
22	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus

in which productivity increased by a factor of 5–10
with the introduction of DSM.2

All too often, however, language developers
have had to fly by the seats of their pants because
little material is available to teach them how to
create a good language. Although industrial books
offer solid background on why we need such lan-
guages,3,4 and academic research offers theories
and analysis of them,5–7 both fields mostly omit
instruction on how to actually build them.

There are a few good guides to creating a
DSM language, including articles8,9 and a recent
book.2 Still, many readers are left feeling uncer-
tain, and many languages repeat basic mistakes.
Perhaps in language creation, as in music, it’s
easier to teach what not to do and thus help even
first-timers create something acceptable. At the
least, knowing what to avoid can be a valuable
addition to a set of best practices, enabling lan-
guage developers to recognize troublesome situ-
ations early and thus save themselves from later

rework. Here, we outline the common pitfalls,
focusing on language creation and use; length re-
strictions prevent us covering generators or wider
organizational issues.

Method Overview
We’ve identified several worst practices during our
experience over the years. To refine our categories,
we analyzed 76 DSM cases. This sample is rela-
tively broad, spanning 15 years, four continents,
several tools, around 100 language creators, and
projects having from three to more than 300 mod-
elers. Among the problem domains are automo-
tive, avionics, mobile, medical, consumer electron-
ics, enterprise systems, system integration, and
server configuration. Solution domains include as-
sembler, Basic, C, C++, C#, Java, JavaScript, shell
scripts, Python, Prolog, Matlab, SQL, and various
XML schemas. That said, the sample does con-
tain a preponderance of cases in Europe or involv-
ing MetaEdit+, which is somewhat excused by the

I n computing’s early days, language creation was a common activity, but by the
millennium’s end it was relegated to a few gurus. Early articles1 citing “1,700 spe-
cial programming languages” or hundreds of modeling languages were smoth-
ered by the ubiquity of languages such as Java and UML. The current decade

has seen a resurgence of interest in domain-specific languages, particularly domain-
specific modeling (DSM) languages. The reasons for this renewed growth include the
availability of tools to create and work with such languages, and the frequency of cases

Little guidance exists
on creating domain-
specific modeling
languages. Learning
what not to do—
including how to deal
with common pitfalls
and recognizing
troublesome
areas—can help.

Steven Kelly and Risto Pohjonen, MetaCase

Worst Practices
for Domain-
Specific Modeling

dom a in - sp e c i f i c m o de l ing

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 23

fact that these conditions probably accounted for
the majority of DSM cases worldwide.

We present the worst practices here in the or-
der you’d encounter them over the life of a project:
the initial starting conditions; the domain concept
sources; the resulting language; the language’s no-
tation; and the language’s use. We also list the per-
centage of cases in which we observed the prac-
tice. Because a single case might exhibit zero or
many worst practices, percentages might not sum
to 100 percent. Finally, we changed some details
in example diagrams to protect the identities and
rights of those involved.

Initial Conditions
Even before language creation begins, wrong at-
titudes and decisions can have a serious effect on
later success.

Only Gurus Allowed
Believing that only gurus can build languages (4
percent) or that “I’m smart and don’t need help”
(12 percent)

Decades of experience with theoretical funda-
mentals, software systems, and language creation
might be helpful when developing general-purpose
languages. However, such a background isn’t the
key success factor when developing DSM languages.
Because DSM languages try to solve fewer problems
than general-purpose languages, they’re typically
simpler to create. They’re not, however, simplistic;
they require in-depth understanding and experience
with the problem domain. So, appropriate domain
expertise is more important than knowledge of lan-
guage theory.

The other extreme to avoid is trying to do every-
thing yourself, ignoring other people’s expertise on
how to make good languages. Although it’s good
for organizations to view their own resources as the
key element for developing their DSM language, ex-
cessive complacence and a “not invented here” at-
titude can prove counterproductive. The cruel truth
is that, without help, everyone’s first language—
like everyone’s first program—is unlikely to be a
masterpiece.

