine whether the system satisfies
the property.

4 Model Checker (SMV) )
Specification A Motlel Of
(TCAS TI SRS the Specification Intemat Representations
in RSML) (Model of TCAS 1T of Initial States and
SRS in the SMV Transition Relation
Language) (BDDs) ) True
Model Checking or
Algorithm , ]
£0 False with a
Property Internal Representations / Counterexample
of Properties
(CTL formula)
(BDDs)
- /
Analyst’s Feedback

Fig. 1. Model-checking a specification.
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In temporal-logic model checking, we are given a state transition system,
which models a software or hardware system, and a property specified as
a formula in a certain temporal logic, and determine whether the system
satisfies the formula.

A common logic for model checking is the branching-time Computation
Tree Logic (CTL).

AG safe : All reachable states are safe.
AG AF stable : The system is stable infinitely often.

AG (request ® AF response) : A request is always followed by a response
sometime in the future.

AG EF restart : It is possible to restart the system in any reachable state.
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e Formally, a state transition system <Q R, 7 > consists of a set of states Q,
a state transition relation R € Q x @ and a set of initial states 7 < Q.

* The set of states Qis often encoded by a set of state variables, such that
each state corresponds to some valuation for the variables and no
distinct states correspond to the same valuation.

» The system satisfies a formula if the formula holds at all initial states. If
not, a model checker typically attempts to find a counterexample.
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In explicit model-checking techniques, the truth value of a CTL formula is
determined in a graph-theoretic manner by traversing the state diagram,
with time complexity linear in the size of the state space and in the
length of the formula.

- State explosion problem

Symbolic techniques: Instead of visiting individual states as in
conventional state space search, symbolic model checkers visit a set of
states at a time.

Konkuk University 10
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* When the state space is finite, we can assume without loss of generality
that the state variables are boolean and there are only finitely many of
them.

« A predicate on these variables is simply a boolean function, which can be
represented by reduced ordered binary decision diagrams(BDDs).

A number of BDD-based symbolic model checkers have een built, mainly
for hardware circuit verification.

Konkuk University 11
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and transition relations.

SMV is a CTL symbolic model checker using BDDs to represent state sets

— An SMV program consists of the description of a finite state transition system

and a list of CTL formulas.

ASSIGN
VAR next (x) := case
b: boolean; x < T: x
s: {on, off}; esac;
ASSTIGN DEFINE
init(b) := 0; d :=x =7 & b= 0;
ASSICGN
ASSIGN next(s) := case
next (b) := !b; d: omn;
l: off;
esac;
TRANS

(d & next(s)= on) |

Konkuk University

- modulo-8 counter
+ 1;

- macro

(!d & nexti(g) = off)

12
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Two sources of nondeterminism in SMV are relevant to us.

1. An expression can be a set, and it nondeterministically valuates to a value
from that set.

AESSIGHN
init(x) := {0, 1};

2. when the initial or the next-state value of a variable is not specified, it
nondeterministically evaluates to a value of its type.

Konkuk University
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« Section 3.1 gives an informal overview of RSML,

« Section 3.2 provides intuition of the translation from RSML to SMV by
showing an example

» Section 4 describes general translation rules.
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RSML is a state-machine language based on statecharts, extending
conventional state diagrams with state hierarchies and broadcast
communications.

Konkuk University
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Fig. 2. An example of an RSML machine.
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« The example contains two input variables from the environment, namely
alt (an integer) and swrtch (up, down, or test).

— The input a/t represents the altitude of the aircraft, and switch is controlled by
the pilot.

« States in RSML are synchronized by events, which are broadcast to the
entire system.
— U, v: generated by the environment and are called external events

— w: generated by the machine for /nternal synchronization
(in this example only)
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» A transition is represented as an arrow originating from a source state to
a destination state.

id: trig|cond)/ acts

« The idea is that if the machine is in the source state, the trigger occurs,
and the guarding condition is true (it is considered true if absent), then

the transition is enabled.

» Synchrony Hypothesis
— External events > cascading of microsteps 2 becomes stable 2 a step
— During a step, no new external event may occur and the values of the inputs
remain unchanged.

— In other words, the machine runs infinitely faster than the environment. Once
the machine is stable, inputs can change and external events can again occur.

