

Research Directions in Requirements Engineering

Betty H.C. Cheng

Dept of Computer Science and Engineering Michigan State University East Lansing, Michigan 48824 USA chengb@cse.msu.edu http://www.cse.msu.edu/~chengb

Jo Atlee

David R. Cheriton School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1 CANADA jmatlee@uwaterloo.ca http://se.uwaterloo.ca/~jmatlee

- What is RE?
 - Why is RE difficult?
- RE State of the Art
- Research Strategies
- RE Research Hotspots
- Recommendations

Requirements engineering is the branch of software engineering concerned with the <u>real-world goals</u> <u>for, functions of, and constraints on software</u> <u>systems.</u>

It is also concerned with the <u>relationship of these</u> <u>factors</u> to precise specifications of software behavior, and to <u>their evolution over time</u> and across software families.

[Zave 83]

Why is RE Difficult?

- RE faces complementary challenges from those faced by the rest of SE community
- Different types of artifacts
 - Downstream SE works in solution space
 - RE works in problem space

Why is RE Difficult?

Issues	Downstream SE	RE
Domain	Solution space	Problem space
Starting point	Specified by requirements	
Alternatives to consider	Constrained by requirements, platform, acceptance, priorities, system boundaries	
Stakeholders	Technical, more homogeneous	
Artifacts	Models of SW	
Resources	Majority of resources	

Research Strategies

NCREASING MATURITY

Strategy	Definition	V
Paradigm Shift		
Leverage other disciplines		
Leverage technology		
Evolutionary		
Domain-specific		
Generalization		
Engineering		
Evaluation		

[Shaw02,tuRedwine and Riddle 85, Basili93] Requirements Engineering, BHC Cheng, JA Atlee, copyrighted 2007

Matrix of State of the Art

Matrix of State of the Art

	i					
	Research Contributions					
Elicitation	Notations		Methodologies, Patterns, Strategies	Ar	nalysis, Tools	
Modeling		/				
Reqt Notation Semantics		RE Reference model			Model merging [145,163]	
Analy Logics [52]		Model elaboration [167]			[4,41,107,166,179]	
Behavioral	Behavioral models		Viewpoints [125,153]		Model composition [79]	
[90,165]	escriptions [12]	Patterns [56,87,97,169] criptions [12] Modeling facilitators				
Object mo	dels [86]	[7,	34,95,126]			
		Foi [20	malization heuristics			
Reqs		Me	thodologies [16]			

Hot Spots

- Definition: areas with pressing needs given anticipated challenges posed by emerging systems (e.g., scale, security, tolerance, tighter integration between system and environment)
- How we selected specific hot spots:
 - Extensions to the State of the Art:
 - Based on "gaps" in matrix and research strategies
 - Internal factors (push on boundaries)
 - Defining New State of the Art:
 - External factors (from stakeholders from industry, govt, users)
 - Emerging systems
 - Proactive (part of problem solving team)
 - identify promising solutions
 - define the leading edge (or be reactive)

Hot Spots Impact

	Problems		Requirements Contributions		
	Notations		Methodologies, Patterns, Strategies	A nalyæs, Tools	
	Elicitation	Goals [21, 170] Policies [20] Scenarios [1, 35, 49] Agents [106, 180] Ant i-models [155, 164, 171] [][] Nonfunctional requirements [31, 70]	Mentifying stakeholders [150] Metaphors [130, 133] Persona [10, 38] Contextual requirements [36, 159] Inventing requirements [72, 115]	Animation [82, 113, 168] Prototyping [51] Simulation [162] Invariant generation [91]	
	Modeling	Cbject models [86] Behavioral models [90, 165] Domain descriptions [12][_][_] Lo gics [52] Notation Semantics [117, 122, 161, 135]	RE reference model [75, 76, 128] Model et aboration [167] Viewpoints [125, 153] Patterns [56, 87, 97, 169] Modeling factificators [7, 34, 95, 126] Formal Method	Model merging [145, 163] Model synthesis [4, 41, 107, 166, 179] Model composition [79]	
			Alignin Conflice • Reuse	es, Patterns, Tools	
Nev	v State	of the Art	Effectivenes	s of RE Techniques	
				Variability analysis [74, 108, 109] Requirements selection [137, 158]	
	Validation & Verification	Property languages [15, 105] Model formalisms [24, 53] Object models [86] Sjkfoafwienvoania Akejhvnlaweuhvb	Ahksjhfksjhfskh Pjshflkjshdsfjh	Simulation [162] Animation [82, 113, 168] Invariant generation [91] Consistency checking [60, 81, 120] Inspections [62, 129] Model checking [29, 57, 157] Model s atisfiability [86]	
	Requirements Management	Variability modeling [23, 40, 138, 148]	Scenario management [3] Feature management [176]	Traceability [33, 80, 144, 149] Impact analysis [101] Stability analysis [25]	