Lack of Domain Understanding
Insufficiently understanding the problem domain
(17 percent) or the solution domain (5 percent)

Creating a DSM language requires a good un-
derstanding of the problem domain. Normally, this
shouldn’t be a problem, but occasionally companies
make the mistake of delegating the task to a sum-
mer intern, or seasoned developers take it on and
fail to lift their noses above the level of the code.

The language must also set a reasonable boundary
around the kinds of applications to be built, sparing
at least a thought for future expansion.

Other possible problems when assembling do-
main concepts into a language include a lack of con-
ceptual or abstract thinking skills or a lack of ex-
perience in building nontrivial systems. Such skills
can come from fields other than programming.
However, programming is perhaps the best teacher
because it offers a good vocabulary for principles
such as DRY (don’t repeat yourself; that is, avoid
duplicating code or data) and modularization (aim
for high cohesion and low coupling between sys-
tem parts). These principles are at least as necessary
when building a language as they are when building
an application.

Although creating a DSM language should fo-
cus on the problem domain, inexperience in the so-
lution domain can cause problems later. The best
DSM language creator is an experienced developer
who focuses only on the problem domain, but lets
his solution domain experience inform his choices
among otherwise equally viable solutions.

Analysis Paralysis
Wanting the language to be theoretically complete,
with its implementation assured (8 percent)

The motivation for this kind of mistake is rather
obvious: fear. For most of us humans, it’s rational to
be cautious when entering unfamiliar territory, such
as creating a language for the first time. Another
form of this problem is a desire to solve every pos-
sible problem: that is, a tool isn’t useful unless you
can use it for everything.

DSM isn’t about achieving perfection, just some-
thing that works in practice. It will always be possi-
ble to imagine a case that the language can’t handle.
The important questions are how often such cases
occur in practice, and how well the language deals
with common cases. To avoid analysis paralysis,
concentrate on the core cases and build a prototype
language for them.

The Source for Language Concepts
The first step in building a DSM language is identi-
fying its concepts. The problem domain is the ideal
source; relying too much on secondary sources is a
recipe for trouble.

UML: New Wine in Old Wineskins
Extending a large, general-purpose modeling lan-
guage (5 percent)

Although it’s obviously tempting to build on an
established language’s constructs and semantics,
such languages are typically too generic and broad

Because DSM
languages try
to solve fewer

problems
than general-

purpose
languages,

they’re typically
simpler

to create.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

24	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

for any specific domain. Stripping off parts of the
original language and adding new concepts and
semantics is often more work than simply start-
ing from scratch. That said, it’s obviously good to
reuse the basic ideas and concepts of established
languages, such as states, data flow, control flow,
and inheritance.

In theory, the opposite is also possible: an exist-
ing language might be too small or narrow. In prac-
tice, however, this seems uncommon and is easier to
correct by extending the existing concepts.

3GL: Visual Programming
Duplicating the concepts and semantics of tradi-
tional programming languages (7 percent)

Although incorporating programming language
concepts such as choices or loops in DSM languages
can be useful, you shouldn’t let them become the
core concepts at the expense of those in the problem
domain. The peril in this case is to end up with ge-
neric visual programming instead of DSM, leading
to a language with a poor level of abstraction. Vi-

sual programming languages of this type often have
lower expressive power and are more difficult to use
than the manual code they’re designed to replace.

Code: The Library Is the Language
Focusing the language on the current code’s techni-
cal details (32 percent)

Although you should derive the modeling lan-
guage concepts primarily from the problem do-
main, some solution domain influence is accept-
able. However, if the language overemphasizes
the target framework or component library, it can
drag the abstraction level down toward the code
level, preventing retargeting to other platforms.
This directly opposes DSM’s idea of achieving the
best possible level of abstraction for software de-
velopment. Solution-domain-based languages of-
ten expose the implementation details and repeti-
tion common in code. Figure 1 shows an example
of both: each object pair in the middle could be
replaced by a single object, with the implementa-
tion details abstracted out.

This was the most common worst practice
in our sample, which is hardly surprising when
you consider the domain framework’s role. At the
beginning of a language development project, a
framework often represents the solution domain’s
best existing abstraction; it’s also well under-
stood by the domain experts and familiar to the
programmers. Given this, a framework is a plau-
sible candidate for the language concepts, but it’s
typically best to return instead to the source: the
problem domain itself.

