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Text

— Software Testing and Analysis : Process, Principles, and Techniques

This book provides
— a coherent view of the state of the art and practice

— technical and organizational approaches to push the state of practice toward the state of
the art

Part I Fundamentals of Test and Analysis
Part II Basic Techniques

Part Il Problems and Methods

Part IV Process
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View the "big picture" of software quality in the context of a software
development project and organization

Introduce the range of software verification and validation activities

Provide a rationale for selecting and combining them within a software
development process
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« All engineering processes have two common activities
— Construction activities
— Checking activities

« In software engineering (purpose: construction of high quality software)
— Construction activities
— Verification activities

« We are focusing on software verification activities.

Konkuk University
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« Software verification activities take various forms
— for non-critical products for mass markets
— for highly-customized products
— for critical products

« Software verification is particularly difficult, because
— Many different quality requirements
— Evolving structure
— Inherent non-linearity
— Uneven distribution of faults

< An example of uneven distribution of software faults >

If an elevator can safely carry a load of 1000 kg, it can also safely carry any smaller load.

If a procedure correctly sorts a set of 256 elements, it may fail on a set of 255 or 53
elements, as well as on 257 or 1023.

Konkuk University



No silver bullet for software verification

Software verification designers should

— Choose and schedule a right blend of techniques
e to reach the required level of quality (concerned with product)
e within cost constraints (concerned with project)

— Design a specific solution that suits
« the problem
 the requirements
 the development environment

Konkuk University
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« To start understanding how to attack the problem of verifying software

1. When do verification and validation start and end?

2. What techniques should be applied?

3. How can we assess the readiness of a product?

4. How can we ensure the quality of successive releases?

5. How can the development process be improved?

Konkuk University



1. When Do Verification and Validation
Start and End?

« Test
— A widely used V&V activity
— Usually known as a last activity in software development process
— But, not the test activity is “test execution”
— Test execution is a small part of V&V process

« VA&V start as soon as we decide to build a software product, or even
before.

« VA&V last far beyond the product delivery as long as the software is in
use, to cope with evolution and adaptations to new conditions.
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« Feasibility study of a new project must take into account
— Required qualities
— Their impact on the overall cost

« Quality related activities include
— Risk analysis
— Measures needed to assess and control quality at each stage of development
— Assessment of the impact of new features and new quality requirements
— Contribution of quality control activities to development cost and schedule
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« Maintenance activities include
— Analysis of changes and extensions
— Generation of new test suites for the added functionalities

— Re-executions of tests to check for non regression of software functionalities
after changes and extensions

— Fault tracking and analysis




No single A&T technique can serve all purposes

The primary reasons for combining techniques are:

Effectiveness for different classes of faults

(‘analysis instead of testing for race conditions )
Applicability at different points in a project
( inspection for early requirements validation )

Differences in purpose
( statistical testing to measure reliability )

Tradeoffs in cost and assurance
( expensive technique for key properties )
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Collect data on faults

| analyze faults and improve the process |
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3. How Can We Assess the Readiness of a
Product?

« A&T activities aim at revealing faults during development.
— We cannot reveal or remove all faults.
— A&T cannot last indefinitely.

We have to know if products meet the quality requirements or not

— We must specify the required level of dependability.
- Measurement

— We can determine when that level has been attained.
- Assessment



4. How Can We Ensure the Quality of
Successive Releases?

« A&T activities does not stop at the first release.

« Software products operate for many years, and undergo many changes
— To adapt to environment changes
— To serve new and changing user requirements

« Quality tasks after delivery include
— Test and analysis of new and modified code
— Re-execution of system tests

— Extensive record-keeping



5. How Can the Development Process be
Improved?

The same defects are encountered in project after project.
We can improve the quality through identifying and removing
weaknesses

— In development process

— In A&T process (quality process)

4 steps for process improvement

1.

2.
3.

Define the data to be collected and implementing procedures for collecting
them

Analyze collected data to identify important fault classes

Analyze selected fault classes to identify weaknesses in development and
quality measures

Adjust the quality and development process
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The quality process has three different goals
— Improving a software product
— Assessing the quality of the software product
— Improving the quality process

We need to combine several A&T techniques through the software
process.

A&T depends on organization and application domain.



Konkuk University
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Introduce dimensions and tradeoff between test and analysis activities

Distinguish validation from verification activities

Understand limitations and possibilities of test and analysis activities
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« Validation: “Does the software system meets the user's real needs?”

— Are we building the right software?

« Verification: "Does the software system meets the requirements specifications?”
— Are we building the software right?

Actual
Requirements |:> System
\/ \/
Validation Verification

Konkuk University 22



\/Q;\/

ANnAo +lh A -F +
VOLV |J N all

I'J 7\ le'\ 7\
Uuos Ul Ui OpCUlll Ul |

« Unverifiable (but validatable) specification: “If a user presses a request
button at floor i, an available elevator must arrive at floor i soon.”

« \Verifiable specification: "“If a user presses a request button at floor i, an
available elevator must arrive at floor i within 30 seconds”

1234A5678

+

Konkuk University 23
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Actual Needs and 4 .
Delivered
Constraints < : User Acceptance (alpha, beta test) Package
System System Test Infggs:::iﬁon
Specifications %
I, '—| Analysis / Review
Dsels‘izs:,fssti?cs <: Integration Test Subsystem
/‘_
\1 Analysis / Review
i Unit/ .
Unit /
Fan COI?;IF;::SEntS \ Module Test Companents

Ly
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Validation

Verification )3

\ User review of external behavior as it is determined or

becomes visible

24
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« Correctness properties are not decidable.
— Halting problem can be embedded in almost every property of interest.

vy NP

/ Decision Procedure

Konkuk University 25
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Theorem proving: Perfect verification of ¢ OptImIStIC inaCCU 'a Cy
Unboundgd effort to arbitrary properties by W t
verify gerr1t_eral logical proof or exhaustive - € may accept some programs
properties testing (Infinite effort) that do not possess the property.

Model checking:
Decidable but possibly
intractable checking of

— It may not detect all violations.
— Example: Testing

« Pessimistic inaccuracy

— It is not guaranteed to accept a
_ program even if the program
ypical testing

Precise anaj chiques does possess the property being
\/ analyzed, because of false alarms.

simple synf
properties

Simplified
properties

— Example: Automated program analysis
« Simplified properties
— It reduces the degree of freedom
for simplifying the property to
check.
— Example: Model Checking

Optimistic
inaccuracy

Pessimistic
inaccuracy

Konkuk University 26



A safe analysis has no optimistic inaccuracy; that is, it accepts only
correct programs.

An analysis of a program P with respect to a formula F is sound if the

analysis returns True only when the program actually does satisfy the
formula.

An analysis of a program P with respect to a formula F is complete if the
analysis always returns true when the program actually does satisfy the
formula.

Konkuk University 27



C
®

1 VY A

MiMa

v\ 7
|

y

Most interesting properties are undecidable, thus in general we cannot
count on tools that work without human intevention.

Assessing program qualities comprises two complementary sets of
activities:

— Validation (Daes the software do what it is supposed to do?)

— Verification (Does the system behave as specificed?)

There is no single technique for all purposes
\IQI\I Aacinnare nan A A calart A ciriitnhla FrArmKhinatiAan Af +farhni~iiac
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« Understand the basic principles undelying A&T techniques.

« Grasp the motivations and applicability of the main principles.
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« Principles for general engineering:
— Partition: divide and conquer
— Visibility: making information accessible
— Feedback: tuning the development process

« Principles specific to software A&T:
— Sensitivity: better to fail every time than sometimes
— Redundancy: making intentions explicit
— Restriction: making the problem easier
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« "It is better to fail every time than sometimes.”
« Consistency

« A test selection criterion works better if every selected test provides the

same result.
« le. if the program fails with one of the selected tests, it fails with all of them.
(reliable criteria)

« Run time deadlock analysis works better if it is machine independent.

* le. if the program deadlocks when analyzed on one machine, it deadlocks on
every machine.
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“Make intention explicit.”

Redundant checks can increase the capabilities of catching specific faults
early or more efficiently.

Static type checking is redundant with respect to dynamic type checking,
but it can reveal many type mismatches earlier and more efficiently.

Validation of requirement specifications is redundant with respect to
validation of the final software, but can reveal errors earlier and more

efficiently.

Testing and proof of properties are redundant, but are often used
together to increase confidence.
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« “Make the problem easier”

« Suitable restrictions can reduce hard (unsolvable) problems to simpler
(solvable) problems.

« A weaker spec may be easier to check:

— It is impossible (in general) to show that pointers are used correctly, but the
simple Java requirement that pointers are initialized before use is simple to
enforce.

« A stronger spec may be easier to check:

— It is impossible (in general) to show that type errors do not occur at run-time
in a dynamically typed language, but statically typed languages impose
stronger restrictions that are easily checkable.
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« "Divide and conquer”

« Hard testing and verification problems can be handled by suitably
partitioning the input space.

« Both structural and functional test selection criteria identify suitable
partitions of code or specifications.

« Verification techniques fold the input space according to specific
characteristics, grouping homogeneous data together and determining
partitions.



“Make information accessible”

The ability to measure progress or status against goals.
— X visibility = ability to judge how we are doing on X
— schedule visibility = “Are we ahead or behind schedule”
— quality visibility = “Does quality meet our objectives?”

Involves setting goals that can be assessed at each stage of development.

The biggest challenge is early assessment, e.g., assessing specifications
and design with respect to product quality.
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* “Tune the development process.”

« Learning from experience:
— Each project provides information to improve the next.

« Examples
— Checklists are built on the basis of errors revealed in the past.
— Error taxonomies can help in building better test selection criteria.
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The discipline of A&T is characterized by 6 main principles:
— Sensitivity: better to fail every time than sometimes
— Redundancy: making intentions explicit
— Restriction: making the problem easier
— Partition: divide and conquer
— Visibility: making information accessible
— Feedback: tuning the development process

« They can be used to understand advantages and limits of different
approaches and compare different techniques.



Konkuk University
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Chapter 4.
Test and Analysis Activities within a
Software Process

Konkuk University
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Understand the role of quality in the development process
Build an overall picture of the quality process

Identify the main characteristics of a quality process

— Visibility

— Anticipation of activities
— Feedback
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« Qualities cannot be added after development
— Quality results from a set of inter-dependent activities.
— Analysis and testing are crucial but far from sufficient.

« Testing is not a phase, but a lifestyle

— Testing and analysis activities occur from early in requirements engineering
through delivery and subsequent evolution.

— Quality depends on every part of the software process.

« An essential feature of software processes is that software test and
analysis is thoroughly integrated and not an afterthought
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« Quality process
— A set of activities and responsibilities
« Focused on ensuring adequate dependability
« Concerned with project schedule or with product usability

« Quality process provides a framework for
— Selecting and arranging A&T activities
— Considering interactions and trade-offs with other important goals
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« "High dependability” vs. “Time to market”

« Mass market products:

— Better to achieve a reasonably high degree of dependability on a tight
schedule than to achieve ultra-high dependability on a much longer schedule

e Critical medical devices:

— Better to achieve ultra-high dependability on a much longer schedule than a
reasonably high degree of dependability on a tight schedule
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« Quality process
— Balances several activities across the whole development process
— Selects and arranges them to be as cost-effective as possible
— Improves early visibility

« Quality goals can be achieved only through careful planning.
« Therefore, A&T planning is integral to the quality process.
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« A process is visible to the extent that one can answer the question:

— How does our progress compare to our plan?
— Example: Are we on schedule? How far ahead or behind?

« The quality process has not achieved adequate visibility, if one cannot
gain strong confidence in the quality of the software system before it
reaches final testing

— Quality activities are usually placed as early as possible
« Design test cases at the earliest opportunity (not “just in time”)
« Uses analysis techniques on software artifacts produced before actual
code
— Motivates the use of “proxy” measures

« Example: the number of faults in design or code is not a true measure of
reliability, but we may count faults discovered in design inspections as
an early indicator of potential quality problems.



« A comprehensive description of the quality process that includes:
— objectives and scope of A&T activities
— documents and other items that must be available
— items to be tested
— features to be tested and not to be tested
— analysis and test activities
— staff involved in A&T
— constraints
— pass and fail criteria
— schedule
— deliverables
— hardware and software requirements
— risks and contingencies



—+
Q)

Goal must be further refined into a clear and reasonable set of objectives.

