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Abstract

In this paper, we review current requirements engineer-
ing (RE) research and identify future research directions
suggested by emerging software needs. First, we overview
the state of the art in RE research. The research is consid-
ered with respect to technologies developed to address spe-
cific requirements tasks, such as elicitation, modeling, and
analysis. Such a review enables us to identify mature areas
of research, as well as areas that warrant further investiga-
tion. Next, we review several strategies for performing and
extending RE research results, to help delineate the scope
of future research directions. Finally, we highlight what we
consider to be the “hot” current and future research topics,
which aim to address RE needs for emerging systems of the
future.

1. Introduction

The success of a software system depends on how well
it fits the needs of its users and its environment [127, 130].
Software requirements comprise these needs, and require-
ments engineering (RE) is the process by which the require-
ments are determined. Successful RE involves understand-
ing the needs of users, customers, and other stakeholders;
understanding the contexts in which the to-be-developed
software will be used; modeling, analyzing, negotiating,
and documenting the stakeholders’ requirements; validat-
ing that the documented requirements match the negotiated
requirements; and managing requirements evolution1.

In this paper, we offer our views on the research direc-
tions in requirements engineering. The paper builds on Nu-

1In addition, there are a number of software-engineering activities that
are based on requirements information, such as cost estimation, project
planning, and requirements-based derivations of architectures, designs,
code, and test cases. Although these activities are “related” to a system’s
requirements, they play at most a minor role in determining and agreeing
on the system’s requirements; as such, we consider them to be outside the
scope of requirements engineering.

seibeh and Easterbrook’s paper [127], hereafter referred to
as the “2000 RE Roadmap Paper”, from the Future of Soft-
ware Engineering track at ICSE 2000 [64]. Whereas the
2000 RE Roadmap Paper focused on current research in re-
quirements engineering, this paper concentrates on research
directions and identifies RE challenges posed by emerging
and future software needs. We start, in Section 2, with an
overview of the inherent difficulties in requirements engi-
neering. In Section 3, we provide a summary of the state
of the art of RE knowledge and research, and in Section 4,
we enumerate general research strategies for advancing the
state of the art. The strategies range from revolutionary
research to empirical evaluation to codifying proven solu-
tions. In Section 5, we highlight what we consider to be
RE research hotspots: the most pressing needs and grand
challenges in RE research. Some hotspot topics are natural
extensions to existing knowledge and technologies, whereas
others arise as RE aspects of predicted software needs. We
conclude with strategic recommendations for improving the
research infrastructure for RE researchers, thus facilitating
the research community’s ability to make better progress on
addressing these problems.

2. Why Requirements Engineering is Difficult

In general, the research challenges faced by the
requirements-engineering community are distinct from
those faced by the general software-engineering commu-
nity, because requirements reside primarily in the problem
space whereas other software artifacts reside primarily in
the solution space. That is, requirements descriptions, ide-
ally, are written entirely in terms of the environment, de-
scribing how the environment is to be affected by the pro-
posed system. In contrast, other software artifacts focus
on the behavior of the proposed system, and are written in
terms of internal software entities and properties. Stated an-
other way, requirements engineering is about defining pre-
cisely the problem that the software is to solve (i.e., defining
what the software is to do), whereas other SE activities are



about defining and refining a proposed software solution.
Several consequences follow from this distinction that

cause requirements engineering to be inherently difficult:

• Requirements analysts start with ill-defined, and often
conflicting, ideas of what the proposed system is to do,
and must progress towards a single, detailed, technical
specification of the system.

• The requirements problem space is less constrained
than the software solution space – in fact, it is the
requirements definition that helps to delimit the so-
lution space. As such, there are many more options
to consider and decisions to make about requirements,
such as selecting from collections of proposed require-
ments, prioritizing requirements, deciding on the sys-
tem boundaries, negotiating resolutions to conflicts,
setting objective acceptance criteria, and so on [172].

• One means of simplifying the problem space is to con-
strain the environmental conditions under which the
system is expected to operate. In such cases, reasoning
about requirements involves reasoning about the com-
bined behavior of the proposed system and assump-
tions made about the environment. Taking into con-
sideration environmental conditions significantly in-
creases the complexity of the problem at hand, since a
system’s environment may be a combination of hard-
ware devices, physical-world phenomena, human (op-
erator or user) behavior, and other software compo-
nents.

• Reasoning about the environment includes identifying
not only assumptions about the normal behavior of the
environment, but also about possible threats or hazards
that the environment could pose to the system.

• The resulting requirements artifacts have to be under-
stood and usable by domain experts and other stake-
holders, who may not be knowledgeable about com-
puting. Thus, requirements notations and processes
must maintain a delicate balance between producing
descriptions that are suitable for a non-computing au-
dience and producing technical documents that are pre-
cise enough for downstream developers.

Due to all of the above, RE activities, in contrast to other
software-engineering activities, may be more iterative, in-
volve many more players who have more varied back-
grounds and expertise, require more extensive analyses of
options, and call for more complicated verifications of more
diverse (e.g., software, hardware, human) components.

3. State of the Art of RE Research

In this section, we summarize the state of the art of RE
knowledge and research, as a baseline from which to ex-
plore future research directions. This section can be viewed

as an update to the 2000 RE Roadmap Paper [127], in that it
incorporates advances made in the intervening seven years.

To provide a visual map of RE research, we organize re-
search results in a matrix structure that relates each result
to the requirements task that it applies to and the contri-
bution that it makes towards a solution. The research space
is roughly decomposed into five types of requirements tasks
(elicitation, modeling, requirements analysis, validation and
verification, and requirements management) and three cat-
egories of solution technologies (notations, methodologies
and advice, and techniques). The resulting matrix is shown
in Table 2. Not all RE research can be so cleanly clas-
sified, but this decomposition is useful for a high-level
overview of solution-based research activities; evaluation-
based research is discussed separately. Our decomposition
is roughly comparable to the top-level decomposition in
Zave’s proposed scheme for classifying RE research [185].

The rest of this section is organized by requirements task,
and thus reviews the contents of the matrix by row. We con-
clude with a discussion of evaluation-based RE research.

Elicitation. Requirements elicitation comprises activities
that enable the understanding of the goals, objectives, and
motives for building a proposed software system. Elicita-
tion also involves identifying the requirements that the re-
sulting system must satisfy in order to achieve these goals.
The requirements to be elicited may range from modifica-
tions to well-understood problems and systems (e.g., soft-
ware upgrades), to hazy understandings of new problems
being automated, to relatively unconstrained requirements
that are open to innovation2 (e.g., mass-market software).
As such, most of the research in elicitation focuses on tech-
nologies for improving the precision, accuracy, and variety
of the requirements details:

• Techniques for identifying stakeholders [152] help to
ensure that everyone who may be affected by the soft-
ware is consulted during elicitation.

• Analogical techniques, like metaphors [136] and per-
sonas [9, 34], help stakeholders to consider more
deeply and be more precise about their requirements.

• Contextual and personal RE techniques [33, 160] ana-
lyze stakeholders’ requirements with respect to a par-
ticular context, environment, and perhaps individual
user, to help ensure that the eventual system is fit for
use in that environment.

• Techniques for inventing requirements, like brain-
storming and creativity workshops [117], help to iden-
tify nonessential requirements that make the final prod-
uct more appealing.