Tool: If You Have a Hammer …
Letting the tool’s technical limitations dictate lan-
guage development (14 percent)

Ensuring good tool support for a language is
an important aspect of its development, but focus-
ing on tool issues or getting trapped into seeing
the world through the tool’s limitations is a mis-
take. Different DSM tools have different empha-
ses, and not all tools support all parts of DSM
equally well. Using a poorly suited or weak tool
can lead you to make decisions on the basis of
what the tool supports, rather than what’s needed
for the problem domain or the modelers. Figure
2a shows an example where a tool led even an ex-
perienced developer to create a language for menu
structures that’s hard to read and use; Figure 2b
would be clearer. Also, practices you learn as
workarounds for weaknesses in one tool can all
too easily be carried over when you work with an-
other tool that’s stronger in that area.

Similarly, people often get carried away with a

Figure 1. Focusing on framework code. Overemphasizing the target
framework or component library can result in low-level details and
unnecessary duplication.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 25

tool’s new or cool features at the expense of getting
the language’s substance right. A sound foundation
has more effect on a language’s usefulness and suc-
cess than do the latest bells and whistles. Also, don’t
feel obliged to use all tool features: just because a
tool supports something doesn’t necessarily mean
it’s a good idea.

The Resulting Language
Building a language is a balancing act between a
number of forces, both technical and psychological.

Too Generic/Too Specific
Creating a language with a few generic concepts
(21 percent) or too many specific concepts (8 per-
cent), or a language that can create only a few mod-
els (7 percent)

Finding the proper generic-specific balance is
a key success factor in DSM development—and
is thus a rather common place to make mistakes.
Developers often create a language that’s too ge-
neric for its domain, with concepts and seman-
tics that are either too few, too generic, or both.
In Figure 3, for example, adding the concepts of
“lights” and “heating” would improve the lan-
guage. A good benchmark here is to see whether
you can use your language to model in domains
other than your target problem domain. If so,
your language is probably too generic.

The other extreme is a language with too
many concepts, which are probably too narrow
semantically or overlap. This creates problems
during language deployment and use; overly com-
plex languages are difficult to learn, master, and
maintain.

An interesting variant on the theme of generic-
ity is a language that enables users to create only
a few potential models. DSM solutions are mass-
production environments first and foremost; if us-
ers can’t create many applications, building the
language might be a waste of effort.

Misplaced Emphasis
Too strongly emphasizing a particular domain fea-
ture (12 percent)

By definition, DSM languages should have
a strong emphasis on the domain concepts. Un-
fortunately, language developers can stretch this
good practice too far by focusing on a particular
feature or concept at the expense of others. This
is especially troublesome if that concept has little
or no value for the DSM solution. Typically, such
a situation arises when you let too many stake-
holders influence the language development. It’s
good to listen to different voices to understand the

domain and the prospective language usage, but
you should always retain a clear vision of the lan-
guage’s “big picture” and objectives.

Similarly, some developers might be tempted
to put every domain element into the language,

Figure 2. Tool choice and outcomes. (a) A tool focused on strong
containment leads to an odd, labor-intensive model structure.
(b) Replacing the visual containment with relationships makes
the menu structure clearer.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

26	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

forgetting the importance of deciding what not to
incorporate. Many DSM cases are essentially soft-
ware product lines, and their languages should
model variability—you can omit any commonali-
ties among all products, handling them instead in
the generators or domain framework.4

Sacred at Birth
Viewing the initial language version as unalterable
(12 percent)

This rather common mistake occurs for several
reasons. Most of us don’t like the idea of “build one
to throw away” and are thus reluctant to discard or
radically modify our first draft. People often view
language creation as a waterfall process, neglect-
ing its iterative nature and the need for prototyping.
This mistake can also result from spacing develop-
ment milestones too far apart. In this case, language
creators often invest too much effort into a develop-
ment step without testing the language in real life,
which makes it difficult to step back if needed. Tool
support plays an important role here: inflexible
tools often lead to extra work in rebuilding models
when the modeling language changes.

Language evolution is inevitable, and modifying
a language is easier when only a few people know
it and only a few models exist. The language is also
less proven at this stage, so there will be more flaws
and more room for improvement.