Matrix of State of the Art

	RE	Requirements Contributions		
	Problems Key here:	Notation	Methodologies, patterns, strategies	Analysis, Tools
RE problem	Elicitation	Human strategies mature; evolutionary for creating new notations for elicited reqts; ever- increasing (higher) level of abstraction (reqts-> goals-> policies)	empirical	Leverage technology video con
	Modeling	Evolutionary; specialization (e.g., viz: Drawing HCI, graphics)	Engineering: codification of experience	Evolutionary; generalization (model transformation omposition

Blow up: lot

- Methodologies, Patterns, Tools
 - Need more engineering-oriented research to
 - integrate current techniques and
 - Make more widely available, applicable
 - Requirements Reuse (e.g., patterns)
 - Within a domain
 - Across domains
- Effectiveness of RE Technologies
 - Need more evaluation-oriented research
 - Demonstrate utility of current RE techniques on industrial-strength problems
 - Also need comparisons of similar techniques
 - Provide guidance as to when one approach is more appropriate

New State of the Art

- Motivated by anticipated needs
 - External factors (from stakeholders from industry, govt, users)
 - Emerging systems
- Research Challenges:
 - Scale_{γ}
 - Toleran
 - Self-Man
 - Cyberphys
 - Security

ICSE07 Future of Software Engineering, Future Directions of Requirements Engineering, BHC Cheng, JA Atlee, copyrighted 2007

Scale

- Definition: new orders of magnitude increase in scale [ULS Report, SEI 2006]
 - Size
 - Heterogeneity
 - Decentralized elements
 - Complexity (decision logic)
- Examples: (of the future)

Example:

Intelligent Transportation and Vehicle Systems

Software Engineering Institute

Carnegie Mellon

Ultra-Large-Scale Systems Linda Northrop, ICSE 2007 © 2007 Carnegie Mellon University

Ultra-Large Scale SW-Intensive Systems

Software Engineering Institute

Carnegie Mellon

Ultra-Large-Scale Systems Linda Northrop, ICSE 2007 © 2007 Carnegie Mellon University

- Definition: new orders of magnitude increase in scale
 - Size (e.g., thousands of sensors, platforms)
 - Heterogeneity
 - Decentralized elements
 - Complexity (decision logic)
- Example: ITS and IVS
- RE Challenges:
 - Modeling, abstraction, analysis techniques to handle new notions of large scale.
 - Managing requirements with uncertainty in data, processing, platforms
 - Detecting/resolving feature interactions

- Definition: software-based system is aware of its context and must react and adapt to changes in the environment or requirements [Kramer and Magee, FoSE07]
- Examples:

ICSE07 Future of Software Engineering, Future Directions of Requirements Er

Self-Managing Systems

- Definition: software-based system is aware of its context and must react and adapt to changes in the environment or requirements [Kramer and Magee, FoSE07]
- Examples:
- RE Challenges:
 - Determining when adaptation is needed
 - Supporting changing requirements
 - Gaining assurance for adaptive systems
 - Identify assurance criteria
 - Reasoning technology for adaptive systems
 - Run-time monitoring of system and environment wrt current requirements

Tolerance

- Definition of sufficient correctness
 - "The degree to which a system must be dependable in order to serve the purpose its user intends, and to do so well enough to satisfy the current needs and expectations of those users" [Shaw WOSS02].