• Feedback techniques use models [65], model anima-
tions [84, 115, 170], simulation [164], and storyboards

2Innovations are inventions that people are willing to purchase.
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to elicit positive and negative feedback on early repre-
sentations of the proposed system.

Models can be used during elicitation to help catalyze
discussion and to explore and learn about the stakehold-
ers’ needs. Such exploratory models, like use cases, sce-
narios, enterprise models, and some policy [18] and goal
models [19], tend to be informal and intuitive, to facilitate
early feedback from stakeholders. They tend also to be in-
expensive to create and maintain, so that specifiers can keep
them up-to-date as the requirements evolve.

Modeling. In requirements modeling, a project’s require-
ments or specification is expressed in terms of one or more
models. In contrast to models developed during elicita-
tion, late-phase requirements models tend to be more pre-
cise, complete, and unambiguous. The process of creating
precise models helps to evoke details that were missed in
the initial elicitation. The resulting (more complete) mod-
els can be used to communicate the requirements to down-
stream developers.

Modeling notations help to raise the level of abstraction
in requirements descriptions by providing a vocabulary and
structural rules that more closely match – better than natu-
ral language does – the entities, relationships, behavior, and
constraints of the problem being modeled. Each modeling
notation is designed to elicit or record specific details about
the requirements, such as what data the software is to main-
tain, functions on the data, responses to inputs, or properties
about data or behavior.

Scenario-based models [1, 3, 39, 47, 165, 168, 169, 182]
have been the focus of much recent research – partly be-
cause scenarios are easiest for practitioners and nontechni-
cal stakeholders to use, but perhaps also because scenar-
ios are naturally incomplete and thus lend themselves to a
plethora of research problems. In addition, there is consid-
erable research on techniques for creating, combining, and
manipulating models:

• Modeling strategies provide guidelines for structur-
ing models. For example, RE reference models [75,
77, 131] decompose requirements-related descriptions
into the stakeholders’ requirements, the specification
of the proposed system, and assumptions made about
the system’s environment. In addition, they establish
correctness criteria for verifying that the specified sys-
tem will meet the requirements. In contrast, the view-
points approach [128, 155] retains each stakeholder’s
requirements in separate models, and the synthesis of
a consistent global model that captures all of the stake-
holders’ concerns is delayed until conflicts can be re-
solved knowledgeably.

• Patterns encode generic solutions to common model-
ing problems [90, 99, 171], assertion expressions [54],

and natural-language requirements statements [49].
The RE community is also working on tools [31, 97,
129] to help specifiers apply these patterns.

• Model transformations combine or manipulate exist-
ing models to derive new models. For example, model
synthesis [3, 39, 107, 168, 182] and model composi-
tion techniques [80] integrate complementary submod-
els into a composite model. In contrast, model merging
techniques [147, 165] unify different views of the same
problem.

Several of the above-mentioned projects directly address
challenges raised in the 2000 RE Roadmap Paper. For
example, heuristics for formalizing natural-language poli-
cies [18] and goal models [67] help to bridge the gap
between informal and formal requirements. This gap is
also narrowed by techniques for inferring abstractions [72]
and preliminary models [6] from natural-language require-
ments, by tools that map constrained natural-language ex-
pressions to formal representations [31, 97, 129], by re-
search on formalizing the semantics of informal or semi-
formal modeling notations [59, 71, 120, 163]. In addition,
significant advances have been made in the modeling and
analysis of nonfunctional requirements [28] and in estab-
lishing objective fit criteria for how well an eventual sys-
tem must achieve various nonfunctional properties [69]. On
the other hand, there has been little progress on special-
purpose notations for modeling environment descriptions
and assumptions [11]. Instead, existing notations like func-
tions [131], operational specifications (e.g., Z, Alloy [89]),
and constraint languages continue to be used.

Requirements Analysis. Most of the research in require-
ments analysis focuses on new or improved techniques for
evaluating the quality of recorded requirements. Some anal-
yses look for well-formedness errors in requirements, where
an “error” can be ambiguity [16, 61, 95, 149, 176], incon-
sistency [24, 58, 123], or incompleteness. Other analyses
look for anomalies, such as unknown interactions among
requirements [25, 79, 143], possible obstacles to require-
ments satisfaction [114, 175], or missing assumptions [12].
Both types of analyses reveal misunderstandings or ques-
tions about the requirements that usually call for further
elicitation. Requirements analysis also includes techniques,
such as risk analysis [62] and impact analysis [101], that
help specifiers to better understand the requirements, their
interrelationships, and their potential consequences, so that
specifiers can make more-informed decisions. As other
examples, prioritization, visualization, and analysis tech-
niques help a manager to select an optimal combination of
requirements to be implemented [74, 110, 139, 122, 159],
or to identify acceptable off-the-shelf solutions [104, 144].



Validation and Verification. Requirements validation
ensures that models and documentation accurately express
the stakeholders’ needs. Unlike the above analyses that
check a specification against objective well-formedness cri-
teria, validation is typically a subjective evaluation of the
specification with respect to informally described or un-
documented requirements. As such, validation usually re-
quires stakeholders to be directly involved in reviewing the
requirements artifacts [145]. Research in this area focuses
on improving the information provided to the stakeholder
for feedback, including animations [84, 115, 170], simula-
tions [164], and derived invariants [93].

In cases where a formal description of the stakeholders’
requirements exists, obtained perhaps by validation, veri-
fication techniques can be used to prove that the software
specification meets these requirements. Such proofs often
take the form of checking that a specification model satisfies
some constraint. For example, model checking [26, 55, 158]
checks behavioral models against temporal-logic properties
about execution traces; and model satisfiability [89] checks
that there exist valid instantiations of constrained object
models, and that operations on object models preserve in-
variants.

The notations listed in the Validation & Verification row
of Table 2 represent formalisms that enable or ease veri-
fication. In contrast to specification notations, these nota-
tions’ primary purpose is to facilitate automated verifica-
tion rather than to communicate or document requirements.
Verification models, expressed in these notations, are sim-
plifications and abstractions of a specification to be veri-
fied [22, 51, 89].

Requirements management. Requirements management
is an umbrella activity that comprises a number of tasks
related to the management of requirements, including the
evolution of requirements over time and across product
families. Of particular interest are tools and techniques
to ease, and partially automate, the task of identifying
and documenting traceability links among requirements
artifacts and between requirements and downstream arti-
facts [30, 81, 118, 146, 151]. Also included are analyses
that determine the maturity and stability of elicited require-
ments, so that the requirements most likely to change can be
isolated [23]. Lastly, the basic management of requirements
has become a challenge and has inspired research on tech-
niques to organize large numbers of requirements [2] that
are globally distributed [44], and that are at different phases
in development in different product variants [179].

Evaluation-Based Research. The above discussion is an
overview of solution-based RE research, which emphasizes
technological advances that make progress towards solv-
ing RE problems; such research is often accompanied by

proofs-of-concepts or pilot studies that show the potential of
the proposed ideas. Orthogonal to this work is evaluation-
based research, whose mission is to assess the state of
the practice and evaluate proposed advances to the state of
the art. Approximately 10% to 15% of RE research pa-
pers report on evaluation-based research, in the form of
reports on the state of the practice [46], case studies that
evaluate how well research ideas work when applied to
industrial-strength problems3 [87, 112, 116, 121, 181], and
field studies that evaluate research ideas in industrial set-
tings [40, 42, 66]. Several recent research projects eval-
uate how well requirements technologies apply to, or can
be adapted to, domain-specific problems, such as secu-
rity [174], semantic webs [52], and user interfaces [17].
Additionally, there have been a few comparative studies
that compare the effectiveness of competing elicitation tech-
niques [48, 56], specification notations [10], and inspec-
tion techniques [135]. Finally, there have also been some
post-mortem analyses on how requirements evolved in real-
world systems [8, 113].