Product quality: goals of software quality engineering
Process quality: means to achieve the goals

Product qualities
— Internal qualities: invisible to clients
« maintainability, flexibility, reparability, changeability
— External qualities: directly visible to clients
« Usefulness:
— usability, performance, security, portability, interoperability
« Dependability:
— correctness, reliability, safety, robustness



Correctness: .
— A program is correct if it is consistent with its specification.
— Seldom practical for non-trivial systems

Reliability: i
— Likelihood of correct function for some “unit” of behavior
— Statistical approximation to correctness (100% reliable = correct)

Safetv: -

— Concerned with preventing certain undesirable behavior, called hazard

Robustness
— Providing acceptable (degraded) behavior under extreme conditions

— Fail softly

Konkuk University
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for
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Correctness, Reliability:

— Let traffic pass according to
correct pattern and central
scheduling

« Robustness, Safety:

— Provide degraded function when
possible

— Never signal conflicting greens
« Blinking red / blinking
yellow is better than no
lights.
* no lights is better than
conflicting greens.

Konkuk University 51



Relationship among Dependability Properties

Reliable but not Correct:
Failures can occur rarely

Robust but not Safe:

Catastrophic failures can occur

Correct but not Safe or Robust;
The specification is inadequate

Konkuk University

Safe but not Correct;

Annoying failures can occur

52
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Do not involve actual execution of program source code

Analysis techniques plays a prominent role in overall quality processes.
— Manual inspection
— Automated static analysis

Inspection technique
— (Can be applied to essentially any document
— Takes a considerable amount of time
— Re-inspecting a changed component can be expensive.

Automatic static analysis
— (Can be applied to some formal representations of requirements models
— Not to natural language documents

— Substituting machine cycles for human effort makes them particularly cost-
effective.



« Executed late in development, but
« Start as early as possible

« Early test generation has several advantages:

— Tests generated independently from code, when the specifications are fresh in
the mind of analysts.

— The generation of test cases may highlight inconsistencies and
incompleteness of the corresponding specifications.

— Tests may be used as compendium of the specifications by the programmers.
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« Long lasting errors are common.
« It is important to structure the process for
— Identifying the most critical persistent faults
— Tracking them to frequent errors
— Adjusting the development and quality processes to eliminate errors

« Feedback mechanisms are the main ingredient of the quality process for
identifying and removing errors.
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Organ

« Different teams for development and quality?
— Separate development and quality teams is common in large organizations.

« Different roles for development and quality?
— Test designer is a specific role in many organizations

— Mobility of people and roles by rotating engineers over development and
testing tasks among different projects is a possible option .
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Allocating tasks and responsibilities is a complex job:

« Unit testing
— to the development team (requires detailed knowledge of the code)
— but the quality team may control the results (structural coverage)
« Integration, system and acceptance testing
— to the quality team
— but the development team may produce scaffolding and oracles
Inspection and walk-through
— to mixed teams
« Regression testing
— to quality and maintenance teams
« Process improvement related activities
— to external specialists interacting with all teams
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« A&Ts are complex activties that must be sutiably planned and monitored.

« A good quality process obeys some basic principles:
— Visibility
— Early activities
— Feedback

« Aims at
— Reducing occurrences of faults
— Assessing the product dependability before delivery
— Improving the process



Konkuk University
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Understand goals and implications of finite state abstraction
Learn how to model program control flow with graphs

Learn how to model the software system structure with call graphs

Learn how to model finite state behavior with finite state machines
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A model is

— A representation that is simpler than the artifact it represents,

— But preserves some important attributes of the actual artifact

Our concern is with models of program execution.

Konkuk University
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« Directed graph:
— N : set of nodes
— E : set of edges (relation on the set of nodes)

N={a b, c}
E={( b) (a0 (ca)}
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We can label nodes with the names or descriptions of the entities they
represent.
— If nodes a and b represent program regions containing assignment

statements, we might draw the two nodes and an edge (a, b) connecting
them in this way:
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Two effects of abstraction

1. Coarsening of execution model
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2. Introduction of nondeterminism
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« Called “"Control Flow Graph” or "CGF"
— A directed graph (N, E)

« Nodes

— Regions of source code (basic blocks)
— Basic block = maximal program region with a single entry and single exit
point
— Often statements are grouped in single regions to get a compact model.
— Sometime single statements are broken into more than one node to model
control flow within the statement.
« Directed edges

— Possibility that program execution proceeds from the end of one region
directly to the beginning of another
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public static String collapseNewlines(String argStr)

{

char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (int cldx = 0 ; cldx < argStr.length(); cldx++)
{
char ch = argStr.charAt(cldx);
if (ch I="\n"|| last !="\n")
{
argBuf.append(ch);
last = ch;
}
}

return argBuf.toString();

public static String collapseNewlines(String argStr)

{ b2
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx=0;

Gldx < argStr.length(); @3\4
ﬁFalse#Trueﬁ
{ b4
char ch = argStr.charAt(cldx);
if (ch I="\n'
vﬁFaIsngTrue
<|| last 1= \n') @5)
True
{ b6
argBuf.append(ch);
last = ch;
}
False
} b7
cldx++)

return argBuf.toString(); b8
}
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« CFG may be used directly to define thoroughness criteria for testing.
— Chapter 9. Test Case Selection and Adequacy
— Chapter 12. Structural Testing

« Often, CFG is used to define another model

— which in turn is used to define a thoroughness criterion
— Example: LCSAJ is derived from the CGF
 Essential sub-paths of the CFG from one branch to another
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public static String collapseNewlines(String argStr) (b1

char last = argStr.charAt(0);

{ b2
StringBuffer argBuf = new StringBuffer();
for (intcldx=0;

v

{ b4
char ch = argStr.charAt(cldx);
if (ch 1="\n'

False—True

\ 2 .
<|| last 1= "\n') @@ iT
True

argBuf.append(ch);
last = ch;

E| (1
)

.

FalseH

C
cldx++)

@

L
return argBuf.toString(); @ J
}

N

Vel aVarlal A ' INI I 1 1 Vv \
ence ANG JUmp)
From Sequence of Basic Blocks To
entry b1 b2 b3 X
entry b1 b2 b3 b4 iT
entry b1 b2 b3 b4 b5 jE
entry b1 b2 b3 b4 b5 b6 b7 jL
X b8 Return
jL b3 b4 iT
jL b3 b4 b5 jE
jL b3 b4 b5 b6 b7 jL
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“Interprocedural Control Flow Graph”
— A directed graph (N, E)

* Nodes
— Represent procedures, methods, functions, etc.

« Edges
— Represent ‘call’ relation

« Call graph presents many more design issues and trade-off than CFG.
— Overestimation of call relation
— Context sensitive/insensitive
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OCcur in execution.

public class C {
public static C cFactory(String kind) {
if (kind == "C") return new C();
if (kind == "S") return new S();
return null;

}
void foo() {

)

ﬂr-"\
d d

System.out.printin("You called the parent's method");

}

public static void main(String args[]) {
(new A()).check();
}
}

class S extends C {
void foo() {
System.out.printin("You called the child's method");
}
}

rap

I
1

The static call graph includes calls through dynamic bindings that never

A.check()

AN

class A {
void check() {
C myC = C.cFactory("S");

C.foo()

S.foo()

CcFactory(string)

myC.foo();

}
}

Konkuk University

hever occur in execution
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public class Context {
public static void main(String args[]) {
Context ¢ = new Context();
c.foo(3);
c.bar(17); main main
}
void foo(int n) { /\
int[] myArray =new int[ n];
depends( myArray, 2) ; C.foo C.bar C.foo(3) C.bar(17)
}
void bar(int n) { \ /
int[] myArray =new int[ n];
\ depends( myArray, 16) ; C.depends C.depends(int(3),a,2) | |C.depends (int(17),a,16)
void depends(int[] a, intn ) { < Context Insensitive > < Context Sensitive >
aln] =
}

}



Calling Paths in Context Sensitive Call Graphs

A
/\
B C
> E
F G
: |

1 context A

2 contexts AB AC

8 contexts ...

16 calling contexts ... exponentially grow.
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CFGs can be extracted from programs.
FSMs are constructed prior to source code, and serve as specifications.

— A directed graph (N, E)
— CFG and FSM are duals.

* Nodes
— Afinite set of states
- Edges
— A set of transitions among states
LF CR EOF other char
e / emit |/ emit d/- w / append
e / emit |/ emit d / emit w / append
el- d/- w / append

)4

E

em|t

Emty
buffer

\EOF

Looking for
optional DOS LF

Other char
apend

i /N
W Within
line
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FSM Model Program
- public static Tablel
& T 5, — ro._c .
; \ getTablel {} |
..-I_.-- I"‘x if {ref == mpuall}) {
II. _ ' synchronised (Tablel) |
) Required if (zef == null){
J . ) ref = new Tablel();
Pr@pemes ;,-" ref initialize();
: - }
\ )
g S . I_
M"' return ref;
b
The model is syntactically S,
The model satisfies well-fromed, consistent The model accurately
The specification and complete represents the program
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12
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14
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/** Convert each line from standard input */
void transduce() {

}

#define BUFLEN 1000

char buf[BUFLEN];

int pos=0;

char inChar; /* Next character from input */

int atCR = 0; /" 0="within line”, 1="optional DOS LF" "/

/ Accumulate line into this buffer

¥

/ Index for next character in buffer */

while {(inChar = getchar()) '= EOF ) {
switch (inChar) {

case LF:
if (atCR) {:

atCR = 0;

}else {

pos=0;
1
break;
case CR:

/* Optional DOS LF %/

/* Encountered CR within line */
emit(buf, pos);

emit(buf, pos);

pos =0;

atCR=1;

break;
default:

if (pos == BUFLEN-2) fail("Buffer overflow");
buf[pos++] = inChar;

}/ switch

if (pos > 0) {

emit{buf, pos);

}

101 V ode | N U IVI S
Abstract state | Concrete state
Lines | atCR | pos
e (Empty buffer) | 3—13 | O 0
w (Within line) | 13 {0 =0
1 {Looking for LF) | 13 1 {
d (Done) | 36 — —
Modeling with
abstraction
LF CR EOF other
e/emit | 1/emit | d/- w / append
e/emit | 1/emit | d/emit | w/append
el - 1/emit | d/— w / append

Konkuk University
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Models must be much simpler than the artifact they describe in order to
be understandable and analyzable.

« Models must be sufficiently detailed to be useful.
« CFG are built from software program.

« FSM can be built before software to documented behavior.,
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« Understand basics of data-flow models and the related concepts (def-use
pairs, dominators...)

« Understand some analyses that can be performed with the data-flow
model of a program
— Data flow analyses to build models
— Analyses that use the data flow models

« Understand basic trade-off

N’ 1 1 11

wn
5
3
®)
Q.
®
5
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Models from Chapter 5 emphasized control flow only.
— Control flow graph, call graph, finite state machine

We also need to reason about dependence.
— To reason about transmission of information through program variables
— "Where does this value of x come from?”
— "What would be affected by changing this? *

Many program analyses and test design techniques use data flow
information and dependences

— Often in combination with control flow
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« A def-use (du) pair associates a point in a program where a value is
produced with a point where it is used

« Definition: where a variable gets a value
— Variable declaration
— Variable initialization
— Assignment
— Values received by a parameter

« Use: extraction of a value from a variable
— Expressions
— Conditional statements
— Parameter passing
— Returns
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if (...) {
X=..,;
}
Yy = ..+ X+ ..,

Def-Use
path

[

]

[ if () { } Definition: x
S~ /\/| gets a value

Konkuk University

- /
X = ..
) I .
L ya )
Use: the value of
L'I;'" X is extracted
[y = .+ xﬁ%
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[** Euclid's algorithm */

public int ged(int x, int y) {

int tmp;

while (y = 0) {
tmp=x%y;

X=Y,

y = tmp;

}

return Xx;

Il A: def x, y, tmp

/[ B: usey

I/l C: def tmp; use X, y
/[ D: def x; use y

/I E: defy; use tmp

/| F: use x

Konkuk University

—{ public int ged
4 I/'A\
public int ged{int x, int y) { |
int tmp; def={x v, tmp }
. i use ={}
p
while (y 1= 0) B
{ o
\ def = {}
Fals '4 use =
/ True
I I
o
tmp = x % y; \_)
\ def = {tmp }
i use = {x ]
-
D
- ®
h. def={x}
‘ use = {y}
-
¥ =tmp; ®
S def = {y}
use = {tmp}
. J/
\_Ab{r;eturn X; @
}
N der={}
use = {x}
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« A definition-clear path is a path along the CFG from a definition to a use
of the same variable without another definition of the variable between.