RE Challenges

- Size of systems will make it impractical to have complete, consistent, and stable requirements -- need to settle for "healthful systems"
- Requirements for fault tolerance (cannot wait to address FT at design/implementation)
- Negative requirements (e.g., unhealthy conditions to avoid)
- Requirements for diagnostic and recovery mechanisms

Cyberphysical

- Definition: Software seamlessly integrated with environment. [Schaefer and Wehrheim, FoSE07]
 - Computing and communication tightly coupled with monitoring and control of physical entities in environment
- Examples:

Automated Manufacturing

Handheld/Wearable Computing

nents Engineering, BHC Cheng, JA Atle

Cyberphysical

- Definition: Software seamlessly integrated with environment. [Schaefer and Wehrheim, FoSE07]
 - Computing and communication tightly coupled with monitoring and control of physical entities in environment
- Examples:
- RE Challenges:
 - Need to model environment (not discrete)
 - Hybrid models (continuous and discrete systems interacting)
 - Unpredictable environmental factors (e.g., humans)
 - Uncertainty aspects:
 - What (when) to monitor,
 - Reacting to dated conditions (delayed information)
 - Noise in sensor data
 - Interpreting the data (SW state or environmental conditions)

Security

- Definition:
 - "A computer is *secure* if you can depend on it and its software to behave as you expect (intend)."
 - '*Trust* describes our level of confidence that a computer system will behave as expected.' (intended)

[Garfinkel & Spafford, Kasten]

- Examples:
 - Healthcare Infrastructure
 - Intelligent Transportation Systems

ULS of the Future

Numerous Security Concerns

Software Engineering Institute

Carnegie Mellon

Ultra-Large-Scale Systems Linda Northrop, ICSE 2007 © 2007 Carnegie Mellon University

ULS of the Future

Numerous security concerns

Intelligent Transportation and Vehicle Systems

Software Engineering Institute

Carnegie Mellon

Ultra-Large-Scale Systems Linda Northrop, ICSE 2007 © 2007 Carnegie Mellon University

Security

• Definition:

- "A computer is *secure* if you can depend on it and its software to behave as you expect (intend)."
- *Trust* describes our level of confidence that a computer system will behave as expected.' (intended)

[Garfinkel & Spafford, Kasten]

- Examples:
- RE Challenges:
 - Modeling the environment
 - Need for complete (threat) models
 - Malicious entities exist
 - Notations and methodologies
 - Structuring, modeling, and reasoning about security policies
 - Monitoring for security requirements adherence
 - Tools for modeling and analyzing security requirements

Globalization

- Definition: globally distributed development teams [Herbsleb, FoSE07]
- Motivation:
 - Exploit a 24-hour work day
 - Global work force

Globalization

University of

Waterloo

- Definition: globally distributed develop [Herbsleb, FoSE07]
- Motivation:
 - Exploit a 24-hour work day
 - Global work force

• RE Challenges:

- RE documentation must support distributed downstream development activities (design, coding, testing)
- Communication support in a distributed environment:
 - Requirements elicitation, modeling, negotiation
 - Team management (geographical, time zone, culture, language)

Recommendations

RESEARCHERS

Extensions to State of Art •Engineering/integrating RE Techniques •Apply to industrial-strength data •Comparative studies

- Integrate with downstream SE research
- •Training the next generation

<u>Defining New State of Art</u> •Looking for paradigm shifts for emerging systems and challenges •New modeling, analysis,

abstraction techniques

INDUSTRY/PRACTITIONERS

External factors pose new challenges

- New computing needs
- New application domain needs
- New users

Leverage new technology

New Considerations

- Scale
- Assurance
- Distributed Control
- Autonomic Behavior

Recommendations

<u>Researchers</u>
Extensions to State of Art
Engineering/integrating RE
Techniques
•Apply to industrial-strength data
Collaborative Partnerships
• Integrate with • Collaborative research efforts
• Collective identification and definition and main needs
of RE research challenges
Sanitized industrial-strength data
 Repositories of RE-related artifacts
Defining New • Evaluation of research techniques
•Looking for paradigm shifts for •Assurance
emerging systems and challenges • Distributed Control
•New modeling, analysis, abstraction techniques •Autonomic Behavior

[Whitehead, FoSE07, Rombach & Achatz, FoSE07]

Acknowledgements

- Feedback:
 - Philip K. McKinley, Axel van Lamsweerde, Bashar Nuseibeh, Robyn Lutz, Steve Fickas, Brian Berenbach, Heather Goldsby, Dan Fiedler, Lionel Briand

- Sponsors:
 - U.S. Department of the Navy, Office of Naval Research under Grant No. N00014-01-1-0744, and in part by National Science Foundation grants CCR-9901017, EIA-0000433, EIA-0130724, CCF-0541131, and CNS-0551622, and by Siemens Cooperate Research, and a Michigan State University Quality Fund Concept Grant
 - Natural Sciences and Engineering Research Council of Canada

Take home message...

[Whitehead, FoSE07, Rombach & Achatz, FoSE07]