4. Research Strategies

In this section, we discuss ways of advancing the state of
the art of RE research. We review several major strategies
for conducting research, and look at how each have or might
be applied to requirements-related research. The strategies
range from inventing new disruptive ideas and technologies,
to improving on current research, to adapting previous re-
sults to a new context, to evaluating or comparing technolo-
gies. Each strategy attempts to achieve a slightly different
research objective, but all contribute in some way to advanc-
ing the state of the art, either by adding new knowledge or
by improving the maturity of previous work.

Our collection of research strategies is synthesized from
a number of different sources, including Shaw’s overview
of criteria for good research in software engineering [154],
Redwine and Riddle’s review of software technology mat-
uration [138], Basili’s review of research paradigms [13],
and the combined experience of both authors. Table 2 intro-
duces and briefly defines the eight research strategies that
we discuss below. The strategies are listed in order of in-
creasing maturity of the research results.

Paradigm Shift. A paradigm shift is a revolutionary so-
lution that introduces radically new ideas or technologies
to tackle a new or existing problem. Paradigm shifts are
rare and are usually unplanned; but when they occur, they
can have tremendous impact on a field. A paradigm shift
is triggered by an important problem that researchers can

3We use the term “industrial-strength” problems/projects to refer
project data that have characteristics of industrial data, such as size, com-
plexity, and/or domain-specific properties.



Table 2. Enumeration of research strategies

Research Strategy Definition

Paradigm Shift: Dramatically change the way of thinking, resulting in a revolution in knowledge or technology.

Leverage other
disciplines:

Leverage and recast principles, practices, processes, or techniques from another discipline.

Leverage new
technology:

Make advances by leveraging new tools or technology.

Evolutionary: Make progressive improvements to existing research solutions and techniques.

Domain-specific: Develop a new solution or technique that applies narrowly to a specific problem domain.

Generalization: Generalize an existing solution or technique, so that it applies to a broader class of problems or data.

Engineering: Develop processes or strategies that make it easier or cheaper to apply research solutions in practice.

Evaluation: Evaluate existing research solutions – with respect to specified metrics, real or realistic problems,
current practices, or related research results.

no longer make progress on by extending or adapting ex-
isting technologies. The shift starts with some innovative
change in the way that a particular problem is considered.
The change leads to disruptive innovations, which usually
must mature before their benefits are recognized and appre-
ciated enough to motivate rapid and widespread adoption.

Typically, there are two means by which a paradigm shift
occurs: push and pull. A paradigm shift is pushed onto
a community when new technology serendipitously makes
major advances towards solving a problem for which it was
not originally intended. A classic example of such a shift is
the World Wide Web, which has significantly changed the
way that society communicates and the way that services
are delivered to consumers. A paradigm shift that is cur-
rently underway is the shift toward global software devel-
opment and, by extension, global requirements engineering;
we discuss this topic further in Section 5.6.

Alternatively, a paradigm shift can be pulled when there
is a real or a perceived crisis that cannot be solved by im-
proving current ideas and techniques [102]. For exam-
ple, object-based design conventions were invented in re-
sponse to serious concerns about how to structure programs
and data in a way that promoted modularity according to
application- and data-driven abstractions. As the design
conventions gained popularity, they evolved into object-
oriented programming methodologies, were codified in new
design methods, and were eventually supported by new pro-
gramming language constructs.

Leverage other disciplines. An RE researcher can lever-
age another discipline by identifying the analogous rela-
tionships between the two disciplines and then recasting
promising knowledge, philosophies, principles, or practices

from the other discipline into solutions that are appropri-
ate for requirements problems. For example, software en-
gineering, as a discipline, emerged when researchers and
practitioners attempted to manage the “software crisis” by
borrowing and adapting from the engineering profession
several ideas about design principles, development pro-
cesses, and discipline. As another example, the concept
of genetic algorithms leverages ideas from biology, in that
the algorithms “evolve” by using feedback from previous
computations to improve future computations. Sutcliffe et
al. [124] use genetic algorithms to improve the efficiency of
searching for an optimal requirements decision by optimiz-
ing a fitness function that reflects reliability requirements.
As a third example, Sutcliffe and Maiden’s work [161] in
establishing a domain theory for RE draws heavily from
cognitive science and analogical reasoning.

Leverage technology. Technological advances in com-
puting and related fields can be combined and adapted to
apply to problems in requirements engineering. In gen-
eral, artificial intelligence, library science, information sci-
ence, cognitive psychology, linguistics, statistics, and math-
ematics are all fertile areas for ideas and techniques that
are suitable for such adaptation. For example, Ambriola
and Gervasi [6], and separately Overmeyer et al. [129],
use natural-language processing techniques to parse textual
requirements descriptions and to generate corresponding
semi-formal models, such as data-flow diagrams and com-
munication diagrams. They and other researchers [6, 16, 61,
149, 176] use linguistic-analysis techniques to detect possi-
ble ambiguities and unintended inconsistencies in textual or
use-case requirements. Hayes et al. [81] and Cleland-Huang
et al. [29] use information-retrieval techniques to automati-



cally retrieve traceability links among requirements.

Evolutionary research. The antithesis of a paradigm
shift is evolutionary research, in which the state of the art
advances via incremental improvements to existing tech-
nologies. Although emerging software needs may pose new
research challenges that the RE community will be called
on to address, most software developed in the near future
will resemble the types of systems being developed today.
As such, the software community will continue to bene-
fit from improvements to current requirements technolo-
gies (as overviewed in Section 3), which were created in
response to the problems that today’s practitioners face.

In many ways, evolutionary research is about moving re-
search technologies down the research-strategy ladder listed
in Table 2. Existing notations and techniques can be ex-
tended, adapted, or generalized to address a broader class
of problems. Current technologies can be supported by new
methodologies, patterns, strategies, and tools that ease their
use and help to promote their adoption by practitioners.
Empirical research can determine the problems and contexts
for which a technology is most effective, and can identify
aspects that could be further improved.

Domain-specific. A researcher can sometimes make bet-
ter progress by narrowing the scope of a requirements prob-
lem and studying it in the context of a particular applica-
tion domain. For example, there is a paradigm shift towards
more domain-specific specification languages [65] that pro-
vide native facilities for describing important entities and
behaviors in that domain and provide macros for eliding re-
current requirements details. Along these lines, the Inter-
national Telecommunication Union (ITU) has standardized
a number of specification, design, and testing languages;
design methodologies; and interface specifications – all of
which support software aspects of telecommunication sys-
tems.

Generalization. Successful domain-specific or
organization-specific techniques can sometimes be gener-
alized to be more broadly applicable. For example, many
of the ideas in telecommunications notations, like Message
Sequence Charts and the Specification and Description
Language, have been incorporated into the more general
Unified Modeling Language 2.0. As another example,
techniques for avoiding, detecting, and resolving feature
interactions, which were originally developed in the context
of telephony features [80, 184], are now being studied and
applied in other domains, such as Web services [180].