Language Notation
A poorly chosen concrete syntax will drive us-
ers away, stopping them from using even the most
wonderful language.

Predetermined Paradigm
Choosing the wrong representational paradigm on
the basis of a blinkered view (7 percent)

Many people approach DSM with a fixed idea
of how to represent systems, such as through text
or graphical diagrams. Although 75 percent of the
general population reportedly prefer visual rather
than textual representations,10 a higher proportion
of developers might be predisposed to choose text
given its traditional prevalence in programming.
Choosing either representation purely on the basis
of prejudice is bad, as is ignoring other possibilities
such as matrices, tables, forms, or trees. The correct
representational paradigm depends on the audience,
the data’s structure, and how users will work with
the data. Making the wrong choice can significantly
increase the cost of creating, reading, and maintain-
ing the models.

This error is almost certainly underreported in
our sample because, of the available tools, Meta
Edit+ supports the widest variety of representational
paradigms. Also, developers who prefer text might
have self-selected themselves out of the sample by
using a simpler, purely textual editor.

Simplistic Symbols
Using symbols that are too simple or similar (25
percent) or downright ugly (5 percent)

One of the most common failure areas is in the
language’s notation—its symbols or icons. Unlike
more abstract or general-purpose languages, DSM
languages can often find familiar, intuitive represen-
tations directly from the problem domain. All too
often, however, the symbols for different language
concepts are just boxes with the concepts’ names as
labels. People recognize things by their shapes, not
by labels (if you doubt this, stick the label “lemon”
on a banana and see how people react). Also, sym-
bols differing in color alone are suboptimal: the
brain views color change primarily as a different ver-
sion of the same thing, not as a completely different
thing. Figure 4 shows an example of both mistakes.

Alan Blackwell has shown that the best sym-
bols are pictograms, not simpler geometric shapes
or more complex bitmap or photographic represen-
tations.11 Although our sample contained no cases
with overly complex bitmap symbols, you should
avoid these as well—bitmaps scale poorly (particu-
larly with aspect-ratio changes) and have little room
for text or other contents.

Figure 3. Insufficient concepts. This language has too few concepts,
and they’re too generic for this domain. Adding explicit concepts for
“lights” and “heating” would improve the language considerably.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 27

Symbols have an aesthetic role, and few people
are fortunate enough to have both the abstract
thinking that language design requires and the
artistic skills needed to create great symbols. Not
surprisingly, the few truly ugly languages in our
sample encountered significant opposition from
users. Take such opposition seriously: find some-
one with decent graphic design skills to improve
your symbols.

Language Use
All too often, language creators forget that lan-
guages are made to be used and to serve their users.
Percentages here are only of those languages that
have already seen significant use by people other
than their creators.

Ignoring the Use Process
Failing to consider the language’s real-life usage (42
percent)

It’s notoriously hard to predict how people will
use a new system or how group members’ indi-
vidual efforts will interact when brought together.
Language developers ignore this topic at their
peril: To have any value, the language and its use
process must serve the modelers. This category in-
volves five areas of concern.

First, generally, multiple people will use a DSM
language to make multiple models. To avoid hav-
ing modelers reenter or copy-and-paste the same
information multiple times, plan for reuse and
referencing among models in advance. Models
that interconnect should do so with minimal cou-
pling. Data duplication and a lack of modulariza-
tion invariably lead to maintenance nightmares.
Figure 5 shows a particularly unpleasant exam-
ple: The user copied the whole model to achieve a
variant without the small time-out object on the
left. Instead, the language could have offered con-
cepts for reusing models or made the generator or
framework ignore time-out objects on platforms
that don’t support them.

Second, semiautomated model transformations
help users create more data quickly, but with poor
long-term results. Unlike full transformations, us-
ers must maintain the extra data by editing gener-
ated source code or model transformation results
as in MDA (model-driven architecture). Anything
that transformations can create automatically can
be created at generation time, avoiding the mainte-
nance burden and letting transformations change
freely over time.

Third, language creators often try to prevent
modeler error by creating myriad strongly en-
forced rules that serve only to annoy, preventing

modelers from breaking the rules even temporarily
while they’re changing their models.