Konkuk University 18
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« The guarding condition ¢ of transition ¢;, too complex to fit in Fig. 2, is
shown in Fig. 4 as an AND/OR table, one of the features that distinguish
RSML.

Transition(s): |Off | — | On
Location: Maode

Trigger Event: w

Condition: OR
Alt-Layer in state Low T |T||T
A [alt <1000 T [
% alt < 1500 . T
PrEvV{alt) << 1500 : T

t > t(Exited{ Mid)) + 5 AT

Output Action:

Fig. 4. Transition from Offto On.

Konkuk University 19
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« In Section 3.2, we translate the RSML example above to SMV code.
 The complete SMV program is shown in Appendix A.

— SMV Variables

— RSML Transitions

— Inputs

— Prev and Timing Constraints



MODULE main
VAR
u: boolean;
v: boolean;
w: boolean;
gawltch: {up, down, test}:
alt: 0..20000;
prev-alt: 0..200000;
Alt-Layer: {High, Mid, Low}:
Alarm: {Shutdown, Operating};:
Mode: {Off, On};
Volume: {12};
time-Mid: 0..5;
DEFINE
stable : l{ulviw);
in-Sys := 1;
in-Alt-Layer := 1n-Sys:

in-High := 1n-Alt-Layer & Alt-Layver
in-Mid := in-Alt-Layer & Alt-Layer

in-Low := 1n-alt-Layer & Alt-Layer

in-Alerm := 1in-Sys;

in-Shutdown := in-Alarm & Alarm = Shutdown;
in-Operating := in-alarm & alarm = Operatlng;
in-Mode := 1n-Operatlng:;

in-Volume := 1n-Operating;

in-0ff := in-Mode & Mode = On;

in-1 := in-Volume & Volume = 1;

in-2 := in-Volume & Volume = 2;

tl in-High & u & alt >= 9950;
t2 in-Mid & u
& 1950 <= alt & alt <= 10050;
t3 in-Low & u & alt <= 2050;
td in-Mid & u & alt > 10050;
ts in-High & u & alt < 9950;
té in-Low & u & alt > 2050;
t7 in-Mid & u & alt < 1950;
t8 in-Shutdown & u & switch=up;
t9 := In-Shutdown & u & swilitch=down;
tl0 := 1n-0ff & w & C;
tll := In-On & w & in-Mid;
tl2 := 1n-1 & wv;
tl3 := 1n-2 & wv;
tld := 1n-Shutdown & u & switch=test;
c := 1n-Low &

Konkuk University

(alt<l1000
| (alt<1500 & prev-alt<l500)
|time-M14d »>= 5);

21



EB|t13|tld: 1;

ti12 : 2;
1 : Volume;
esac;
_ _ Inlt(w) == 0
ASSIGN next{w) := tllt2|t3|t4|t5|te|tT;
init(Alt-Layer) := Mid; next{u) :=

-
=
-
=

next (alt-Layer) := case
case stable: {0,1}:
tl|t4 : High; 1 : 0;
t2|1t51t6: Miqa; esac;
t3 |7 : Low; next(v) :=
1 : Alt-Layer; cage
esac; stable: {0,1};
inlt(Alarm) := Shutdown: 1 : 0;
next (Alarm) := agac;
case next(swltch) :=
t8|tld: Operating; case
t9 : Shutdown; stable: {up, down, test};
1 : Alarm; 1 : switch;
esac; agac;
inlt (Mode) := OLL; next(alt) :=
next (Mode) := case
case stable: 0..20000;
t10|1tl4d4: On; 1: alt;
t8|tll : Off; esac;
1 : Mode; next (prev-alt) :=
egac; cage
init(Volume) := 1; gtable: alt;
next (Volume) := 1 : prev-alt;
case esac;
next(time-Mid) :=
cage
t2|t4|tL7 : 0;
stable & time-Mld < 5: time-Mid + 1;
1 : time-Mi4;

Kol egac;
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« To explain the translation from RSML to SMV more generally and
precisely, we first formally define an RSML machine as a state transition

system given in Section 2.1, based on the operational semantics of RSML
by Leveson et al.