Engineering. A surprising number of research problems
arise in the course of trying to apply requirements tech-
nologies in practice. Engineering as a research strategy

looks at how to simplify and codify RE knowledge and
techniques so that they can be readily adopted by prac-
titioners and taught in classrooms. For example, visual
formalisms [50, 53, 78, 92] ease the task of creating and
reviewing precise specifications. Patterns not only help
specifiers to create models [98, 99, 171] and express con-
straints [54], via instantiation and adaptation, but they also
offer some level of uniformity and reusability of such de-
scriptions. Heuristics and strategies offer advice on how
to use particular elicitation [7], modeling [18, 67], or ver-
ification [94] technologies. Methodologies and processes
provide guidance on how to integrate RE technologies into
a coherent series of steps that progress from an initial idea
to a final specification document [137, 141]. One of the
best known engineering-style research projects was Par-
nas et al.’s case study that applied state-of-the-art software-
engineering practices to (re)develop the engineering arti-
facts and code for the U.S. A-7 naval aircraft. This work
led to research results in tabular specifications [92], hier-
archical module structures, abstract interfaces, and new in-
spection strategies [132].

Evaluation. Proposed RE technologies become theories,
solutions, or practices through evaluation-based research
that demonstrate effectiveness. Evaluation techniques in-
clude experience, collection and analysis of data, field stud-
ies, case studies, controlled experiments, and analytical rea-
soning. Evaluation criteria range from qualitative or statisti-
cal metrics, to effectiveness in solving real or realistic prob-
lems, to comparisons with competing technologies. A ma-
ture RE technology should be evaluated on real-world ap-
plications or in an industrial setting, to assess its scalability,
practicality, and ease of use [66, 87, 112, 116, 121, 181]. In
contrast, comparative studies evaluate the relative strengths
and weaknesses of competing solutions to a problem. No-
table comparative studies have investigated the criteria for
choosing a specification language [10] and the effectiveness
of methods for inspecting requirements documents [135].

Evaluation-based research need not be a massive under-
taking. A case-study may be based on a single study involv-
ing an industrial-strength project, on replicated studies of
the same project, on studies of multiple projects, or on a lon-
gitudinal study that spans several phases of a project. Even
the development of new assessment criteria, such as appro-
priate benchmarks, are valuable research contributions.

5. RE Research Hotspots

As evidenced by the previous sections, the field of RE
research is rich, and the scope of possible research direc-
tions is quite large. In addition, new RE research chal-
lenges may arise from emerging trends in software systems
and predictions about future software needs. Current trends



and expressed needs include increasing scale of software
systems, tighter integration between software and its envi-
ronment, greater autonomy of software to adapt to its envi-
ronment, and increasing globalization of software develop-
ment. These trends reflect changes in stakeholders’ needs,
and as such they directly affect RE processes and practices.
In some cases, current technologies can accommodate the
new trends in requirements. In other cases, the trends pose
new research challenges in requirements engineering, or
raise the priorities of longstanding research problems.

In this section, we call attention to nine RE research
hotspots whose solutions are likely to have the greatest im-
pact on software-engineering research and practice. Our
list of hotspots is not meant to be exhaustive. Rather, it
is intended to highlight some of the more pressing needs
and grand challenges in RE research. Of the nine hotspots
discussed below, six arise from future software needs, due
to predicted increases in scale, security, tolerance, de-
pendencies between software and its environment, self-
management, and globalization. The other three hotspots
focus on extending and maturing existing technologies to
improve RE methodologies and requirements reuse and on
increasing the volume of evaluation-based research.

5.1. Scale

Software systems are growing in size. Moreover, the
“scale” of large-scale systems no longer refers simply to
significant size, as in lines of code. Scale factors also in-
clude complexity, degree of heterogeneity, number of sen-
sors, and number of decentralized decision-making nodes.
Yet another scale factor is variability, as software systems
need to accommodate increasingly larger sets of require-
ments that vary with respect to changes in the software’s
environment. An example class of systems that exhibit
many of these new scale factors are the ultra-large-scale
(ULS) systems [126] proposed for next-generation military
command and control systems. Other potential ULS sys-
tems include future intelligent transportation-management
systems, critical infrastructure protection systems (e.g.,
systems managing power grids, bridges, telecommunica-
tion systems), integrated health-care systems, and disaster-
response systems.

Modeling, abstraction, and analysis techniques that scale
well are critical in designing ULSs. Current modeling
paradigms and analysis techniques cannot effectively man-
age the scale, complexity, variability, and uncertainty that
are predicted for these systems. Requirements will come
from many different stakeholders, involve multiple disci-
plines (e.g., sensors, scientific computation, artificial intel-
ligence), and be presented at varying levels of abstraction.
Thus, new abstractions, innovative decomposition strate-
gies, standardized composition operators, and increased au-

tomation of RE tasks are all needed to cope with the com-
plexity. In addition, better techniques are needed to merge
potentially vastly different types of requirements into a sin-
gle coherent story. Detecting and resolving feature interac-
tions and conflicts on such a large scale will pose a grand
challenge. Taken together, these problems call for new
paradigms for thinking about, modeling, analyzing, and
managing requirements.

5.2. Security

As computing systems become ever more pervasive and
mobile, and as they automate and manage more consumer-
critical processes and data, they increasingly become the
targets of security attacks. Moreover, attacks originate from
both outside the system and within (e.g., a human operator),
are intentional, and are constantly changing. For these rea-
sons, we believe that security poses challenges to RE that
exceed those posed by other nonfunctional requirements,
and so we elevate it to be a research hotspot.

There has been substantial work on how to improve soft-
ware security, in the form of solutions and strategies that
(1) avoid vulnerabilities, (2) protect systems and informa-
tion, and (3) defend against or recover from attacks. How-
ever, most of these solutions are design or implementation
results, and are threat-specific. Thus, the associated RE
tasks are to identify and document potential security threats.
Specifically, the specifier identifies assets, identifies vulner-
abilities in the context of potential threats, and specifies
countermeasures to protect against these threats. Example
efforts include anti-models [119, 157, 166, 174], trust as-
sumptions [76], and threat modeling [88, 162].

Although strategic, the threat-based approach to security
requirements engineering is reactive and focuses on low-
level security requirements; there is no notion of a general
security policy. An alternative approach would take a top-
down view of security requirements, and base requirements
on organizational structures, such as lines of authority, “sep-
aration of duties, delegation, roles, groups,” access policies,
and so on [36]. Work on notations and methodologies for
structuring, modeling, and reasoning about high-level secu-
rity policies is just beginning [35, 70, 82].

To further add to the challenge, there is no consensus on
the degree to which security requirements should be real-
ized at the requirements level. Should specifiers go so far
as to select and employ appropriate protections for iden-
tified threats, in the manner that user interfaces and tim-
ing deadlines are woven into behavioral specifications? Or
should detailed security measures be optimized at design
time along with other competing nonfunctional require-
ments? These are open questions for the RE and security
communities to resolve.



5.3. Tolerance

Software is increasingly used to automate critical appli-
cations and services, such as transportation vehicles and
systems, financial decisions and transactions, medical care,
military command and control, and so on; in which secu-
rity and assurance requirements are paramount. However,
given the complexity of such systems, with respect to size,
decentralized decision-making, and variability, the SE and
RE communities may need to soften their views and expec-
tations for security and correctness. Shaw [153] discusses
the need to accept “sufficient correctness” for complex sys-
tems, instead of striving for absolute correctness that may
lead to brittle systems.