« If, instead, another definition is present on the path, then the latter
definition kills the former

« A def-use pair is formed if and only if there is a definition-clear path
between the definition and the use
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X=... /I A: def x

x=y: /Il B: kil x, def x

y =1(x); // C: usex

Path A..C is

not definition-clear

Path B..C is
definition-clear

Q) I/l ~
A KiHing
|
-
(A =
——
. |
< B X =y
4 (\ l J
;/ I
(O y = #9

\

Konkuk University

| Definition: x
: gets a value

Definition: x gets
N a new value, old
] value is killed
N Use: the value of
A X is extracted
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« Direct data dependence graph
— A direct graph (N, E)
* Nodes: as in the control flow graph (CFG)
« Edges: def-use (du) pairs, labelled with the variable name

————————————
™

"public int ged(int x, int v) {

[while (y 1= 0)
{

)

=5
Q)

O

>

int tmp;

I\' T T T I ol
L iyl :Y . TTT- y__~~ N
i ™y |
p ¥ ¥ - :
(Imp=x%y . \3)4- N, |
~tmp__y’ | |
1] | | i

¥
(v = tmp ® i
r( 1 : :
| | | |
¥ ¥ L i
E & OF
T
|
LU S :
v
(return X: “:I_?
g

Konkuk University
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« Data dependence
— “Where did these values come from?”

« Control dependence
— "Which statement controls whether this statement executes?”
— A directed graph
* Nodes: as in the CFG
« Edges: unlabelled, from entry/branching points to controlled blocks

"public int ged(int x, int ) { @q

nt tmp; )

J\
‘ v
G'.fhile iy I=0) (B} Getum X @
i} A
A
i" !
Y
Q-mp=:<%y; @ @=tmp; @
T ®

Konkuk University
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« Pre-dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise.

 Node M dominates node N if every path from the root to N passes
through M.

— A node will typically have many dominators, but except for the root, there is a
uniqgue immediate dominator of node N which is closest to N on any path
from the root, and which is in turn dominated by all the other dominators of
N.

— Because each node (except the root) has a unique immediate dominator, the
immediate dominator relation forms a tree.

« Post-dominators are calculated in the reverse of the control flow graph,
using a special “exit” node as the root.
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A pre-dominates all nodes.
G post-dominates all nodes.

 F and G post-dominate E.

g « G is the immediate post-
\ dominator of B.

|
« (C does not post-dominate B.

F } « B is the immediate pre-
dominator of G

/ « F does not pre-dominate G.
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« We can use post-dominators to give a more precise definition of control
dependence
— Consider again a node N that is reached on some but not all execution paths.

— There must be some node C with the following property:

» C has at least two successors in the control flow graph (i.e., it represents a control
flow decision).

« Cis not post-dominated by N.
» There is a successor of C in the control flow graph that is post-dominated by N.

— When these conditions are true, we say node N is control-dependent on
node C.

« Intuitively, C was the last decision that controlled whether N executed.
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| Execution of Fis
3 not inevitable at B
/—CZXE """"""""""""""""" Execution of F is
) \ Inevitable at E '
|
D F

F is control-dependent on B,

the last point at which its
execution was not inevitable

Konkuk University
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« Describes the algorithms used to compute data flow information.
— Basic algorithms used widely in compilers, test and analysis tools, and other
software tools.

« Too difficult > Skipped.
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« Data flow models detect patterns on CFGs.
— Nodes initiating the pattern
— Nodes terminating it
— Nodes that may interrupt it

« Data dependence information

— Pros:

« Can be implemented by efficient iterative algorithms

« Widely applicable (not just for classic “data flow” properties)
— Limitations:

* Unable to distinguish feasible from infeasible paths

« Analyses spanning whole programs (e.g., alias analysis) must trade off precision
against computational cost
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Understand the goal and implication of symbolically executing programs
Learn how to use assertions to summarize infinite executions

Learn how to reason about program correctness

Learn how to use symbolic execution to reason about program
properties

Understand limits and problems of symbolic execution
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« Builds predicates that characterize
— Conditions for executing paths
— Effects of the execution on program state

« Bridges program behavior to logic

« Finds important applications in
— Program analysis

m oAl Y
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— Formal verification (proofs) of program correctness
« Rigorous proofs of properties of critical subsystems
— Example: safety kernel of a medical device
« Formal verification of critical properties particularly resistant to dynamic testing
— Example: security properties
« Formal verification of algorithm descriptions and logical designs
— less complex than implementations
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« Tracing execution with symbolic values and expressions is the basis of
symbolic execution.
— Values are expressions over symbols.
— Executing statements computes new expressions with the symbols.

Execution with concrete values Execution with symbolic values
(before) (before)

low 12 low L

high 15 high  H

mid - mid ,

mid = (high + low) / 2 mid = (high + low) / 2
(after) (after)

low 12 Low L

high 15 high H

mid 13 mid (L+H) / 2

Konkuk Uniyersity 100



Tlf' : " aVae | I I'I':I\If'\ \Al: If'\ C\ lmlr'\ I:f‘ I:\If\fl I'I':A e
i1 dCll Iy utLtioll vvilll .)_YIIIIJ IHHC LATCULIVUIID
N VK, 0 <k < size : dictKeys[k] = key — L
<k<H
char *binarySearch( char *key, char *dictKeys| ]
char *dictValues| ], int dictSize) { AHzMzL
int low = 0; Execution with symbolic values
int high = dictSize - 1;
int mld, (before)
int comparison; low = 0
_ _ A high = (H-1)/2 -1
while (high >= low) { A mid = (H-1)/2
mid = (high + low) / 2;
comparison = strcmp( dictKeys[mid], key ); while (high >= low) {
if (comparison < 0) {
low = mid + 1; (after)
} else if ( comparison >0 ) { low = 0
high = mid - 1; A high = (H-1)/2 -1
} else { A mid = (H-1)2 | When true
return dictValues[mid]; A (H-1)/2-1>=0
}
} A not((H-1)/2 - 1 >=0)
return O;
when false

Konkuk University 101



)

§
;
3

N
Q
O
Q
O

« Symbolic representation of paths may become extremely complex.

« We can simplify the representation by replacing a complex condition P
with a weaker condition W such that

P=> W
— W describes the path with less precision
— Wis a summary of P
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« If we are reasoning about the correctness of the binary search algorithm,
— In" mid = (high+low)/2

Complete condition: Weaker condition:

low = L low = L

high = H
mid = M

high = H
mid = M

« The weaker condition contains less information, but still enough to
reason about correctness.

Konkuk University 103
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The weaker predicate L <= mid <= His chosen based on what must be
true for the program to execute correctly.

— It cannot be derived automatically from source code.

— It depends on our understanding of the code and our rationale for believing
it to be correct.

A predicate stating what shoul/d be true at a given point can be
expressed in the form of an assertion

Weakening the predicate has a cost for testing

— Satisfying the predicate is no longer sufficient to find data that forces
program execution along that path.

« Test data satisfying a weaker predicate W is necessary to execute the
path, but it may not be sufficient.

« Showing that W cannot be satisfied shows path infeasibility.
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The number of execution paths through a program with loops is
potentially infinite.

To reason about program behavior in a loop, we can place within the
loop an invariant.

— Assertion that states a predicate that is expected to be true each time
execution reaches that point

Each time program execution reaches the invariant assertion, we can
weaken the description of program state.

— If predicate P represents the program state and the assertion is W

— We must first ascertain P => W

— And then we can substitute W for P
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Supposed that

— Every loop contains an assertion
— There is an assertion at the beginning of the program
— There is a final assertion at the end

Then

— Every possible execution path would be a sequence of segments from one
assertion to the next.

Precondition: the assertion at the beginning of a segment
Postcondition: the assertion at the end of the segment
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« For each program segment, if we can verify that
— Starting from the precondition,
— Executing the program segment,
— And postcondition holds at the end of the segment

« Then, we verify the correctness of an infinite number of program paths.
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char *binarySearch( char *key, char *dictKeys| ],
char *dictValues[ ], int dictSize) { N

int low = 0; Precondition: “should be sorted”

int high = dictSize - 1; Vij, 0 <i<j<size : dictKeys[i] < dictKeys]j]
int mid;

int comparison; . .
g Invariant: “should be in range”

while (high >= low) { &ﬁ Vi, 0 <i<size : dictKeys[i] = key — low <i < high
mid = (high + low) / 2;
comparison = strcmp( dictKeys[mid], key );
if (comparison < 0) {
low = mid + 1;
} else if (comparison > 0 ) {
high = mid - 1;
} else {
return dictValues[mid];

}
}

return O;
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Initial values: low = L Precondition
A high=H Vij, 0 <i<j<size : dictkeys][i] < dictKeys][j]
Instantiated invariant: Vi, j, 0<i<j< size : dictKeys]i] < dictKeys[j]
A Vk, 0 <k <size : dictkeys[k] = key - L<k<H
After executing: mid = (high + low) / 2
Invariant
low = L V_i,OSif‘s_ize: o
A high - H dictKeys]i] = key — low < i < high
A mid =M

A Vi, j, 0<i<j<size: dictKeys]i] < dictKeys]j]
N Vk, 0 <k <size : dictkeys[k] = key - L<k<H
ANH=2Mz=L
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After executing the loop :

low = M+1
A high =H
A\ mid =M

A Vi, j,0<i<j<size : dictkeys]i] < dictKeys]j]

A Vk, 0 <k <size : dictkeys[k] = key - L<k<H
ANH=2M=2L

A dictkeys[M] < key

The new instance of the invariant:
Vi, j, 0 <i<j<size : dictKeys[i] < dictKeys]j]
N VK, 0=k <size : dictkeys[k] = key - M+1 <k <= H

- If the invariant is satisfied,
the loop is correct woth respect to the preconditions and the invariant .
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Even the invariant is satisfied, but the postcondition is false:

low =L
A high=H
N Vi, j, 0<i<j<size : dictKeys]i] < dictKeys]j]
N Vk, 0<k<size: dictkeys[k] =key - L<k<H
N L>H

If the condition satisfies the post-condition, the program is correct with
respect to the pre- and post-condition.

Konkuk University 111
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Follow the hierarchical structure of a program
— at a small scale (within a single procedure)
— at larger scales (across multiple procedures)

Hoare triple: [pre] block [posf]

If the program is in a state satisfying the precondition pre at entry to the

block, then after execution of the block, it will be in a state satisfying the
pncfrnnrhhnn post

o G\ 1T ITNATLINVL ]
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. I :invariant
While loops: C : loop condition

S : body of the loop

premise
~ [1ACTS[I]
(1] while(©) {S} I A =C]

7

Inference rule says:
if we can verify the premise (top),
then we can infer the conclusion (bottom)

» conclusion

Konkuk University 113
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if statement;

[P A C] thenpart [Q] [P A =(C] elsepart [Q]

[P] if (C) {thenpart} else {elsepart} [Q]
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« Summarize the effect of a block of program code (a whole procedure) by
a "contract == precondition + postcondition “

« Then use the contract wherever the procedure is called

« Summarizing binarySearch:

(Vij, 0 <i < j < size: keys[i] £ keys[j]) <-- precondition
s = binarySearch(k, keys, vals, size)

(s=vand 31,0 < i, size : keys[i] = k A vals[i] = v) <-- postcondition
v (s=v A -3i,0 <1, size: keys[i] = k)

Konkuk University 115



Reasoning about Data Structures and Classes

« Data structure module
= Collection of procedures (methods) whose specifications are strongly
interrelated

« Contracts: specified by relating procedures to an abstract model of their
(encapsulated) inner state

« Example:
— Dictionary can be abstracted as {<key, value>}

— Implemented independently as a list, tree, hash table, etc.



Structural invariants are the structural characteristics that must be
maintained. ( directly analogous to loop invariants)

— Example: Each method in a search tree class should maintain the ordering of
keys in the tree.

