A Framework for Testing and
Analysis

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 1

BVatal s N Ihinn 'l'\l("
Lcally J LVLIVCO

e |Introduce dimensions and tradeoff between
test and analysis activities

e Distinguish validation from verification
activities

e Understand limitations and possibilities of test
and analysis

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 2

\/

fa N
v T

rifi Ta'
111l V1 |

+ N NnA Vs
L u

1A ~ Alidat
IVIl Al l VAIiIUuQLli

n N
UQL

e Validation:

does the software system meets the user's real
needs?

are we building the right software?

e Verification:
does the software system meets the
requirements specifications?

are we building the software right?

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 3

Validation

Includes usabillity
testing, user
feedback

SOFTWARE TESTING
it L

Verification
Includes testing,
Inspections, static
analysis

(c) 2007 Mauro Pezze & Michal Young

Ch 2, slide 4

Verification or validation depends on
the specification

Example: elevator response

Unverifiable (but validatable) spec: ... if a user
presses a request button at floor i, an available
elevator must arrive at floor i soon...

Verifiable spec: ... If a user presses a request
button at floor I, an available elevator must
e arrive at floor 1 within 30 seconds...

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 5

\/Aalidatinn AanA \/arifFiratinn Ar~rtnntinc
VAIIUQUIVII AllIuUu VCOII1HIVALUIVIT AULULIVILITCO
Actual Needs and
Constraints < User Acceptance (alpha, beta test)
=
.o
&3 System < System Test
3 Specifications
/S Analysis /
\T Review
<% Subsystem Integration Test
Design/Specs
? Analysis /
Revie . .
vIew validation
Unit/
4 Component
Specs
< \ <
User review of external behavior as it is verificatio>
SOFTWARE TESTING determined or becomes visible

AND ANALYS

(c) 2007 Mauro Pezzé & Michal Young Ch 2, slide 6

ever
You can’t atways get what you want

[Property]\ Decision
{ProgramJ/ Procedure)

[Pass/Falil }

Correctness properties are undecidable

the halting problem can be embedded in almost
every property of interest

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 7

w/ha
VVIIQ

Theorem proving:
Unbounded effort to
verify general
properties.

Perfect verification of
arbitrary properties by
logical proof or exhaustive
testing (Infinite effort)

Model checking:
Decidable but possibly
intractable checking of

yplcal testing

Precise anal
simple synt
properties

Optimistic
inaccuracy

Pessimistic
inaccuracy

SOFTWARE TESTING
it L

-

fa¥e
Cu

optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
It may not detect all
violations).

- testing

pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

- automated program analysis
techniques

simplified properties: reduce
the degree of freedom for
simplifying the property to
check

(c) 2007 Mauro Pezze & Michal Young

Ch 2, slide 8

Example of simplified property:
Unmatched Semaphore Operations

original problem simplified property
Java prescribes a
it (....) { more restrictive, but
.- - statically checkable
lock(S); : :
,) Static construct
checking for
if (... 1 match iS_ synchronized(S) {
necessarily .
un1ock(S) Inaccurate ... ,

; : (c) 2007 Mauro Pezze & Michal Young Ch 2, slide 9

CArrm
J

Pal N T
UIIIT |

rminnlAam
HETTHHTTUTUY

\7

o
C

e Safe: A safe analysis has no optimistic
Inaccuracy, I.e., It accepts only correct
programs.

e Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

e Complete: An analysis of a program P with
respect to a formula F is complete If the
analysis always returns true when the program
actually does satisfy the formula.

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 10

Ciim \l
OUIIII 1y

e Most interesting properties are undecidable,
thus in general we cannot count on tools that
work without human intevention

e Assessing program gualities comprises two
complementary sets of activities: validation
(daes the software do what it is supposed to
do?) and verification (does the system behave
as specificed?)

e There is no single technique for all purposes:
test designers need to select a suitable
combination of techniques

SOFTWARE TESTING
4 s

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 11