Fourth, unsurprisingly, developers using DSM
often uncritically apply processes that have evolved
to support source-code-based development. Many
such practices are simply crutches and bandages
evolved to fix problems inherent in source code and
its single-user editing. Repository-based multiuser
editing works much better for models, as does a
proper modularization and division of labor.

Finally, debugging DSM models at the source-
code level is a bad idea if the structure of models and
source code differ significantly. When the model-to-
code mapping is unclear, it’s hard to know where
to insert a breakpoint in generated code. When the
code-to-model mapping is unclear, it’s hard to cor-
rect a bug found during debugging. It’s better to
have running code call back to the modeling tool to
highlight the current symbol, and let the modelers
set breakpoints there.

No Training
Assuming everyone understands the language like
its creator (21 percent)

Although the use of familiar domain concepts
makes DSM languages easier to learn, it doesn’t
mean users will immediately understand them com-
pletely. Language creators often overlook this fact
and become disconnected from the modelers. The

Figure 4. Inadequate symbol differentiation. Symbols differing in only
color and label are insufficient. Research shows that the best symbols
are pictograms rather than simple geometric shapes or photorealistic
bitmaps.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

28	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

task of language creation doesn’t stop when every-
thing works: you must create documentation and
training materials and communicate them to us-
ers. DSM research indicates that failures here lead
to problems and long-term resistance, even when
support later improves.12 As with any project, it’s
worthwhile to involve users early, both to get practi-
cal feedback and to achieve smooth acceptance.

Post-adoption Stagnation
Letting the language stagnate after successful adop-
tion (37 percent)

Successful adoption of a DSM language implies
many models and modelers. The greater the num-
ber of models and modelers, the harder chang-
ing the language is. Although the best tools can
automatically update models when the language
changes, you can’t automatically update the model-
ers’ brains.

Fortunately, our experience indicates that the
problem domain changes that affect a deployed lan-
guage tend to be additive—that is, they involve new
concepts or concept extensions that both modelers
and tools adopt with relative ease. To avoid lan-
guage stagnation, you should make such changes
promptly rather than postpone them. You should

also avoid passing off language maintenance to
someone unsuited to the task.

After several years, a problem domain might
change sufficiently to create problems. (However,
this situation is rare.) Trying to shoehorn such
changes into the old language might not work, and
a massive update of the modeling language and all
models might be impractical. Another option is to
create a new language for the new domain: the bet-
ter fit can create increased productivity that often
balances out the cost, just as it did when creating
the first language.

Preliminary Analysis
Our sample covered 76 cases, mostly of companies
using MetaCase as consultants or tool providers;
in some cases MetaCase was not involved but we
have been able to discuss the case with partici-
pants. In all, 7 percent of the cases were carried
out by MetaCase alone, 57 percent by the customer
with consultancy from MetaCase, and 36 percent
with no consultancy from MetaCase. In 15 percent
of cases, participants used a tool other than Meta
Edit+ (at least initially).

In assessing cases by worst practices, we agreed
on landmark cases to determine the watershed—

Figure 5. Poor planning for reuse of models. The modeler in this case had to copy the entire diagram to account for a
minor variation: the small time-out object on the left.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 29

for example, to be counted as “ugly,” symbols had
to be at least as ugly as case X. We normalized
worst practices to questions with either a simple
yes-or-no answer or a three-point scale, such as
too generic, acceptable, and too specific.

As a preliminary analysis, we calculated the
correlation among practices, given below as Pear-
son’s coefficient, r, expressed as a percentage. All
correlations below are statistically significant (n =
76,  = 0.05, one-tailed, |r| ≥ .190), but the rela-
tionship’s direction and its possible causality are
our own interpretation.

The single largest factor that led to a language
not being used was when organizations gave the
language design task to someone with insufficient
experience in the problem domain (26 percent).

Basing the language on code led developers to
try to take everything into consideration (33 per-
cent). This desire for theoretical completeness was
often accompanied by ascetic symbols (28 percent).
Using code as a basis also led to stagnation (37
percent).