Abstract function maps concrete objects to abstract model states.
— Example: Dictionary
« [<kyv> € ®(dict) ]
« o0 = dict.get(k)
* [o=v]
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Symbolic execution is a bridge from an operational view of program
execution to logical and mathematical statements.

Basic symbolic execution technique is the execution using symbols.

Symbolic execution for loops, procedure calls, and data structures:
proceed hierarchically

— compose facts about small parts into facts about larger parts

Fundamental technique for

— chuauuy test data

— Verifying systems

— Performing or checking program transformations
Tools are essential to scale up.
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Understand the purpose and appropriate uses of finite-state verification
— Understand how FSV mitigates weaknesses of testing
— Understand how testing complements FSV

Understand modeling for FSV as a balance between cost and precision

Distinguish explicit state enumeration from analysis of implicit models

— Understand why implicit models are sometimes (but not always) more
effective
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Most important properties of program execution are not decidable.

Finite state verification can automatically prove some significant
properties of a finite model of the infinite execution space.

Need to balance trade-offs among

— Generality of properties to be checked

— Class of programs or models that can be checked

— Computational effort in checking

— Human effort in producing models and specifying properties



[ N aF

D laYera\
NCS5VUUI
Properties to

be proved A

complex

simple
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finite state
verification

symbolic execution

and formal reasonino

applies techniques from

symbolic execution

and formal verification

to models that abstract

the potentially infinite state space
of program behavior

control into finite representations
and data flow
models :
Computational
low high > cost
Konkuk University 123
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« Human effort and skill are required.
— to prepare a finite state model
— to prepare a suitable specification for automated analysis

 lterative process of FSV
1. Prepare a model and specify properties
2. Attempt verification
3. Receive reports of impossible or unimportant faults
4. Refine the specification or the model
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public static Tablel
getTablel () {
if (ref == null) {
synchronized (Tablel) {
if (ref == null) {
ref = new Tablel();
ref.initialize();
}
}
}
return ref;

Jooo

~ Direct check of source/design

PROGRAM or DESIGN (impractical or impossible)

Derive models
of software
or design

| Algorithmic check
of the model for the property

MODEL

No concurrent
modifications of
Table1

PROPERTY OF INTEREST

Implication

_y PROPERTY OF THE MODEL

never(<d>and <y>)
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« Concurrent (multi-threaded, distributed, ...) system
— Difficult to test thoroughly (apparent non-determinism based on scheduler)
— Sensitive to differences between development environment and field
environment
— First and most well-developed application of FSV

« Data models
— Difficult to identify “corner cases” and interactions among constraints, or to
thoroughly test them

« Security
— Some threats depend on unusual (and untested) use
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« Deriving a good finite state model is hard.

« Example: FSM model of a program with multiple threads of control
— Simplifying assumptions
* We can determine in advance the number of threads.
* We can obtain a finite state machine model of each thread.
* We can identify the points at which processes can interact.
— State of the whole system model
« Tuple of states of individual process models
— Transition

+ Transition of one or more of the individual processes, acting individually or in
concert
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« On-line purchasing system

« Specification
— In-memory data structure initialized by reading configuration tables at system
start-up
— Initialization of the data structure must appear atomic.
— The system must be reinitialized on occasion
— The structure is kept in memory.

« Implementation with bugs)
— No monitor (e.g. Java synchronized), because it'a too expensive.
— But, use double-checked locking idiom* for a fast system

— *Bad decision, broken idiom ... but extremely hard to find the bug through
testing.
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public void reinit() { needslInit = true; }
class Table1 {
private synchronized void initialize() {
private static Table1 ref = null;

private boolean needslInit = true; needslnit = false:
private ElementClass [ ] theValues; }
private Table1() { }
public int lookup(int i) {
public static Table1 getTable1() { if (needslnit) {
if (ref == null) synchronized(this) {
{ synchedlnitialize(); } if (needslnit) {
return ref; this.initialize();
) }
private static synchronized void synchedlnitialize() { }
if (ref == null) { return theValuesJi].getX() + theValues]i].getY();
ref = new Table1(); }

ref.initialize();
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Start from models of individual
threads

— Systematically trace all the
possible interleaving of threads

— Like hand-executing all possible
sequences of execution, but
automated

Analysis begins by constructing
an FSM model of each individual
thread.

1 Iﬁflf'\ —-\n:nm Cric+n
ILHdDHIy JYDLC
(a)
lookup()

needslnit==true

—~
()
-~

obtain lock

(c)
needslnit==true

(d)
modifying

needslnit==false

needslnit==false

needslnit=false

¥E}f

,—release lock

)

reading

(x)

reinit()

needslnit=true

(%)

@
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ANAIYSIS (Continued)

Java threading rules:

— When one thread has obtained a monitor lock, the other thread cannot
obtain the same lock

Locking
— Prevents threads from concurrently calling initialize

— Does not prevent possible race condition between threads executing the
lookup method

Tracing possible executions by hand is completely impractical.
Use a finite state verification using SPIN model checker
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proctype Lookup(int id
if :: (needslInit) ->

atomic {! locked -> locked = true; };

if :: (needslnit) ->
assert (! modifying);
modifying = true;
[* Initialization happens here */
modifying = false ;
needslnit = false;

.. (! needslinit) ->
skip;

locked = false ;

assert (! modifying);}

Konkuk University
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« Spin
— Depth-first search of possible executions of the model
— Explores 10 states and 51 state transitions in 0.16 seconds

— Finds a sequence of 17 transitions from the initial state of the model to a
state in which one of the assertions in the model evaluates to false

Depth=10 States=51 Transitions=92 Memory=2.302

pan: assertion violated !(modifying) (at depth 17)
pan: wrote pan_in.trail

(Spin Version 4.2.5 —-- 2 April 2005)

6-16 real 0.00 user 0.03 sys

Konkuk University 133
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proc 3 (lookup) proc 1 (reinit) proc 2 (lookup)
((a)jpublic init lookup(int i)
((b)) if (needslnit) {
((c)) synchronized(this) {
((d)) if (needsinit) {
(@) this.initialize();
}
¥
}
((x))public void reinit()
() { needslnit = true; }
((a)/public init lookup(int i)
((b)) if (needslnit) {
return ((c)) synchronized(this) {
theValuesJi].getX() : ((d)) if (needslnit) {
+ theValues]i].getY(); R::za:ol‘:lvc?itt?on this.initialize();
}

States (f) and (d)



The State Space Explosion Problem
« Dining philosophers - looking for deadlock with SPIN
5 phils+forks 145 states
deadlock found
10 phils+forks 18,313 states
error trace too long to be useful
15 phils+forks 148,897 states

error trace too long to be useful

e Team Practice and Homework.
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« Verifying correspondence between model and program
— Extract the model from the source code with verified procedures
 Blindly mirroring all details = state space explosion
« Omitting crucial detail - “false alarm” reports

— Produce the source code automatically from the model
» Most applicable within well-understood domains

— Conformance testing
« Combination of FSM and testing is a good tradeoff
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We can find the race only with

fine-grain models.

@),

(b) t=t+1;

(x)

u=u+1;

(2)

(d)
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« Compilers may rearrange the order of instruction.

— A simple store of a value into a memory cell may be compiled into a store
into a local register, with the actual store to memory appearing later.

— Two loads or stores to different memory locations may be reordered for
reasons of efficiency.

— Parallel computers may place values initially in the cache memory of a local
processor, and only later write into a memory area.

Even representing each memory access as an individual action is not
always sufficient.

Example: Double-check idiom only for lazy initialization

— Spin assumes that memory accesses occur in the order given in the PROMELA
program, and we code them in the same order as the Java program.

— But, Java does not guarantee that they will be executed in that order.
— And, SPIN would find a flaw.
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Enumerating all reachable states is a limiting factor of finite state
verification.

We can reduce the space by using intentional (symbolic) representations.
— describe sets of reachable states without enumerating each one individually

Example (set of Integers)

— Enumeration {2, 4, 6, 8, 10, 12, 14, 16, 18}

— Intentional representation: {x&N | x mod 2 =0 and 0<x<20}
< "characteristic function”

Intentional models do not necessarily grow with the size of the set they
represent
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OBDD (Ordered Binary Decision Diagram)
— A compact representation of Boolean functions

e Characteristic function for transition relations

— Transitions = pairs of states

— Function from pairs of states to Booleans is true, if the there is a transition
between the pair.

— Built iteratively by breadth-first expansion of the state space:
« Create a representation of the whole set of states reachable in k+1 steps from the
set of states reachable in k steps

« OBDD stabilizes when all the transitions that can occur in the next step are already
represented in the OBDD.
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Intentional representation itself is not enough.

We must have an algorithm for determining whether it satisfies the
property we are checking.

Example: A set of communicating state machines using OBDD
— To represent the transition relation of a set of communicating state machines
— To model a class of temporal logic specification formulas

Combine OBDD representations of model and specification to produce a
representation of just the set of transitions leading to a violation of the
specification

— If the set is empty, the property has been verified.



Representing Transition Relations as

Boolean Functions

a=bandc
not(a) or (b and ¢)

BDD is a decision tree that has
been transformed into an acyclic
graph by merging nodes leading
to identical sub-trees.




Representing Transition Relations as
Boolean Functions : Steps

- (A) 1
A. Assign a label to each state : (Oo)a (x0=0)
PR 0
B. Encode transitions
b (x0=1)

C. The transition tuples correspond I
to paths leading to true, and all
other paths lead to false.

——————

sym from state to state




« Worst case:
— Given a large set S of states,

— a representation capable of distinguishing each subset of S cannot be more
compact on average than the representation that simply lists elements of the
chosen subset.

« Intentional representations work well when they exploit structure and
regularity of the state space.
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Construction of finite state models

— Should balance precision and efficiency
Often the first model is unsatisfactory

— Report potential failures that are obviously impossible
— Exhaust resources before producing any result

Minor differences in the model can have large effects on tractability of
the verification procedure.

Finite state verification as iterative process is required.



construct an
initial model

exhausts
computational

" attempt verification

N

resources

e

abstract the model
further

Konkuk University
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M;|=P Initial (coarse grain) model
(The counter example that violates P is possible in My,
but does not correspond to an execution of the real program.)

M, |=P Refined (more detailed) model
(the counterexample above is not possible in M, , but a new
counterexamples violates M, , and does not correspond to an
execution of the real program too.)

M, |= P Refined (final) model
(the counter example that violates P in M, corresponds to an
execution in the real program.)

Konkuk University 148



Refinement 2: Add Premises to the Property

Initial (coarse grain) model
M|=P

Add a constraint C; that eliminates the bogus behavior
M|=C, =P

M |: (Cl and C2) — P

Until the verification succeeds or produces a valid counter example
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Another application of FSV, besides concurrent systems

Many information systems are characterized by
— Simple logic and algorithms
— Complex data structures

Key element of these systems is the data model

(UML class and object diagrams + OCL assertions)
= Sets of data and relations among them

The challenge is to prove that
— Individual constraints are consistent.
— They ensure the desired properties of the system as a whole.

Q
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A set of pages divided among three kinds of pages
— Unrestricted pages: freely accessible
— Restricted pages: accessible only to registered users
— Maintenance pages: inaccessible to both sets of users

A set of users:
— administrator, registered, and unregistered

A set of links relations among pages
— Private links lead to restricted pages
— Public links lead to unrestricted pages
— Maintenance links lead to maintenance pages

A set of access rights relations between users and pages
— Unregistered users can access only unrestricted pages
— Registered users can access both restricted and unrestricted pages
— Administrator can access all pages including maintenance pages
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users page
AVAVAN AVAVAN
unregistered unrestricted maintenanc
public
privatj
—! registered Lpublic restricted .
administrator L private ] maintenance
| _maintenance={
/N
LEGEND
A Set B A : B
specializes
L> set A : :
B There is a relation r
between sets A and B
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module WebSite signature: set Page

/[ Pages include three disjoint sets of links /

sig Page {disj linksPriv, linksPub, linksMain: set Page }

/] Each type of link points to a particular class of page ' C0n5traint5'
fact connPub {all p:Page, s: Site | p.linksPub in s.unres } introduce relations

fact connPriv {all p:Page, s: Site | p.linksPriv in s.res }
fact connMain {all p:Page, s: Site | p.linksMain in s.main }%

Il Self loops are not allowed
fact noSelfLoop {no p:Page| p in p.linksPriv+p.linksPub+p.linksMain }
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/[ Users are characterized by the set of pages that they can access
sig User { pages: set Page }
/[ Users are partitioned into three sets
part sig Administrator, Registered, Unregistered extends User { }
/[ Unregistered users can access only the home page, and unrestricted pages
fact accUnregistered {
all u: Unregistered, s: Site|u.pages = (s.home+s.unres)
}
/] Registered users can access the home page,restricted and unrestricted pages
fact accRegistered {

all u: Registered, s: Site|u.pages = (s.home+s.res+s.unres)
/[ Administrators can access all pages
fact accAdministrator {
all u: Administrator, s: Site| Constraints map
u.pages = (s.home+s.res+s.unres+s.main) users to pages

n

D

-
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Spec

« Overconstrained specifications are not satisfiable by any implementation.
« Underconstrained specifications allow undesirable implementations.

