A Framework for Testing and Analysis

Learning objectives

- Introduce dimensions and tradeoff between test and analysis activities
- Distinguish validation from verification activities
- Understand limitations and possibilities of test and analysis

Verification and validation

Validation:

does the software system meets the user's real needs?

are we building the right software?

Verification:
 does the software system meets the requirements specifications?

are we building the software right?

Validation and Verification

Validation

Includes usability testing, user feedback

Verification
Includes testing,
inspections, static
analysis

Verification or validation depends on the specification

Example: elevator response

Unverifiable (but validatable) spec: ... if a user presses a request button at floor i, an available elevator must arrive at floor i soon...

Verifiable spec: ... if a user presses a request button at floor i, an available elevator must arrive at floor i within 30 seconds...

Validation and Verification Activities

You can't always get what you want

Correctness properties are undecidable the halting problem can be embedded in almost every property of interest

Getting what you need ...

- optimistic inaccuracy: we may accept some programs that do not possess the property (i.e., it may not detect all violations).
 - testing
- pessimistic inaccuracy: it is not guaranteed to accept a program even if the program does possess the property being analyzed
 - automated program analysis techniques
- simplified properties: reduce the degree of freedom for simplifying the property to check

Example of simplified property: Unmatched Semaphore Operations

original problem

```
if ( .... ) {
    lock(s);
}

if ( ... ) {
    checking for match is necessarily inaccurate ...
}
```

simplified property

Java prescribes a more restrictive, but statically checkable construct.

```
synchronized(S) {
    ...
}
```


Some Terminology

- Safe: A safe analysis has no optimistic inaccuracy, i.e., it accepts only correct programs.
- Sound: An analysis of a program P with respect to a formula F is sound if the analysis returns true only when the program does satisfy the formula.
- Complete: An analysis of a program P with respect to a formula F is complete if the analysis always returns true when the program actually does satisfy the formula.

Summary

- Most interesting properties are undecidable, thus in general we cannot count on tools that work without human intevention
- Assessing program qualities comprises two complementary sets of activities: validation (daes the software do what it is supposed to do?) and verification (does the system behave as specificed?)
- There is no single technique for all purposes: test designers need to select a suitable combination of techniques