If the language developer didn’t accept help ini-
tially, the language was likely to become sacred (24
percent). Sacred languages were likely to stagnate
(31 percent). However, sacred languages were also
more likely to be used in practice (35 percent)—
perhaps because their developers loved them and
pushed for their use.

Using a poor tool required extra effort, so de-
velopers were less willing to change their languages
and those languages thus became sacred (31 per-
cent). Poor tools also led to languages whose ab-
straction level was no higher than programming
languages (34 percent), while poor facilities for de-
fining symbols led to ugly notation (41 percent). A
lack of attention to symbols correlated with insuf-
ficient training (47 percent), showing a consistent
disregard for users.

E xamining our sample cases in relation to
the initial set of worst practices helped us
tighten up the boundaries between prac-

tices and identify some extra facets. We were sur-
prised by the rarity of certain practices—including
using existing languages as sources for concepts
and making the initial language draft sacred.
However, we often try to warn customers about
such issues early, and they probably avoided them
as a result. It would be interesting and instructive
to repeat the analysis for cases with other tools or
extend the preliminary analysis with more detail
on the division of labor and the language develop-
ers’ relative experience. The most important result,

however, would be if our honesty about these fail-
ings in our own cases could help others avoid fall-
ing into the same traps.

Acknowledgments
We thank all the MetaCase staff, particularly Juha-
Pekka Tolvanen and Janne Luoma, and all the people
we’ve worked with on these cases.

References
	 1.	 Computer Software Issues, An American Mathematical

Association Prospectus, July 1965, quoted in P.J. Lan-
din, “The Next 700 Programming Languages,” Comm.
ACM, vol. 9, no. 3, 1966, pp. 157–166.

	 2.	 S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling:
Enabling Full Code Generation, John Wiley & Sons,
2008.

	 3.	 J. Greenfield and K. Short, Software Factories: Assem-
bling Applications with Patterns, Models, Frameworks,
and Tools, John Wiley & Sons, 2004.

	 4.	 D. Weiss and C.T.R. Lai, Software Product-Line Engi-
neering, Addison Wesley Longman, 1999.

	 5.	 J. Ralyté, S. Brinkkemper, and B. Henderson-Sellers,
eds., Situational Method Engineering: Fundamentals
and Experiences, Springer, 2007.

	 6.	 D. Spinellis, “Notable Design Patterns for Domain
Specific Languages,” J. Systems and Software, vol. 56,
no. 1, 2001, pp. 91–99.

	 7.	 G. Costagliola et al., “A Classification Framework to
Support the Design of Visual Languages,” J. Visual
Languages and Computing, vol. 13, no. 6, 2002, pp.
573–600.

	 8.	 D. Roberts and R. Johnson, “Evolve Frameworks into
Domain-Specific Languages,” Proc. 3rd Int’l Conf.
Pattern Languages, 1996; www.cs.wustl.edu/~schmidt/
PLoP-96/roberts.ps.gz.

	 9.	 M. Voelter and J. Bettin, “Patterns for Model-Driven
Software Development”; www.voelter.de/data/pub/MD-
DPatterns.pdf.

	10.	 Train the Trainer, Int’l Assoc. Information Technology
Trainers, 2001; http://itrain.org/pdf/itrain_ttt_course_
outlines.pdf.

	11.	 A. Blackwell, Metaphor in Diagrams, PhD thesis, Dar-
win College, Univ. of Cambridge, 1998.

	12.	 J. Ruuska, “Factors Influencing CASE Tool User Satis-
faction: An Empirical Study in a Large Telecommunica-
tions Company,” master’s thesis, Dept. of Computer
Sciences, Univ. of Tampere, 2001 (in Finnish).

About the Authors
Steven Kelly is chief technology officer of MetaCase and has more than 15 years’
experience building domain-specific modeling tools and languages. He has a PhD in infor-
mation systems from Jyväskylä University. Contact him at stevek@metacase.com.

Risto Pohjonen is a domain-specific modeling (DSM) consultant and developer at
MetaCase, with over 10 years’ experience building DSM tools and languages. Contact him at
rise@metacase.com.

Authorized licensed use limited to: Konkuk University. Downloaded on August 02,2010 at 08:18:30 UTC from IEEE Xplore. Restrictions apply.