« Specifications identify infinite sets of solutions.
— Therefore, properties of a relational specification are undecidable.

« A (counter) example that invalidates a property can be found within a
finite set of small models.

— Then, we can verify a specification over a finite set of solutions by limiting the
cardinality of the sets
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« If an example is found,
— There are no logical contradictions in the model.
— The solution is not overconstrained.

« If no counterexample of a property is found,

No reasonably small solution (property violation) exists.
BUT, NOT that NO solution exists.

We depend on a “small scope hypothesis”: Most bugs that can cause failure
with large collections of objects can also cause failure with very small
collections. (so it's worth looking for bugs in small collections even if we can't
afford to look in big ones)



Analysis of the Simple Web Site Specification

Cardinality limit:
Consider up to 5 objects of each type

run init for 5 /

// Can unregistered users visit all unrestricted pages?
assert browsePub {
all p: Page, s: Site | p in s.unres implies s.home in p.* linksPub

}

check browsePub for 3

*

Transitive closure

Property to be checked , _
(including home)

Konkuk University 157
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Counterexample:

« Unregistered User 2 cannot visit the
unrestricted page page 2.

« The only path from the home page
to page 2 goes through the
restricted page page 0.

« The property is violated because
unrestricted browsing paths can be

interrupted by restricted pages or
pages under maintenance.
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We can modified the problem by eliminating public links from
maintenance or reserved pages:

fact descendant {
all p:Pages, s:Site|p in s.main+s.res
implies no p. links.linkPub

Analysis would find no counterexample of cardinality 3.

We cannot conclude that no larger counter-example exists, but we may
be satisfied that there is no reason to expect this property to be violated
only in larger models.
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« Finite state verification is complementary to testing.
— Can find bugs that are extremely hard to test for

« Example: race conditions that happen very rarely, under conditions that
are hard to control

— But is limited in scope
« Cannot be used to find all kinds of errors

« Checking models can be (and is) automated

« But designing good models is challenging.

« Requires careful consideration of abstraction, granularity, and the
properties to be checked

« Often requires a cycle of model / check / refine until a useful result is
obtained
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Understand the purpose of defining test adequacy criteria, and their
limitations

Understand basic terminology of test selection and adequacy

Know some sources of information commonly used to define adequacy
criteria

Understand how test selection and adequacy criteria are used
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«  What we would like to know:
— A real way of measuring effective testing
— "If the system passes an adequate suite of test cases, then it must be correct”

But that's impossible.
— Adequacy of test suites, in the sense above, is provably undecidable.

« So we'll have to settle on weaker proxies for adequacy.
— Design rules to highlight inadequacy of test suites
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« Many design disciplines employ design rules.

— "Traces (on a chip, on a circuit board) must be at least __ wide and separated
by at least __"

— "The roof must have a pitch of at least ___ to shed snow.”

— "Interstate highways must not have a grade greater than 6% without special
review and approval.”

« Design rules do not guarantee good designs.
— Good design depends on talented, creative, disciplined designers.
— Design rules help them avoid or spot flaws.
— Test design is no different.
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« Criteria identifying inadequacies in test suites
— Examples:

— If the specification describes different treatment in two cases, but the test
suite does not check that the two cases are in fact treated differently, we may
conclude that the test suite is inadequate to guard against faults in the
program logic.

— If no test in the test suite executes a particular program statement, the test
suite is inadequate to guard against faults in that statement.

« If a test suite fails to satisfy some criterion, the obligation that has not
been satisfied may provide some useful information about improving the
test suite.

« If a test suite satisfies all the obligations by all the criteria, we do not
know definitively that it is an effective test suite, but we have some
evidence of its thoroughness.
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« Test case
— a set of inputs, execution conditions, and a pass/fail criterion

« Test case specification (Test specification)
— a requirement to be satisfied by one or more test cases

- Test obligation

— a partial test case specification, requiring some property deemed important to
thorough testing

 Test suite
— a set of test cases

« Test or test execution
— the activity of executing test cases and evaluating their results

« Adequacy criterion
— a predicate that is true (satisfied) or false of a (program, test suite) pair
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Functional (black box, specification-based) testing:
— from software specifications

— Example: If spec requires robust recovery from power failure, test obligations should
include simulated power failure.

Structural (white or glass box) testing:

— from code
— Example: Traverse each program loop one or more times.

Model-based testing:
— from model of system
— Models used in specification or design, or derived from code
— Example: Exercise all transitions in communication protocol model

Fault-based testing:
— from hypothesized faults (common bugs)

— Example: Check for buffer overflow handling (common vulnerability) by testing on very
large inputs
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« Adequacy criterion = Set of test obligations

« A test suite satisfies an adequacy criterion if
— All the tests succeed (pass)

— Every test obligation in the criterion is satisfied by at least one of the test
cases in the test suite.

— Example:
« "The statement coverage adequacy criterion is satisfied by test suite S for

program P, if each executable statement in P is executed by at least one
test case in S, and the outcome of each test execution was pass.”’
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« Sometimes no test suite can satisfy a criterion for a given program.

— Example:
« Defensive programming style includes “can’t happen” sanity checks

« if (z<0)¢{
throw new LogicError(“z must be positive here!”)

}

* No test suite can satisfy statement coverage for this program. (if it's
correct)
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« Approach A
— Exclude any unsatisfiable obligation from the criterion

— Example: modify statement coverage to require execution only of statements
that can be executed

— But we can't know for sure which are executable.

« Approach B
— Measure the extent to which a test suite approaches an adequacy criterion
— Example: if a test suite satisfies 85 of 100 obligations, we have reached 85%
coverage.
— Terms:

* An adequacy criterion is satisfied or not.
« A coverage measure is the fraction of satisfied obligations.
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« Measuring coverage (% of satisfied test obligations) can be a useful
indicator of
— Progress toward a thorough test suite
— Trouble spots requiring more attention

« But, coverage is only a proxy for thoroughness or adequacy.

— It's easy to improve coverage without improving a test suite (much easier
than designing good test cases)

— The only measure that really matters is (cost-)effectiveness
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« Can we distinguish stronger from weaker adequacy criteria?

« Empirical approach
— Study the effectiveness of different approaches to testing in industrial practice
— What we really care about, depends on the setting.
— May not generalize from one organization or project to another

« Analytical approach

— Describe conditions under which
than another
— Stronger = gives stronger guarantees

— One piece of the overall “effectiveness” question

one adeqgu
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Test adequacy criterion A subsumes test adequacy criterion B iff, for
every program A, every test suite satisfying A with respect to P also
satisfies B with respect to 2.

« Example:

— Exercising all program branches (branch coverage) subsumes exercising all
program statements.

« A common analytical comparison of closely related criteria

— Useful for working from easier to harder levels of coverage, but not a direct
indication of quality
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« Test selection approaches
— Guidance in devising a thorough test suite

« Example: A specification-based criterion may suggest test cases covering
representative combinations of values.

« Revealing missing tests
— Post hoc analysis: What might [ have missed with this test suite?

« Often in combination

— Example: Design test suite from specifications, then use structural criterion
(e.g., coverage of all branches) to highlight missed logic.
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« Adequacy criteria provide a way to define a notion of “thoroughness” in
a test suite.
— But they don't offer guarantees.
— More like design rules to highlight inadequacy

« Adequacy criteria are defined in terms of “covering” some information
— Derived from many sources(specs, code, models, etc.)

« Adequacy critiria may be used for selection as well as measurement.
— But, an aid to thoughtful test design, not a substitute
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Understand the rationale for systematic (non-random) selection of test
cases

— Understand the basic concept of partition testing and its underlying
assumptions

Understand why functional test selection is a primary, base-line
technique

— Why we expect a specification-based partition to help select valuable test
cases

Distinguish functional testing from other systematic testing techniques



« Functional testing
— Deriving test cases from program specifications

— 'Functional’ refers to the source of information used in test case design, not
to what is tested.

« Also known as:
— Specification-based testing (from specifications)
— Black-box testing (no view of the code)

« Functional specification = description of intended program behavior
— either formal or informal

Konkuk University 181
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« Random (uniform) testing
— Pick possible inputs uniformly

— Avoids designer bias

* A real problem: The test designer can make the same logical mistakes and bad
assumptions as the program designer, especially if they are the same person.

— But treats all inputs as equally valuable

« Systematic (non-uniform) testing
— Try to select inputs that are especially valuable

— Usually by choosing representatives of classes that are apt to fail often or not
at all

« Functional testing is a systematic (partition) testing strategy.

Konkuk University 182
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« Due to non-uniform distribution of faults

., ., . . . —b+ /b2 — 4ac
— Example: Java class “roots” applies quadratic equation z = 5
a

— Incomplete implementation logic: Program does not properly handle the
case in which b? - 4ac =0 and a=0

— Failing values are sparse in the input space : needles in a very big haystack.
— Random sampling is unlikely to choose a=0 and b=0.
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To estimate the proportion of needles to hay

- Sample randomly !!
— Reliability estimation requires unbiased samples for valid statistics.
— But that's not our goal!

To find needles and remove them from hay
- Look systematically (non-uniformly) for needles !!

— Unless there are a lot of needles in the haystack, a random sample will not be
effective at finding them.

— We need to use everything we know about needles.
« E.g. Are they heavier than hay? Do they sift to the bottom?
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Exploit some knowledge to choose samples that are more likely to
include “special” or "trouble-prone” regions of the input space

— Failures are sparse in the whole input space.

— But, we may find regions in which they are dense.

(Quasi*-) Partition testing: separates the input space into classes whose
union is the entire space
— *Quasi because: The classes may overlap

Desirable case: Each fault leads to failures that are dense (easy to find) in
some class of inputs

— Sampling each class in the quasi-partition selects at least one input that leads
to a failure, revealing the fault.

— Seldom guaranteed; We depend on experience-based heuristics.
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Functional testing uses the specification (formal or informal) to partition
the input space.

— E.g. Specification of “roots” program suggests division between cases with
zero, one, and two real roots.

Test each category, and boundaries between categories.

— No guarantees, but experience suggests failures often lie at the boundaries
(as in the “roots” program)

Functional Testing is a base-line technique for designing test cases.



The base-line technique for designing test cases
— Timely
« Often useful in refining specifications and assessing testability before
code is written
— Effective

« Find some classes of fault (e.g. missing logic) that can elude other
approaches

— Widely applicable
« To any description of program behavior serving as specification
« At any level of granularity from module to system testing

— Economical

« Typically less expensive to design and execute than structural (code-
based) test cases
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« Program code is not necessary.
— But, only a description of intended behavior is needed.
— Even incomplete and informal specifications can be used.

« Early functional test design has side benefits.
— Often reveals ambiguities and inconsistency in specification
— Useful for assessing testability
« Improving test schedule and budget by improving specification
— Useful explanation of specification
« In the extreme case (as in XP), test cases are the specification.
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Different testing strategies (functional, structural, fault-based, model-
based, etc.) are most effective for different classes of faults.

« Functional testing is best for missing logic faults.
— A common problem: Some program logic was simply forgotten.
— Structural (code-based) testing will never focus on code that isn’t there!