Sufficient Correctness: The degree to which a
system must be dependable in order to serve the
purpose its user intends, and to do so well enough
to satisfy the current needs and expectations of
those users [153].

When operating in an uncertain and dynamically chang-
ing environment, brittle systems tend to fail at the first en-
counter of adverse conditions. To avoid this problem, re-
quirements elicitation should focus on requirements for ac-
ceptable behavior and on what it means for a system to be
“healthy” [153]. One approach to relaxing the precision of
correctness criteria is to specify (fault) tolerance require-
ments, which extend the ranges of acceptable behavior. For
example, Wassyng et al. [178] have made some preliminary
progress on specifying timing requirements in a way that
is precise and yet captures allowable tolerances. Alterna-
tive approaches include focusing on negative requirements,
which represent “unhealthy” conditions or behaviors that
the system must avoid, and on requirements for diagnostic
and recovery mechanisms.

5.4. Increased Reliance on the Environment

The increase in scale is partly due to the rise of systems
of systems, consisting of software, hardware, and people, all
of which may be loosely or tightly coupled together. For ex-
ample, cyber-physical systems (CPSs) are a new generation
of engineered systems in which computing and communica-
tion are tightly coupled with the monitoring and control of
entities in the physical world [37]. Example cyber-physical
systems include intelligent transportation and vehicle sys-
tems; automated manufacturing; critical infrastructure mon-
itoring; disaster response; optimization of energy consump-
tion; smart wearable attire [68] for health care, personal
safety, and medical needs; and efficient agriculture [37].

Integrated systems pose particularly thorny requirements
problems because of their coupling with and dependence
on the physical environment. Such systems recast old RE

problems of determining the software system’s boundary
into more complicated problems of assigning responsibil-
ities: to the software system under consideration, to peer
software systems, to hardware interface devices (which are
increasingly programmable), and to human operators and
users [106]. Moreover, the environment or context in which
a software system will run is often the least understand and
most uncertain aspect of a proposed system; and RE tech-
nologies and tools for reasoning about the integration of
physical environment, human behavior, interface devices,
and software system are among the least mature.

To reason about an integrated system, it becomes nec-
essary to formalize the properties of the environments with
which the software will interoperate. Jackson [91] explores
a number of challenges in modeling and reasoning about
a software system’s environment, including working with
formalizations that are necessarily “imperfect...[discrete ap-
proximations] of continuous phenomena”, devising piece-
wise formalizations of the environment to support differ-
ent proofs about the software, and ensuring that the envi-
ronment is in a “compatible state” when the system initial-
izes [91]. Towards this end, better abstractions are needed
to model the behaviors of physical and human entities and
their interfaces with computing elements. New domain-
specific languages may be needed to express these domain
abstractions and knowledge; and new languages would call
for corresponding simulation, verification, and visualization
techniques, to validate the modeled environment.

Most importantly, there need to be better techniques for
integrating models of the environment, interface devices,
and software components. Computing devices tend to be
modeled using discrete mathematics, such as logics and au-
tomata; physical devices tend to modeled using continuous
mathematics, such as differential equations; and human-
behavior modeling is an open problem, with researchers us-
ing a combination of goals, agents, relationship models, and
performance moderator functions [156]. Researchers in the
verification community are making progress on the mod-
eling, simulation, and reasoning of hybrid models [4], but
their work does not accommodate human-behavior models,
and the scalability of techniques remains an elusive goal.

5.5. Self-Management

The difficulties of requirements engineering are aggra-
vated by the desire to create software systems that ac-
commodate at run-time varying, uncertain, incomplete, or
evolving requirements. For example, there is growing in-
terest in self-managing systems, in which the software sys-
tem is aware of its context and is able to react and adapt to
changes in either its environment or its requirements [100] –
such as a mobile device, whose available services vary with
the user’s location and with the local service provider(s).



Examples of such systems include self-healing systems that
are able to recover dynamically from system failure, faults,
errors, or security breaches; and self-optimizing systems that
are able to optimize their performance dynamically with re-
spect to changing operational profiles.

Self-management capabilities are essential in software
systems that, once deployed, cannot be accessed physically
or electronically. For example, a cyber-physical system
(CPS) may have large numbers of physically distributed
sensors that are placed in difficult-to-reach locations, such
as power transformers, nuclear reactor cores, and hazardous
or toxic sites. Moreover, these sensors are increasingly pro-
grammable. If developers are not able to access remote el-
ements to perform software updates, then the elements will
need to update and correct themselves.

In the simplest case, a self-managing system adapts its
behavior at run-time by replacing the running system with a
new target behavior selected from among a set of predefined
behaviors. These systems require different perspectives on
the types of requirements information that should be consid-
ered and documented – in contrast to traditional approaches,
which typically focus on static goals or functionality. The
RE research problems posed by such a system include

• Identifying and specifying thresholds for when the sys-
tem should adapt

• Specifying variable sets of requirements

• Matching requirements alternatives to run-time needs

• Identifying correctness criteria for adaptive systems

• Verifying models of adaptive systems and their sets of
possible behaviors

• Monitoring the system and environment, against the
current requirements

There has been some preliminary work on specifying and
verifying adaptive software [103, 186, 187] and on run-time
monitoring of requirements conformance [63, 142, 148]. In
addition, much of the work on personalized [160] and cus-
tomized [111] software – at least with respect to eliciting,
modeling, and reasoning about requirements variations –
can also be applied to adaptive systems.

However, there is an assumption with customized and
self-managed systems that it is possible to predict and pre-
define the requirements for a complete set of target behav-
iors. Such predictions may not be possible, if the system is
to recover dynamically from unexpected errors or attacks,
or adapt at run-time to new environmental conditions or to
new requirements that were not anticipated during develop-
ment. In this case, what is needed is a self-evolving system
that is able, at run time, to satisfy new requirements and
behaviors. Thus, the requirements analyst needs to spec-
ify how the system’s requirements can evolve dynamically;

specify abstract adaptation thresholds that allow for uncer-
tainty and unanticipated environmental conditions; and ver-
ify the adaptation decision-making capabilities of the result-
ing system. Unfortunately, none of the existing modeling
and verification techniques address the challenges posed by
this degree of evolution, uncertainty, and incomplete infor-
mation.

One research strategy would be to investigate whether
ideas from other disciplines, such as biology, could be lever-
aged. Given that natural organisms are inherently able to
respond to adverse and unexpected conditions, biological
entities and systems may be suitable metaphors for dynami-
cally adaptive software. Biomimetics comprises those tech-
niques that attempt to imitate or simulate the behavior of
natural organisms. For example, work at Michigan State
University is exploring how digital evolution techniques
can be extended to simulate a biological evolution process
that discovers new unanticipated behavior, and thus new re-
quirements, for the adaptive systems [73, 96].

5.6. Globalization

Global software development is an emerging paradigm
shift towards globally distributed development teams [86].
The shift is motivated by the desire to exploit a 24-
hour work day, capitalize on global resource pools, de-
crease costs, and be geographically closer to the end-
consumer [44]. The downside is increased risk of commu-
nication gaps. For example, elicitation and early modeling
are collaborative activities that require the construction of
a shared mental model of the problem and requirements.
However, there is an explicit disconnect between this need
for collaboration and the distance imposed by global devel-
opment.