4.1 RSML Machines as State Transition
Systems

« RSML States

* Global States

« Initial Global States
« RSML Transitions

» Global Transitions
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Composite-RA

[ |

' ™

Positive
| .
(Climb ) VAR

1n-Climb := i1n-Composlte-RA
VSL100o & Composite-RA = Climb;
WEL2O00

VSL2000
\

(i

@( Composlte-RA: {No-RA, Climb, Descend,
— Descend ) Negative};
,‘_’“g“"‘"“l : ‘ N Cclimb-VSL: {No-Climb-VSL, VSLO, ... };
Climb-VSL | Descend VL Descend-VSL: {No-Descend-VSL, VSLO, ... };
Game Dy | (oomerv) DERTNE

]
l 1 (vsio }/ in-RA := in-Positive | 1in-Negative;

) ]

©: . © in-Positive := in-Climb | in-Descend;

]

]

]

1

. J

Fig. 5. Nested or-states in TCAS Il

Konkuk University 25
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. For each p € O:

VAR
pr Followers(p);
ASSIGH
init{p) := defoult™(p);
. DEFINE
in-ront = 1;

. For each s € A

DEFINE

in-s := in-leader(s) & leader(s) = s;

4. For ench and-state or atomic stote s & A with
parent p;
DEFINE
in=s := in-p;
3. For each s € (0 with parent p.
DEFINE
in-s := in-p;
6. For each or-state p g O
DEFINE
in-p := v:aEf,'hiIr}n nip) 10783
7. For each ¢ € Events:
VAR
¢: boolean;
8. For each ¢ € Fvents — Frternal
ASSIGH
init({e) := 0;
9. For each tnput variable y:
VAR

Fig. 6. Rules for declaring and initializing SMV variables for RSML ma-
chines.

y: Rangely);
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10, For each tr € Trans:

DEFINE
tr-enabled := in-sre(tr) & trigitr) & cond(tr);
tr-taken := ir-enabled;
11. For each p e (O:
ASSIGN

next(p) :=
case
o For eqch tr € Trans with
Fallowers(p) N Enters(tr) # 0,
let s be the wnigue state in the set:
tr-taken: s;
¢ For the defoult branch:
1:ps
28ac,
. For each ¢ € Fuents
ASSIGN
next(e)

External :

= Vuerumﬂn]hu¢aken;
3. For each ¢ € Frternal -
ASSIGH
next(e) :=
case
stable: {0.1};
1:0;
esac:
. For each snput variable y:
ASSIGH
next{y} :=
case
stable: Hange(y);
1:y;
esac:
DEFINE
gtable :=

15,
- Ve-E Eoents €3

Fig. 7. Rules for translating deterministic RSML transitions.

26
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10", For each tr € Trans:
DEFINE
tr-enabled := in-sre(fr) & trig(tr) & condi{tfr);
fr—taken := fr-enabled
L h_'-:EH:uJ.r‘r'ﬂ[l'r:l ﬂ'&]{t{iﬂ'ﬁ'j
& f‘llll'-t'-Er.!.c'.f.m;I-r-] next {f’.},'.
11", For each p € (:
TRANS
(p =next(p)) V
VFr)“ﬂll"t’.l"ﬂ{ﬂ]l"lEﬂ'{iﬂ[i".'i‘"': =0 tr-taken
16", For each tr € Trans:

TRANS
itr—enabled W

 J— Ir_
{—.tv taken <« ".fh_,,:f-,mﬁm””_] fr taken)

Fig. 8. Rules for translating a class of nondeterministic RSML transitions.

Konkuk University
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* Since time grows without bound, the underlying state transition system

in general has an infinite number of global states and BDD based model
checking becomes inapplicable.

* Fortunately, many common cases can be handled.

VAR
g: 0.. ke;
ASETGH
next (#) :=
case
Virer, I 0;
stable & & < kg: @ +1;

1: &;
esac;
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When the value of PREV()) for some input yis needed, we use the
following code:

VAR

prev-y: Rangely);

ASSIGH

nexct (prev-y) :=

case
stable: ¥
l: prev-y;
esac;

Konkuk University
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e Other RSML Constructs
e Granularity of Global Transitions
e Alternative Semantics



After we derived the translation rules in the previous section, we had to
overcome a number of obstacles to make model-checking the TCAS II
specification feasible.