« Functional test applies at all granularity levels:

— Unit (from module interface spec)
_ ntonratinn (fra ADT Ar cithcvcta nr)
J.IILCEJICILIUII \IIUIII mi 1 Ul .)UIJ.)_)’DLCIII .)rJC\.}
— System (from system requirements spec)
— Regression (from system requirements + bug history)

« Structural test design applies to relatively small parts of a system:
— Unit
— Integration
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Functional specifications
Brute force testing

Identify ind dently testable feat . .
entify independently testable features Finite State Machine,

Grammar,
Algebraic Specification,
Logic Specification,
CFG / DFG

Independently Testable Feature

Identify representative value Derive a model

Representative Values

Generate test case specifications

Semantic Constraint,
Combinational Selection,
Exhaustive Enumeration,
Random Selection

Test selection
criteria

Manual Mapping,
Symbolic Execution,

Test Case Specification

Generate test case

A-posteriori Satisfaction

Instantiate tests

Scaffolding
Konkuk University 191
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Main Steps: From Specification to Test Cases

1. Identify independently testable features
— If the specification is large, break it into independently testable features to be
considered in testing.

2. Identify representative classes of values, or derive a model of behavior
— Often simple input/output transformations don’t describe a system.

— We use models in program specification, in program design, and in test
design.

3. Generate test case specifications
— Typically, combinations of input values or model behaviors

4. Generate test cases and instantiate tests
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Functional testing (generating test cases from specifications) is a valuable
and flexible approach to software testing.

— Applicable from very early system specifications right through module
specifications

(quasi-) Partition testing suggests dividing the input space into (quasi-)
equivalent classes.

— Systematic testing is intentionally non-uniform to address special cases, error
conditions, and other small places.

— Dividing a big haystack into small, hopefully uniform piles where the needles
might be concentrated.
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« Understand three key ideas in combinational approaches
— Category-partition testing
— Pairwise testing
— Catalog-based testing
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« Combinatorial testing identifies distinct attributes that can be varied
— In the data, environment or configuration

— Example: Browser could be “IE" or “Firefox”, operating system could be "Vista”,
IIXPII Or IIOSXII

« It systematically generate combinations to be tested.
— Example: IE on Vista, IE on XP, Firefox on Vista, Firefox on OSX, etc.

» Rationale: Test cases should be varied and include possible “corner cases.”
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« (Category-partition testing
— Separate (manual) identification of values that characterize the input space
from (automatic) generation of combinations for test cases

« Pairwise testing

— Systematically test interactions among attributes of the program input space
with a relatively small number of test cases

« (Catalog-based testing

— Aggregate and synthesize the experience of test designers in a particular
organization or application domain, to aid in identifying attribute values
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1. Decompose the specification into independently testable features
— for each feature, identify parameters and environment elements

— for each parameter and environment element, identify elementary
characteristics (categories)

2. Identify representative values
— for each characteristic (category), identify (classes of) values
* normal values
* boundary values
+ special values
 error values

3. Generate test case specifications



An Example:
Informal Specification of “Check Configuration”

« In the Web site of a computer manufacturer,

« Check Configuration
— Check the validity of a computer configuration
— Its parameters are ‘Model’ and 'Set of Components”.



Model: A model identifies a specific product and determines a set of
constraints on available components. Models are characterized by logical
slots for components, which may or may not be implemented by physical
slots on a bus. Slots may be required or optional. Required slots must be
assigned with a suitable component to obtain a legal configuration, while
optional slots may be left empty or filled depending on the customer’s
needs.

Example: The required “slots” of the Chipmunk C20 laptop computer include
a screen, a processor, a hard disk, memory, and an operating system. (Of
these, only the hard disk and memory are implemented using actual
hardware slots on a bus.) The optional slots include external storage devices
such as a CD/DVD writer.

Konkuk University
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Set of Components: A set of (slot, component) pairs, corresponding to the
required and optional slots of the model. A component is a choice that can
be varied within a model, and which is not designed to be replaced by the
end user. Available components and a default for each slot is determined
by the model. The special value empty is allowed (and may be the default
selection) for optional slots. In addition to being compatible or incompatible
with a particular model and slot, individual components may be compatible

or incompatible with each other.

Example: The default configuration of the Chipmunk C20 includes 20
gigabytes of hard disk; 30 and 40 gigabyte disks are also available. (Since
the hard disk is a required slot, empty is not an allowed choice.) The default
operating system is RodentOS 3.2, personal edition, but RodentOS 3.2
mobile server edition may also be selected. The mobile server edition
requires at least 30 gigabytes of hard disk.
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Step 1: Identify Independently Testable
Features and Parameter Characteristics

« Choosing categories
— No hard-and-fast rules for choosing categories
— Not a trivial task!

« Categories reflect test designer's judgment.

— Regarding which classes of values may be treated differently by an
implementation

« Choosing categories well requires experience and knowledge.
— of the application domain and product architecture.

— The test designer must look under the surface of the specification and
identify hidden characteristics.
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Parameter Model

Model number

— Number of required slots for selected model (#SMRS)

Number of optional slots for selected model (#SMOS)

Parameter Components

Correspondence of selection with model slots

Number of required components with selection = empty
Required component selection

Number of optional components with selection = empty
Optional component selection

Environment element: Product database

Number of models in database (#DBM)
Number of components in database (#DBC)
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« Identify (list) representative classes of values for each of the categories

— Ignore interactions among values for different categories (considered in the
next step)

« Representative values may be identified by applying
— Boundary value testing
« Select extreme values within a class
« Select values outside but as close as possible to the class
« Select interior (non-extreme) values of the class
— Erroneous condition testing
 Select values outside the normal domain of the program



Model number

— Malformed

— Not in database
— Valid

Number of required slots for selected model (#SMRS)
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« Correspondence of selection with model slots
— Omitted slots
— Extra slots
— Mismatched slots
— Complete correspondence

« Number of required components with non empty selection

number required slots
number required slots

n A O

« Required component selection
— Some defaults
— All valid
— > 1 incompatible with slots
— > 1 incompatible with another selection
— > 1 incompatible with model
— >1 not in database
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« Number of optional components with non empty selection
- 0
— < #SMOS
— = #SMOS

« Optional component selection
— Some defaults
— All valid
— > 1 incompatible with slots
- >1 mrnmpnflhlp with another selection
> 1 incompatible with model
— > 1 not in database



«  Number of models in database (#DBM)
- 0
-1
— Many

* Number of components in database (#DBC)
-0
-1
— Many

« Note 0 and 1 are unusual (special) values.

— They might cause unanticipated behavior alone or in combination with
particular values of other parameters.
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A combination of values for each category corresponds to a test case
specification.

— In the example, we have 314.928 test cases.

— most of which are impossible!

— Example: zero slots and at least one incompatible slot

Need to introduce constraints to
— Rule out impossible combinations
— Reduce the size of the test suite if too large

[error] indicates a value class that corresponds to an erroneous values.
— Need be tried only once

Error value class
— No need to test all possible combinations of errors, and one test is enough.



LITOUI 0Ol Iouadlliilo

Model number
Malformed [error]
Not in database [error]
Valid

Correspondence of selection with model slots
Omitted slots [error]
Extra slots [error]
Mismatched slots [error]

Complete correspondence
Number of required comp. with non empty selection

0 [error]

< number of required slots [error]
Required comp. selection

> 1 not in database [error]
Number of models in database (#DBM)

0 [error]

Number of components in database (#DBC)
0 [error]

Error constraints reduce
test suite from 314.928
to 2.711 test cases
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Constraint [property] [if-property] rule out invalid combinations of values.

[property] groups values of a single parameter to identify subsets of
values with common properties.

[if-property] bounds the choices of values for a category that can be
combined with a particular value selected for a different category
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Number of required comp. with non empty selection = number required slots
[if RSMANY]

only with
Number of required slots for selected model (#SMRS) = Many [Many]
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Number of required slots for selected model (#SMRS)
1 [property RSNE]
Many [property RSNE] [property RSMANY]

Number of optional slots for selected model (#SMOS)
1 [property OSNE]
Many [property OSNE] [property OSMANY]

Number of required comp. with non empty selection

0 [if RSNE] [error]

< number required slots [if RSNE] [error]

= number required slots [if RSMANY]
Number of optional comp. with non empty selection

< number required slots [if OSNE]

= number required slots [if OSMANY]

from 2.711 to 908
test cases
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[single] indicates a value class that test designers choose to test only
once to reduce the number of test cases.

Example

— Value some default for required component selection and optional
component selection may be tested only once despite not being an
erroneous condition.

Note

— Single and error have the same effect but differ in rationale. Keeping them
distinct is important for documentation and regression testing.



. CAnctraintce
Iy CONStraints
Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]
Number of optional slots for selected model (#SMOS)
0 [single]
1 [single] [property OSNE]
Required component selection
Some default [single]
O tional component s selection
Some default [single]
Number of models in database (#DBM)
1 [single]
Number of components in database (#DBC)
1 [single]

from 908 to 69
test cases
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Parameter Model
. Model number
- Malformed [error]
- Not in database [error]
- Valid
. Number of required slots for selected model (#SMRS)
- 0 [single]
- 1 [property RSNE] [single]
- Many [property RSNE] [property RSMANY]

. Number of optional slots for selected model (#SMOS)

- 0 [single]
- 1 [property OSNE] [single]
- Many [property OSNE] [property OSMANY]

Environment Product data base

. Number of models in database (#DBM)
- 0 [error]
- 1 [single]
- Many
. Number of components in database (#DBC)
- 0 [error]
- 1 [single]
- Many

Konkuk University
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Parameter Component
«  Correspondence of selection with model slots

—  Omitted slots [error]
—  Extra slots [error]
—  Mismatched slots [error]

—  Complete correspondence

«  # of required components (selection = empty)
- 0 [if RSNE] [error]
- < number required slots [if RSNE] [error]

— = number required slots [if RSMANY]
. Required component selection
—  Some defaults [single]

— Allvalid

— 21 incompatible with slots

— =1 incompatible with another selection
— 21 incompatible with model

— 2>1 not in database [error]

«  # of optional components (selection = empty)

- 0
- < #SMOS [if OSNE]
— = #SMOS [if OSMANY]
. Opt|ona| component selection
Some defaults [single]

— Allvalid

— 21 incompatible with slots

— =1 incompatible with another selection
— 21 incompatible with model

— 2>1 not in database [error]
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« (Category partition testing gave us
— Systematic approach:
« Identify characteristics and values (the creative step)
« Generate combinations (the mechanical step)

« But, test suite size grows very rapidly with number of categories.

« Pairwise (and n-way) combinatorial testing is a non-exhaustive approach.
— Combine values systematically but not exhaustively

— Rationale: Most unplanned interactions are among just two or a few
parameters or parameter characteristics .
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« (Category partition works well when intuitive constraints reduce the
number of combinations to a small amount of test cases.

— Without many constraints, the number of combinations may be
unmanageable.

« Pairwise combination (instead of exhaustive)
— Generate combinations that efficiently cover all pairs (triples,...) of classes

— Rationale: most failures are triggered by single values or combinations of a

few values. Covering pairs (triples,...) reduces the number of test cases, but
reveals most fauits.
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No constraints reduce the total number of combinations 432 (3x4x3x4x3)

test cases, if we consider all combinations.

Display Mode Language Fonts Color Screen size

full-graphics English Minimal Monochrome Hand-held

text-only French Standard Color-map Laptop

limited-bandwidth | Spanish Docurent: 16-bit Full-size
Portuguese True-color
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Language Color Display Mode Fonts Screen Size
English Monochrome Full-graphics Minimal Hand-held
English Color-map Text-only Standard Full-size
English 16-bit Limited-bandwidth - Full-size
English True-color Text-only Document-loaded Laptop
French Monochrome Limited-bandwidth Standard Laptop
French Color-map Full-graphics Document-loaded Full-size
French 16-bit Text-only Minimal -
French True-color - - Hand-held
Spanish Monochrome - Document-loaded Full-size
Spanish Color-map Limited-bandwidth Minimal Hand-held
Spanish 16-bit Full-graphics Standard Laptop
Spanish True-color Text-only - Hand-held
Portuguese - - Monochrome Text-only
Portuguese Color-map - Minimal Laptop
Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held
Portuguese True-color Full-graphics Minimal Full-size
Portuguese True-color Limited-bandwidth Standard Hand-held
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« Simple constraints

« Example: “"Color monochrome not compatible with screen laptop and full

S
n

size” can be handled by considering the case in separate tables

Display Mode Language Fonts Color Screen size
full-graphics English Minimal Monochrome Hand-held
text-only French Standard Color-map
limited-bandwidth Spanish Document-loaded 16-bit
Portuguese True-color
Display Mode Language Fonts Color Screen size
full-graphics English Minimal
text-only French Standard Color-map Laptop
limited-bandwidth Spanish Document-loaded 16-bit Full-size
Portuguese True-color
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« (Category-partition approach gives us

— Separation between (manual) identification of parameter characteristics and
values and (automatic) generation of test cases that combine them

— Constraints to reduce the number of combinations

« Pairwise (or n-way) testing gives us
— Much smaller test suites, even without constraints
— But, we can still use constraints

«  We still need help to make the manual step more systematic.
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Deriving value classes requires human judgment.