Globalization poses two main challenges to the RE re-
search community. First, new or extended RE techniques
are needed to support outsourcing of downstream develop-
ment tasks, such as design, coding, and testing. Distance
aggravates the gap between the requirements and develop-
ment teams, particularly if the teams are from different or-
ganizations, have different cultures, or have different work
environments. In particular, because geographic distance
reduces team communication [85], ill-defined requirements
are at risk of ultimately being misinterpreted, resulting in
a system that does not meet the stakeholders’ needs. As
a preliminary effort to narrow communication gaps, Bhat
et al. [44] have proposed a framework based on a people-
process-technology paradigm that describes best practices
for negotiating goals, culture, processes, and responsibili-
ties across a global organization.

The second challenge is to enable effective distributed
RE. Future requirements activities will be globally dis-
tributed, since requirements analysts will likely be working



with geographically distributed stakeholders and distributed
development teams may work with in-house customers. As
such, practitioners need techniques to facilitate and manage
distributed requirements elicitation, distributed modeling,
distributed requirements negotiation, and the management
of distributed teams – not just geographically distributed,
but distributed in terms of time zone, culture, and language.
Damian and her group are interested in distributed require-
ments negotiation, and have investigated how best to use
and combine different media technology to facilitate negoti-
ations and quality agreements [42, 43]. Sinha et al. have de-
veloped an Eclipse-based tool for distributed requirements
engineering collaboration [44].

5.7. Methodologies, Patterns, and Tools

The transfer of RE technologies from research into prac-
tice would benefit from better advice on how to apply the
technologies more systematically. The goals of this type of
engineering-style research are to improve the productivity
of the requirements analyst and to improve the quality of
the resulting requirements artifacts. For example, just as
patterns [54] help to ease the creation of logic expressions,
research into idioms and patterns for other modeling prob-
lems and notations [98, 99, 171] would improve the produc-
tivity of modelers.

Similarly, modeling conventions, methodologies, and
strategies all help to simplify RE techniques so that the
techniques can be used successfully by typical practitioners.
Because patterns and strategies are, or suggest, partial solu-
tions, they help also to impose some level of uniformity and
predictability in the resulting requirements descriptions.

Engineering-style research is also needed to investigate
how to integrate requirements technologies into a coherent
requirements process. Most research projects focus on a
single RE problem, such as elicitation or traceability. As
a result, the state of the art in RE research is a collection
of technologies that have been researched and evaluated in
isolation, with little knowledge of how to combine tech-
niques effectively. For example, despite the significant ad-
vances that have been made in requirements modeling and
notations, there has been little work on how to intercon-
nect various types of requirements models. Well-defined
approaches to interrelating requirements goals, scenarios,
data, functions, state-based behavior, and constraints are
needed to address this fundamental problem. Broy and his
group have made some progress on this problem, in the
form of a modeling theory that incorporates many of the
above-mentioned modeling elements [20]. As an example
of synergy among RE technologies, Ebert [57] shows via
an analysis of several industrial-development projects that
four product-management techniques, used for composing
teams, negotiating requirements, planning long-term prod-

uct and feature releases, and tracking a product’s status, are
most effective at reducing scheduling delays when the tech-
niques are used together. Further research is needed on how
to integrate RE technologies, so that practitioners know how
to apply individual technologies effectively and synergisti-
cally.

5.8. Requirements Reuse

Another approach to making RE tasks more prescriptive
and systematic would be to facilitate the reuse of existing
requirements artifacts. The most strategic form of require-
ments reuse is product lining, where related products are
treated as a product family, and their co-development is
planned from the beginning. The family’s common require-
ments are collected in reusable templates that can be instan-
tiated and adapted to derive the requirements for an indi-
vidual product. A key RE challenge for product-line devel-
opment includes strategic and effective techniques for an-
alyzing domains; identifying opportunities for product lin-
ing; and identifying the scope, commonalities, and variabil-
ities of a product line. A second challenge relates to how
requirements for product lines are documented. Feature
models [38, 134] are commonly used to model a product-
line core, but they quickly proliferate when used to model
product-line instantiations. A promising but untested solu-
tion to this challenge is multi-level feature trees [140].

Expression and modeling patterns, discussed in the pre-
vious section, are also a form of reuse, in that they cod-
ify reusable modeling structures. Problem frames [90]
can be considered abstract patterns of context diagrams for
common classes of software problems, and thus are also
reusable. In addition, it may be possible to identify larger
units of reusable requirements for particular domains or par-
ticular types of applications. The automotive industry has
expressed interest in using such “generic, reusable require-
ments” in developing complex automotive systems.

A reusable requirement should be accompanied by stan-
dard pattern fields, such as context, problem addressed, con-
sequences, properties, and so on. However, this is usually
not enough information to facilitate effective use of the pat-
tern or reusable artifact. Adapting an instantiated pattern so
that it adequately fits the desired context is still a bit of an
art. Pattern use would be easier and more successful if prac-
titioners had better guidance and examples of how to apply
and adapt individual patterns.

5.9. Effectiveness of RE Technologies

Lastly, the ultimate impact of RE research depends on
how relevant the results are to industry’s short- and long-
term needs. So far, there has been surprisingly little eval-
uation as to how well RE research results address indus-



trial problems. As mentioned in Section 3, most empiri-
cal RE research takes the form of proofs-of-concept or pi-
lot studies, both of which qualitatively evaluate how well
a proposed solution or technique applies to a single con-
crete problem. Such studies tend to be aimed at research
audiences, and are intended to convince readers that the RE
technologies under evaluation advance the state of the art.
However, given that most studies report success, how is a
practitioner to determine when a study reports a significant
enough advance to warrant changes to the state of the prac-
tice, and how is a practitioner to select from among compet-
ing technologies?

Practitioners need hard evidence that a new technology
is cost-effective, in order to justify the overhead, in train-
ing and in process documentation, of changing their devel-
opment processes. In particular, practitioners would bene-
fit greatly from empirical studies that assess the costs and
benefits of using proposed technologies, assess the scope of
problems to which research results can feasibly be applied,
and compare the effectiveness of competing technologies.
There have been a few studies along these lines. Damian
et al. have conducted a series of surveys that evaluates the
impact of requirements-related activities on productivity,
risk management, and the quality of both requirements and
downstream artifacts [40, 41, 45]. The Comparative Eval-
uation in Requirements Engineering (CERE) workshops
investigate how to facilitate comparative studies, such as
the development of suitable benchmarks. The Economics-
Driven Software Engineering Research (EDSER) work-
shops investigate how to improve practitioners’ abilities to
make economics-based SE decisions, such as whether or
not to adopt new technologies. Such empirical research
that evaluates requirements technologies in the context of
industrial settings and practices would help to accelerate the
transfer of research results into RE practice.

6. Recommendations and Conclusions

In this paper, we have described a number of exciting
and challenging research directions in requirements engi-
neering. Some of these directions are natural extensions of
work already being performed by RE researchers, whereas
others are major discontinuities due to fundamental changes
in computing needs. All of the problems described above
will require substantial effort in order to make progress to-
wards effective solutions. To help alleviate this effort, we
offer some recommendations of short- and long-term ac-
tions that the RE community could take, to position itself to
make more rapid progress on these research problems.

There are five recommendations that the RE community
could take immediate action on, to start improving the ma-
turity of current requirements technologies:

• Researchers should work with practitioners. Such part-

nerships can help to ensure that researchers have a
through understanding of the real problems that prac-
titioners face.