TCAS II

— The first obstacle to analysis was its sheer size.

— Own-Aircraft has close interactions with another state machine called Other-
Aircraft.

BDDs
— To use BDDs, we had to assume that these inputs are bounded integers.

SMV
— BDD size and linear arithmetic
— Counterexample search
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TABLE 1
RESOURCES USED IN ANALYSIS
No. of Memory
Time EDD Allocated
Properties Result (sec) Nodes (MB)
Building the N/A 46.6 124 618 7.1
transition relation
Transition False 3870 717,275 16.4
consistency
Function False 2895 387 167 115
consistency
Step termination True 575 142 937 74
Descend Inhibition True 166.8 429 9383 11.8
Increase-Descend False 193.7 282 694 9.9
Inhibition
Output agreement False 3256 376,716 11.6

Konkuk University

32



\7

"'f\ m ~
LCTILY

V.1 11dl ID LUII CONSIS

« Transition consistency
— AG! (19 & t12)

« Soundness of the Analysis

LEMMA 1. Given two state transition systems M, = (Q, R;, I)
and M, = (Q, R,, I) with identical state spaces and initial

states. Define

={ge Q|3q¢. (q.q)e (R;—R) U (R —Ry)}.

The set N is reachable in M, if and only if it is reachable in
JME.

Konkuk University
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e The value of the function Displayed-Model-Goal, shown in Fig. 10, is
displayed to the pilot when an event called Composite-RA-Evaluated-

[’}
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LIVII

NC

Event occurs.

Displayed-Model-Goal =

0
Max(Own-Track-Alt-Rate,

PrEV(Displayed-Mocdel-Goal),
1500 ft/min)

Min{Own-Track-Alt-Rate,
PrEV(Displayed-Model-Goal),
—1500 ft /min}

2500 ft/min
—2500 ft/min
Max(Own-Track-Alt-Rate,

1500 ft/min)

Min{Own-Track-Alt-Rate,
—1500 ft/min)

PrEV(Displayed-Model-Goal)

Fig. 10. Definition of Displayed-Model-Goal.
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if Composite-RA not in state Positive

if (New-Climb or New-Threat) and
not New-Increase-Climb and

not {Increase-Climb-Cancelled or
Increase-Descend-Cancelled) and
Composite-RA in state Climb

if (New-Descend or New-Threat) and
not New-Increase-Descend and

not (Increase-Climb-Cancelled or
Increase-Descend-Cancelled) and
Composite-RA in state Descend

if New-Increase-Climb

if New-Increase-Descend

if Increase-Climb-Cancelled and
not New-Increase-Climb and
Composite-RA in state Positive

if Increase-Descend-Cancelled and
not New-Increase-Descend and

Composite-RA in state Positive

Otherwise

Konkuk University

/¥ case 1%/

J* case 2 %/

J* case 3 %/

J¥ case 4 ¥/

J* case b ¥/

J¥ case 6 %/

/¥ case T ¥/

/¥ case 8 %/

AG (Composite-RA-Evaluated-Event —>
1({(Cagse-1 & Case-2)

(Case-1 & Case-3)

(Ease-ﬁl& Case-T)))

34
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which means that the machine is stable infinitely often. In other words, it
can only stay unstable for a finite number of microsteps.
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« (ase Studies
» Approaches to Fighting State Explosion
e Consistency and Completeness

e Hybrid Systems
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Feasibility

— Restriction to Finite States
— Regularity

— Scale

Model Checking as a Design Tool
— Understanding and Documentation
— Iterative Development

Tool Integration
Properties to Check
Nonlinear Arithmetic
More Case Studies
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We have shown how to translate part of a large system requirements
specification into input to a symbolic model checker, and check several
nontrivial properties.

Our approach to analyzing the specification iteratively, by modeling some
components nondeterministically and then refining them, proved to be
powerful.

— These are critical steps towards realizing symbolic model checking as an

effective tool in the process of analyzing and developing software
specifications.

We believe that this investigation contributes to an increase in optimism
that symbolic model checking can overcome predicted impediments and
thus be successful in the analysis of realistic software specifications.