Gathering experience in a systematic collection can
— Speed up the test design process
— Routinize many decisions, better focusing human effort
— Accelerate training and reduce human error

Catalogs capture the experience of test designers by listing important
cases for each possible type of variable.

— Example: If the computation uses an integer variable, a catalog might indicate
the following relevant cases

« The element immediately preceding the lower bound
The lower bound of the interval

A non-boundary element within the interval

The upper bound of the interval

The element immediately following the upper bound
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1. Identify elementary items of the specification
— Pre-conditions
— Post-conditions
— Definitions
— Variables
— Operations

2. Derive a first set of test case specifications from pre-conditions, post-
conditions and definitions

3. Complete the set of test case specifications using test catalogs
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« An information specification of “cgi_decode”

« Function cgi_decode translates a cgi-encoded string to a plain ASCII
string, reversing the encoding applied by the common gateway interface
(CGI) of most web servers.

« (Gl translates spaces to +, and translates most other non-alphanumeric
characters to hexadecimal escape sequences.

« cgi_decode maps + to spaces, %xy (where x and y are hexadecimal digits)
to the corresponding ASCII character, and other alphanumeric characters
to themselves.
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[INPUT]: encoded A string of characters (the input CGI sequence)
containing below and terminated by a null character

— alphanumeric characters
— the character +
— the substring “%xy” , where x and y are hexadecimal digits

[OUTPUT]: decoded A string of characters (the plain ASCII characters
corresponding to the input CGI sequence)

— alphanumeric characters copied into output (in corresponding positions)
— blank for each '+' character in the input

— single ASCII character with value xy for each substring “%xy"

[OUTPUT]I: return value cgi_decode returns
— 0 for success
— 1 if the input is malformed
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Pre-conditions: conditions on inputs that must be true before the
execution

— Validated preconditions: checked by the system
— Assumed preconditions: assumed by the system

Post-conditions: results of the execution
Variables: elements used for the computation
Operations: main operations on variables and inputs

Definitions: abbreviations



Step 1: Identify Elementary Items of the
Specification

VAR 1 encoded: a string of ASCII characters
VAR 2 decoded: a string of ASCII characters
VAR 3 return value: a boolean

DEF 1 hexadecimal characters, in range [0'. '9", 'A" . 'F, 'a' .. 'f]
DEF 2 sequences %xy, where x and y are hexadecimal characters
DEF 3 CGI items as alphanumeric character, or '+, or CGI hexadecimal

OP 1 Scan the input string encoded

PRE 1 (Assumed) input string encoded null-terminated string of chars
PRE 2 (Validated) input string encoded sequence of CGI items

POST 1 if encoded contains alphanumeric characters, they are copied to the output string

POST 2 if encoded contains characters +, they are replaced in the output string by ASCII SPACE
characters

POST 3 if encoded contains CGI hexadecimals, they are replaced by the corresponding ASCII characters
POST 4 if encoded is processed correctly, it returns 0

POST 5 if encoded contains a wrong CGI hexadecimal (a substring xy, where either x or y are absent or
are not hexadecimal digits, cgi_decode returns 1

POST 6 if encoded contains any illegal character, it returns 1VAR 1 encoded: a string of ASCII characters

Konkuk University 229
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Validated preconditions:
— Simple precondition (expression without operators)
« 2 classes of inputs:
— inputs that satisfy the precondition
— inputs that do not satisfy the precondition
— Compound precondition (with AND or OR):
« apply modified condition/decision (MC/DC) criterion

Assumed precondition:
— apply MC/DC only to "OR preconditions”

Postconditions and Definitions:

— if given as conditional expressions, consider conditions as if they were
validated preconditions
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PRE 2 (Validated): the input string encoded is a sequence of CGI items
— TC-PRE2-1: encoded is a sequence of CGI items
— TC-PRE2-2: encoded is not a sequence of CGI items

POST 1: if encoded contains alphanumeric characters, they are copied in the
output string in the corresponding position

— TC-POST1-1: encoded contains alphanumeric characters
— TC-POST1-2: encoded does not contain alphanumeric characters

POST 2: if encoded contains characters +, they are replaced in the output
string by ASCII SPACE characters

— TC-POST2-1: encoded contains character +
— TC-POST2-2: encoded does not contain character +



POST 3: if encoded contains CGI hexadecimals, they are replaced by the
corresponding ASCII characters

— TC-POST3-1 Encoded: contains CGI hexadecimals
— TC-POST3-2 Encoded: does not contain a CGI hexadecimal

POST 4: if encoded is processed correctly, it returns 0

POST 5: if encoded contains a wrong CGI hexadecimal (a substring xy, where

either x or y are absent or are not hexadecimal digits, cgi_decode returns
1

— TC-POST5-1 Encoded: contains erroneous CGI hexadecimals

POST 6 if encoded contains any illegal character, it returns 1
— TC-POST6-1 Encoded: contains illegal characters



Step 3: Complete the Test Case
Specification using Catalog

« Scan the catalog sequentially

« For each element of the catalog
— Scan the specifications
— Apply the catalog entry

« Delete redundant test cases

« (Catalog:
— List of kinds of elements that can occur in a specification
— Each catalog entry is associated with a list of generic test case specifications.

« Example: Catalog entry Boolean
— Two test case specifications: true, false
— Label in/out indicate if applicable only to input, output, both
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Boolean

—  True [in/out]

— False [in/out]
Enumeration

— Each enumerated value [in/out]

— Some value outside the enumerated set

[in]

Range L .. U
- L1 [in]
- L [in/out]
— A value between L and U [in/out]
- U [in/out]
- U+l in]
Numeric Constant C
- C [in/out]
- C-1 [in]
- C+1 [in]
- ,[é\n other constant compatible with C
in

Konkuk University

Non-Numeric Constant C

- C [in/out]

— Any other constant compatible with C [in]

—  Some other compatible value [in]
Sequence

-  Empty [in/out]

— Assingle element [in/out]

—  More than one element [in/out]

— Maximum length (if bounded) or very long

[in/out]
— Longer than maximum length (if bounded) [in]
— Incorrectly terminated [in]

Scan with action on elements P
— P occurs at beginning of sequence [in]

— P occurs in interior of sequence [in]
— P occurs at end of sequence [in]
— PP occurs contiguously [in]
— P does not occur in sequence [in]
—  pP where p is a proper prefix of P [in]

—  Proper prefix p occurs at end of sequence [in]

234
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 Boolean
— True [in/out]
— False [in/out]

« Application to return value generates 2 test cases already covered by
TC-PRE2-1 and TC-PRE2-2
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 Enumeration
— Each enumerated value [in/out]
— Some value outside the enumerated set [in]

« Applications to CGI item (DEF 3)
— included in TC-POST1-1, TC-POST1-2, TC-POST2-1, TC-POST2-2, TC-POST3-1, TC-
POST3-2

» Applications to improper CGI hexadecimals

— New test case specifications
+ TC-POST5-2 encoded terminated with “%x”, where x is a hexadecimal digit

« TC-POST5-3 encoded contains “%ky”, where k is not a hexadecimal digit and y is a
hexadecimal digit

« TC-POST5-4 encoded contains “%xk”, where x is a hexadecimal digit and k is not
— Old test case specifications can be eliminated if they are less specific than the
newly generated cases.
« TC-POST3-1 encoded contains CGI hexadecimals
« TC-POST5-1 encoded contains erroneous CGI hexadecimals
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We can apply in the same ways.

range
* numeric constant

* non-numeric constant
* sequence
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TC-POST2-1:
TC-POST2-2:
TC-POST3-2:
TC-POST5-2:
TC-VARI-1:
TC-VAR1-2:
TC-VAR1-3:
TC-DEF2-1:
TC-DEF2-2:
TC-DEF2-3:
TC-DEF2-4:
TC-DEF2-5:
TC-DEF2-6:
TC-DEF2-7:
TC-DEF2-8:
TC-DEF2-9:

TC-DEF2-10:
TC-DEF2-11:
TC-DEF2-12:
TC-DEF2-13:
TC-DEF2-14:
TC-DEF2-15:

TC-DEF2-16:
TC-DEF2-17:
TC-DEF2-18:
TC-DEF2-19:
TC-DEF2-20:
TC-DEF2-21:
TC-DEF2-22:
TC-DEF2-23:
TC-DEF2-24:
TC-DEF2-25:
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encoded contains +

encoded does not contain +

encoded does not contain a CGI-hexadecimal
encoded terminated with %x

-

Q)

encoded is the empty sequence
encoded a sequence containing a single character
encoded is a very long sequence
encoded contains %/y

encoded contains %0y

encoded contains '%xy’ (x in [1..8])
encoded contains ' %9y’

encoded contains '%.y’

encoded contains ' %@y’

encoded contains ' %Ay’

encoded contains '%xy’ (x in [B..E])
encoded contains '%Fy’

encoded contains ' %Gy’
encoded contains %y’

encoded contains %ay

encoded contains %xy (xin [b..€l)
encoded contains %1y’

encoded contains %gy

—
M

~
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TC-DEF2-26:
TC-DEF2-27:
TC-DEF2-28:
TC-DEF2-29:
TC-DEF2-30:
TC-DEF2-31:
TC-DEF2-32:

TC-DEF3-1:
TC-DEF3-2:
TC-DEF3-3:
TC-DEF3-4:
TC-DEF3-5:
TC-DEF3-6:
TC-DEF3-7:
TC-DEF3-8:
TC-DEF3-9:

TC-DEF3-10:
TC-DEF3-11:
TC-DEF3-12:
TC-DEF3-13:
TC-DEF3-14:
TC-DEF3-15:

r-ﬂ(‘/\(‘
“dotC>o

encoded contains %x"’
encoded contains %xa
encoded contains %xy (yin [b..€])
encoded contains %xf
encoded contains %xg
encoded terminates with %
encoded contains %xyz
encoded contains /
encoded contains 0
encoded contains cin [1.8]
encoded contains 9
encoded contains .
encoded contains @
encoded contains A
encoded contains cin/B.Y]
encoded contains Z
encoded contains [
encoded contains '
encoded contains a
encoded contains cin [b.)]
encoded contains z
encoded contains {

encoded contains %x/

encoded contains %x0

encoded contains %xy (yin [1.8])
encoded contains %x9

encoded contains %x:

encoded contains %x@

encoded contains %xA

encoded contains %x(yin [B.£])
encoded contains %xF

encoded contains %xG

TC-OP1-1:
TC-OP1-2:
TC-OP1-3:
TC-OP1-4:
TC-OP1-5:
TC-OP1-6:
TC-OP1-7:

encoded starts with an alphanumeric character

encoded starts with +

encoded starts with %xy

encoded terminates with an alphanumeric character
encoded terminates with +

encoded terminated with %xy

encoded contains two consecutive alphanumeric characters
TC-OP1-8: encoded contains ++

TC-OP1-9: encoded contains %xy%zw

TC-OP1-10: encoded contains %x%yz
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From category partition testing:

— Division into a (manual) step of identifying categories and values, with
constraints, and an (automated) step of generating combinations

From catalog-based testing:

— Improving the manual step by recording and using standard patterns for
identifying significant values

From pairwise testing:
— Systematic generation of smaller test suites

These ideas can be combined.
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Requirements specifications typically begin in the form of natural
language statements.

— but flexibility and expressiveness of natural language is an obstacle to
automatic analysis.