• RE researchers should work with other SE researchers
and practitioners, to establish stronger links between
their respective artifacts. If the transition between RE
tasks and other development tasks were more seam-
less, management would view RE efforts more posi-
tively, because the resulting requirements knowledge
and artifacts would make more concrete progress to-
wards achieving downstream milestones.

• RE researchers should not neglect evaluation and em-
pirical research. For practitioners to consider adopt-
ing a given research technique, they must know how
the technique compares with similar techniques. Also,
practitioners and their managers need to see that the
technique can be applied to problems relevant to their
organization, from both domain and scale perspectives.

• Industrial organizations should provide (sanitized)
industrial-strength project data to researchers. It is es-
pecially critical that industry provide realistic data for
ultra-large scale or cyber-physical systems to ensure
that researchers tackle problems that are representa-
tive of those faced by practitioners. Researchers can
use this data to guide the development and validation
of their new techniques, thereby yielding more rele-
vant and useful research results that explicitly address
industrial needs.

• RE researchers and practitioners, together, should es-
tablish repositories of RE artifacts. Such repositories
can serve as a resource for practitioners and educators
to share best practices and exemplar artifacts. Reposi-
tories can also store requirements patterns for potential
reuse, case studies that evaluate individual or compos-
ite RE techniques, benchmark data for evaluating com-
peting technologies, and tools that support specific RE
techniques.

The above actions would help the RE research community
to make immediate progress on improving existing knowl-
edge and techniques. In addition, there are some longer-
term actions that would help to improve the community’s
research infrastructure and its ability to confront the chal-
lenges posed by emerging systems:

• The RE community needs to be proactive in identify-
ing the RE research problems that arise from new com-
puting challenges. New challenges reflect changing
stakeholders’ needs. As such, RE researchers should
be involved in the initial investigations of any new
computing challenge, to help tease out the essential
goals and to assess their impact on RE tasks.



• Researchers need to think beyond current RE and SE
knowledge and capabilities, in order to make signif-
icant headway in addressing the challenges posed by
emerging systems. They need to be willing to search
for new solutions that may lead to paradigm shifts in
RE practices, at the risk of possible failure. One strat-
egy is for researchers to seek out collaborators from
other disciplines to leverage successful techniques that
could be used to address analogous challenges faced
by cyber systems.

• RE academics need to educate the next generation of
developers on RE problems and technologies. Stu-
dents need curricula that combine the study of com-
puting with the study of specialized application do-
mains. They also need computing courses that teach
them how to make design decisions that achieve re-
quirements (e.g., modularity vs. performance require-
ments) in the context of the software’s operating envi-
ronment.

In conclusion, the RE research community has made sig-
nificant progress along many fronts. At the same time, the
demands placed on computing and the cyberinfrastructure
have increased dramatically, raising many new critical RE
research questions. For these reasons, it is an exciting time
to be involved in RE research. Technologies that make sig-
nificant advances in solving these problems are likely to
lead to paradigm shifts that will impact many future gener-
ations of developers, computing systems, and the ultimate
stakeholders – consumers.

Acknowledgements

We thank Philip K. McKinley, Axel van Lamsweerde,
Bashar Nuseibeh, Robyn Lutz, Steve Fickas, and Brian
Berenbach for feedback on earlier drafts of this paper. Sev-
eral other people have also provided valuable input, includ-
ing Heather Goldsby and Daniel Fiedler. Finally, we thank
the editors of the ICSE 2007 Future of Software Engineer-
ing volume, Lionel Briand and Alex Wolf, for their feed-
back on this paper and their efforts in compiling this volume
of papers.

The work of the first author has been supported by US
National Science Foundation grants EIA-0000433, EIA-
0130724, CDA-9700732, CCR-9901017, CNS-0551622,
CCF-0541131, US Department of the Navy, Office of Naval
Research under Grant No. N00014-01-1-0744, Siemens
Corporate Research, and a grant from Michigan State Uni-
versity’s Quality Fund. The work of the second author
is supported by the Natural Sciences and Engineering Re-
search Council of Canada.

References

[1] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Vi-
sual timed event scenarios. In Proc. of the IEEE Int. Conf.
on Soft. Eng. (ICSE), pages 168–177, 2004.

[2] T. A. Alspaugh and A. I. Antón. Scenario networks for
software specification and scenario management. Techni-
cal Report TR-2001-12, North Carolina State University at
Raleigh, 2001.

[3] R. Alur, K. Etessami, and M. Yannakakis. Inference of
message sequence charts. In Proc. of the IEEE Int. Conf.
on Soft. Eng. (ICSE), pages 304–313, 2000.

[4] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Dis-
crete abstractions of hybrid systems. Proc. of IEEE, 88(7),
July 2000.

[5] C. Alves and A. Finkelstein. Challenges in COTS decision-
making: a goal-driven requirements engineering perspec-
tive. In Proc. of the Int. Con. on Soft. Eng. and Know.
Eng., pages 789–794, 2002.

[6] V. Ambriola and V. Gervasi. Processing natural language
requirements. In IEEE Int. Conf. on Auto. Soft. Eng., pages
36–45, 1997.

[7] A. I. Antón. Goal-based requirements analysis. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 136–144, 1996.

[8] A. I. Antón and C. Potts. Functional paleontology: The
evolution of user-visible system services. IEEE Trans. on
Soft. Eng., 29(2):151–166, 2003.

[9] M. Aoyama. Persona-and-scenario based requirements en-
gineering for software embedded in digital consumer prod-
ucts. In Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages
85–94, 2005.

[10] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga,
C. Puchol, M. G. Staskauskas, and J. V. Olnhausen. A
framework for evaluating specification methods for reac-
tive systems experience report. IEEE Trans. on Soft. Eng.,
22(6):378–389, 1996.

[11] Y. Arimoto, M. Nakamura, and K. Futatsugi. Toward a
domain description with CafeOBJ. In Proc. 23rd JSSST
Convention, 2006.

[12] P. Baker, P. Bristow, C. Jervis, D. King, R. Thomson,
B. Mitchell, and S. Burton. Detecting and resolving se-
mantic pathologies in UML sequence diagrams. In Proc.
of ACM SIGSOFT Found. on Soft. Eng. (FSE), pages 50–
59, 2005.

[13] V. R. Basili. The experimental paradigm in software engi-
neering. In Proc. of the Int. Work. on Experimental Soft.
Eng. Issues: Crit. Assess. and Future Directions, pages 3–
12. Springer-Verlag, 1993.

[14] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for
real-time system specification. ACM Comp. Sur., 32(1):12–
42, 2000.

[15] B. Berenbach. The evaluation of large, complex UML
analysis and design models. In Proc. of the IEEE Int. Conf.
on Soft. Eng. (ICSE), pages 232–241, 2004.

[16] D. Berry and E. Kamsties. Ambiguity in Require-
ments Specification. Perspectives on Software Require-
ments, chapter 2. Kluwer Academic Publishers, 2004.



[17] J. Berstel, G. Roussel, S. C. Reghizzi, and P. S. Pietro. A
scalable formal method for design and automatic checking
of user interfaces. In Proc. of the IEEE Int. Conf. on Soft.
Eng. (ICSE), pages 453–462, 2001.

[18] T. D. Breaux and A. I. Antón. Analyzing goal semantics
for rights, permissions, and obligations. In Proc. of the
IEEE Int. Req. Eng. Conf. (RE), pages 177–188, 2005.

[19] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos,
and A. Perini. TROPOS: an agent-oriented software devel-
opment methodology. J. of Auto. Agents and Multi-Agent
Sys., 8(3):203–236, 2004.

[20] M. Broy. The ’grand challenge’ in informatics: En-
gineering software-intensive systems. IEEE Computer,
39(10):72–80, 2006.

[21] S. Buhne, K. Lauenroth, and K. Pohl. Modelling require-
ments variability across product lines. In Proc. of the IEEE
Int. Req. Eng. Conf. (RE), pages 41–52, 2005.

[22] T. Bultan. Action language: A specification language for
model checking reactive systems. In Proc. of the IEEE Int.
Conf. on Soft. Eng. (ICSE), pages 335–344, 2000.

[23] D. Bush and A. Finkelstein. Requirements stability assess-
ment using scenarios. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 23–32, 2003.

[24] L. A. Campbell, B. H. C. Cheng, W. E. McUmber, and
R. E. K. Stirewalt. Automatically detecting and visualiz-
ing errors in UML diagrams. Req. Eng. J., 37(10):74–86,
October 2002.

[25] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and
J. N. och Dag. An industrial survey of requirements in-
terdependencies in software product release planning. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 84–93,
2001.

[26] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese. Model checking large software
specifications. IEEE Trans. on Soft. Eng., 24(7):498–520,
1998.

[27] F. Chantree, B. Nuseibeh, A. de Roeck, and A. Willis.
Identifying nocuous ambiguities in natural language re-
quirements. In Proc. of the IEEE Int. Req. Eng. Conf. (RE),
pages 59–68, 2006.

[28] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-
functional Requirements in Software Engineering. Kluwer,
1999.

[29] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utiliz-
ing supporting evidence to improve dynamic requirements
traceability. In Proc. of the IEEE Int. Req. Eng. Conf. (RE),
pages 135–144, 2005.

[30] J. Cleland-Huang, G. Zemont, and W. Lukasik. A hetero-
geneous solution for improving the return on investment of
requirements traceability. In Proc. of the IEEE Int. Req.
Eng. Conf. (RE), pages 230–239, 2004.

[31] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke. User
guidance for creating precise and accessible property spec-
ifications. In Proc. of ACM SIGSOFT Found. on Soft. Eng.
(FSE), pages 208–218, 2006.

[32] A. Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2001.

[33] T. Cohene and S. Easterbrook. Contextual risk analysis for
interview design. In Proc. of the IEEE Int. Req. Eng. Conf.
(RE), pages 95–104, 2005.

[34] A. Cooper. The Inmates are Running the Asylum. Sams,
1999.

[35] R. Crook, D. Ince, and B. Nuseibeh. On modelling access
policies: Relating roles to their organisational context. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 157–
166, 2005.

[36] R. Crook, D. C. Ince, L. Lin, and B. Nuseibeh. Security
requirements engineering: When anti-requirements hit the
fan. In Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages
203–205, 2002.

[37] Cyber-Physical Systems. http://varma.ece.cmu.edu/cps,
October 2006.

[38] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming. Addison-Wesley, 2000.

[39] C. Damas, B. Lambeau, and A. van Lamsweerde. Scenar-
ios, goals, and state machines: a win-win partnership for
model synthesis. In Proc. of ACM SIGSOFT Found. on
Soft. Eng. (FSE), pages 197–207, 2006.

[40] D. Damian and J. Chisan. An empirical study of the com-
plex relationships between requirements engineering pro-
cesses and other processes that lead to payoffs in produc-
tivity, quality, and risk management. IEEE Trans. on Soft.
Eng., 32(7):433–453, 2006.

[41] D. Damian, J. Chisan, L. Vaidyanathasamy, and Y. Pal. Re-
quirements engineering and downstream software develop-
ment: Findings from a case study. Empirical Soft. Eng.,
10(3):255–283, 2005.

[42] D. Damian, A. Eberlein, M. Shaw, and B. Gaines. An ex-
ploratory study of facilitation in distributed requirements
engineering. Req. Eng. J., 8(1):23–41, 2003.

[43] D. Damian, F. Lanubile, and T. Mallardo. An empirical
study of the impact of asynchronous discussions on remote
synchronous requirements meetings. In Proc. of the Conf.
on Fund. Appr. to Soft. Eng. (FASE), pages 155–169, 2006.

[44] D. Damian and D. Moitra (eds.). Global software develop-
ment. IEEE Soft. special issue, 23(5), 2006.

[45] D. Damian, D. Zowghi, L. Vaidyanathasamy, and Y. Pal.
An industrial case study of immediate benefits of require-
ments engineering process improvement at the australian
center for unisys software. Empirical Soft. Eng., 9(1-
2):45–75, 2004.

[46] D. E. Damian and D. Zowghi. The impact of stakeholders?
geographical distribution on managing requirements in a
multi-site organization. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 319–330, 2002.

[47] W. Damm and D. Harel. LSCs: Breathing life into message
sequence charts. Form. Meth. in Sys. Des., 19(1):45–80,
2001.

[48] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M.
Moreno. Effectiveness of requirements elicitation tech-
niques: Empirical results derived from a systematic review.
In Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 176–
185, 2006.

[49] C. Denger, D. M. Berry, and E. Kamsties. Higher quality
requirements specifications through natural language pat-
terns. In Proc. of the IEEE Int. Conf. on Soft.-Sci., Tech. &
Eng., pages 80–90, 2003.



[50] L. K. Dillon, G. Kutty, L. E. Moser, P. M. Melliar-Smith,
and Y. S. Ramakrishna. A graphical interval logic for spec-
ifying concurrent systems. ACM Trans. on Soft. Eng. &
Meth., 3(2):131–165, 1994.

[51] L. K. Dillon and R. E. K. Stirewalt. Inference graphs:
A computational structure supporting generation of cus-
tomizable and correct analysis components. IEEE Trans.
on Soft. Eng., 29(2):133–150, 2003.

[52] J. S. Dong, C. H. Lee, Y. F. Li, and H. Wang. Verifying
DAML+OIL and beyond in Z/EVES. In Proc. of the IEEE
Int. Conf. on Soft. Eng. (ICSE), pages 201–210, 2004.

[53] N. Dulac, T. Viguier, N. G. Leveson, and M.-A. D. Storey.
On the use of visualization in formal requirements speci-
fication. In Proc. of the IEEE Int. Req. Eng. Conf. (RE),
pages 71–80, 2002.

[54] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. In Proc.
of the IEEE Int. Conf. on Soft. Eng. (ICSE), pages 411–420,
1999.

[55] S. Easterbrook and M. Chechik. A framework for multi-
valued reasoning over inconsistent viewpoints. In Proc. of
the IEEE Int. Conf. on Soft. Eng. (ICSE), pages 411–420,
2001.

[56] S. Easterbrook, E. Yu, J. Aranda, Y. Fan, J. Horkoff, M. Le-
ica, and R. A. Qadir. Do viewpoints lead to better concep-
tual models? an exploratory case study. In Proc. of the
IEEE Int. Req. Eng. Conf. (RE), pages 199–208, 2005.

[57] C. Ebert. Understanding the product life cycle: Four
key requirements engineering techniques. IEEE Soft.,
23(3):19–25, 2006.
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