Combinatorial approaches to functional testing consist of
— A manual step of structuring specifications into set of properties
— An automatizable step of producing combinations of choices

Brute force synthesis of test cases is tedious and error prone

Combinatorial approaches decompose brute force work into steps to
attack the problem incrementally by separating analysis and synthesis
activities that can be quantified and monitored, and partially supported
by tools.
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Understand rationale for structural testing

— How structural (code-based or glass-box) testing complements functional
(black-box) testing

Recognize and distinguish basic terms such as adequacy, coverage
Recognize and distinguish characteristics of common structural criteria
Understand practical uses and limitations of structural testing



« Judging test suite thoroughness based on the structure of the program
itself

— Also known as
e "white-box”,
« "glass-box", or
+ “code-based” testing
— To distinguish from functional (requirements-based, “black-box") testing

— Structural testing is still testing product functionality against its specification.
Only the measure of thoroughness has changed.
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« One way of answering the question “What is missing in our test suite?”

— If part of a program is not executed by any test case in the suite, faults in
that part cannot be exposed.

— But what's a “part”?
+ Typically, a control flow element or combination
« Statements (or CFG nodes), Branches (or CFG edges)
« Fragments and combinations: Conditions, paths

« Complements functional testing:
— Another way to recognize cases that are treated differently

« Recall fundamental rationale:
— Prefer test cases that are treated differently over cases treated the same
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Executing all control flow elements does not guarantee finding all faults.

— Execution of a faulty statement may not always result in a failure.
« The state may not be corrupted when the statement is executed with some data
values.
« Corrupt state may not propagate through execution to eventually lead to failure.

What is the value of structural coverage?

— Increases confidence in thoroughness of testing
« Removes some obvious inadequacies



Structural Testing Complements Functional
Testing

« Control flow testing includes cases that may not be identified from
specifications alone.

— Typical case: Implementation of a single item of the specification by multiple
parts of the program

— Example: hash table collision (invisible in interface specification)

« Test suites that satisfy control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria.

— Typical case: missing path faults
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Create functional test suite first, then measure structural coverage to

identify see what is missing.

Interpret unexecuted elements
— May be due to natural differences between specification and implementation

— Or may reveal flaws of the software or its development process

+ Inadequacy of specifications that do not include cases present in the
implementation

» Coding practice that radically diverges from the specification
« Inadequate functional test suites

Attractive because automated
— Coverage measurements are convenient progress indicators.

— sometimes used as a criterion of completion
« Use with caution: does not ensure effective test suites
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#include “hex_values.h”

int cgi_decode(char* encoded, char* *decoded) {
char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

while (*eptr) {
char c;
c = *eptr;

if (c=="+"){
*dptr = * °;

} else if (c = '%’) {
int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {
ok = 1;
} else {
*dptr = 16 * digit_high + digit_low;
}
} else {
*dptr = *eptr;
}
++dptr;
++eptr;

}

*dptr = "WO0’;
return ok;
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4‘ int cgi_decode(char *encoded, char *decoded) ]

A 4
*dptr = "0

return ok;

}
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{char *eptr = encoded; A
char *dptr = decoded;

int ok = 0;

while (*eptr) { «

True

elseif (c == '%") { ®©

FFa! Tru \v

else

}

F
*dptr = *eptr;

\1.
int ulyll low = Hex valuca[ \ffcpu)

intdigit high Hex Values[*(++ept) %
if (digit_high == -1 || digit_low == -1) {

vﬁFalse—)gTrueﬁv
else {
*dptr = 16 * digit_high +
digit_low;

}




« Statement Testing
« Branch Testing
« Condition Testing
— Basic
- MC/DC
« Path Testing
— Bounded interior
— Loop boundary
— LCSA)J
— Cyclomatic
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Adequacy criterion:
— Each statement (or node in the CFG) must be executed at least once.

« Coverage:
number of executed statements
number of statements

- Rationale:
— A fault in a statement can only be revealed by executing the faulty statement.

« Nodes in a control flow graph often represent basic blocks of multiple
statements.
— Some standards refer to basic block coverage or node coverage.
— Difference in granularity, not in concept
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int cgi_decode(char *encoded, char *decoded)
: < Test cases >
{char *eptr = encoded; A
char *dptr = decoded,; % TO =
Int 0k = O’ un n n n n
i {"", "test", "test+case%1Dadequacy"}
C while (*eptr) { B« 17/18 = 94% Stmt Cov.
%False—)&ﬁu
ew
charc; (o4
_c=*eptr; Tl =
if (¢ =="){ {"adequate+test%0Dexecution%7U"}
v e Y 18/18 = 100% Stmt Cov.

{e'seif (c=="%){ @} 6’ *dptr="" (I%

FFaIse—)\ True 1

else F) (int digit_high = Hex_Values[*(++eptr)]; (G
*dptr = *eptr;
}

T, = {"%3D", "%A", "a+b", "test"}
18/18 = 100% Stmt Cov.

int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

vﬁFaIse—)¥Trueﬁv T3 - {“ ”I “+%OD+%4J”}
else { o
dgtiow, T ﬂ T4 = {"first+test%9Ktest%K9"}
}
L
Y v

*dptr = "\0"; M ++dptr; @
return ok; 4{ ++eptr; ‘
} }
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« Coverage does not depend on the number of test cases .
- TO ' Tl : Tl >coverage TO Tl <cardinality TO
- Tl ' T2 : T2 ~ coverage Tl T2 >cardinality Tl

* Minimizing test suite size is seldom the goal.
— Small test cases make failure diagnosis easier.

— But, a failing test case in T, gives more information for fault localization than
a failing test case in T;
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int cgi_decode(char *encoded, char *decode I
Complete statement coverage 10 Seoo ey ol ey eeckd |
may not imply executing all e vebu - socoden %
branches in a program. e

( while (*eptr) { (B\

/ False
« Example:

_ H . True
Suppose block F were missing (e (D) @
}

— Statement adequacy would not Fals Tru
[ I int digit_high = Hex_Values[*(++eptr); (G
require false branch flom Do L | 850, © e o
} if (digit_high == -1 || digit_low == -1) {
uonouQ o " iFalseJ\TrueE
¢ T3 = { I} +A)OD+ /O4.J } else { o H ok =1;
*(_1p_tr =16 * digit_high + }
— 100% statement coverage digtlow:
— No false branch from D ! C
*dptr ="\0; ++dptr;

return ok; ++eptr;

h }




« Adequacy criterion:
— Each branch (edge in the CFG) must be executed at least once.

« Coverage:

number of executed branches

number of branches

« Example:
— T3 =A{" "+%0D+%4)"}

100% Stmt Cov.
88% Branch Cov. (7/8 branches)

— {11%3DIII II%AII, ”a+b"’ “test"}

100% Stmt Cowv.
100% Branch Cov. (8/8 branches)

4‘ int cgi_decode(char *encoded, char *decoded) i

i
{char *eptr = encoded; A
char *dptr = decoded;
int ok = 0;
C while (*eptr) { CB
False—)‘T’U

char c;
C = *eptr;

if (c == "+ {

False True
elseif ¢ =='%) { (D) [ “dptr="" (;j
ﬁFaIs Trueﬁ
else { int digit_high = Hex_Values[*(++eptr)];
‘*dptr= *eptr; int digit_low = Hex_Values[*(++eptr)];
} if (digit_high == -1 || digit_low == -1) {
fFalse—)\Tru
e}

else { H ok =1;
*dptr = 16 * digit_high + }
digit_low;

}

*dptr = \0
return ok;

}
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« Traversing all edges of a graph causes all nodes to be visited.

— So test suites that satisfy the branch adequacy criterion for a program P also
satisfy the statement adequacy criterion for the same program.

« The converse is not true (see T;)

— A statement-adequate (or node-adequate) test suite may not be branch-
adequate (edge-adequate).
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« "“All branches” can still miss conditions.

« Sample fault:
— Missing operator (negation)
digit_high == 1 || digit_low == -1

« Branch adequacy criterion can be satisfied by varying only ‘digit_low'.
— The faulty sub-expression might never determine the result.

— We might never really test the faulty condition, even though we tested both
outcomes of the branch.
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Branch coverage exposes faults in how a computation has been
decomposed into cases.

— Intuitively attractive: check the programmer’s case analysis
— But only roughly: groups cases with the same outcome

Condition coverage considers case analysis in more detail.
— also consider ‘individual conditions’ in a compound Boolean expression
« e.g. both parts of ‘digit_high == 1 || digit_low == -1’

Adequac

— Each basic ondltlon must be executed at least once.

Basic condition testing coverage:
number of truth values taken by all basic conditions
2 * number of basic conditions
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« Basic condition adequacy criterion can be satisfied without satisfying
branch coverage.

o T4 = {"first+test%9Ktest%K9"}
— Satisfies basic condition adequacy
— Does not satisfy branch condition adequacy

« Branch and basic condition are not comparable.
— Neither implies the other.



F S AN\ 1./ I N ™ Ir\t\t" "\IF\A r-l\ A 'I' 'aY aYe
_uUVvCe Iy ncnes anag Lonaitions
« Branch and condition adequacy:
— Cover all conditions and all decisions
« Compound condition adequacy:
— Cover all possible evaluations of compound conditions.
— Cover all branches of a decision tree.
digit_high == -
N
false true
K 4
digit_low == FALSE
N
true false
X u

TRUE FALSE
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« Compound conditions often have exponential complexity.

« Example: (@ || b) && ¢) || d) && e

b

o]
o
)

Test
Case

(1)

D

i T B B s B T B T T B B TP
p N R B e R e B R
| " | A A
R e e B B R e

| | "M T A A
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« Motivation:
— Effectively test important combinations of conditions, without exponential
blowup in test suite size

— "Important” combinations means:
» Each basic condition shown to independently affect the outcome of each decision

« Requires:
— For each basic condition C, two test cases,
— Values of all ‘evaluated’ conditions except C are the same.
— Cqmpound condition as a whole evaluates to 'true’ for one and ‘false’ for the
other.
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« MC/DC has a linear complexity.

« Example: (((a || b) && ¢) || d) && e

Test a b C d e outcome
Case

(1) true -- true -- true true

(2) false true true -- true true

(3) true -- false true true true

(6) true -- true -- false false
(11) true -- false false -- false

(13) false false -- false -- false

« Underlined values independently affect the output of the decision.
— Required by the RTCA/DO-178B standard
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« MC/DC is

— Basic condition coverage (C)
— Branch coverage (DC)

— Plus one additional condition (M):
« Every condition must independently affect the decision’s output.

« It is subsumed by compound conditions and subsumes all other criteria
discussed so far.
— Stronger than statement and branch coverage

« A good balance of thoroughness and test size and therefore widely used



There are many more paths than branches.

Decision and condition adequacy criteria consider individual program
decisions.

Path testing focuses consider combinations of decisions along paths.

Adequacy criterion:
— Each path must be executed at least once.

Coverage:
number of executed paths
number of paths
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« The number of paths in a program with loops is unbounded.
— A simple criterion is usually impossible to satisfy.

« For a feasible criterion:
— Should partition infinite set of paths into a finite number of classes

« Useful criteria can be obtained by limiting

— the number of traversals of loops

A.,-,-,\,J
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— the dependencies among selected paths
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Group together paths that differ only in the subpath they follow, when
repeating the body of a loop.
— Follow each path in the control flow graph up to the first repeated node

— The set of paths from the root of the tree to each leaf is the required set of
subpaths for boundary/interior coverage.

o a
L v
B = B
F L F Y v
M C M [
r - » -
D E D E
- - -y -
F G F G
F o F &
H | H |
F L T w ¥
» L - L L L L
L L - w
B B B B

Paths for boundary interior path testing Paths derived from the CFG



e The subpaths through this control flow can include or
exclude each of the statements Si, so that in total N
branches result in 2N paths that must be traversed.

« Choosing input data to force execution of one particular
path may be very difficult, or even impossible if the
conditions are not independent.
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Loop Boundal

« Variant of the boundary/interior criterion

— Treats loop boundaries similarly but is less stringent with respect to other differences
among paths.

e Criterion:

— A test suite satisfies the loop boundary adequacy criterion iff for every loop:
« In at least one test case, the loop body is iterated zero times.
« In at least one test case, the loop body is iterated once.
+ In at least one test case, the loop body is iterated more than once.

« Corresponds to the cases that would be considered in a formal
correctness proof for the loop
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« Linear Code Sequence And Jumps (LCSA)):
— Sequential subpath in the CFG starting and ending in a branch
« TER; = statement coverage
« TER, = branch coverage
« TER,,, = coverage of n consecutive LCSAJs

« Need something here...
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« Cyclomatic number:
— Number of independent paths in the CFG

— A path is representable as a bit vector, where each component of the vector
represents an edge.

— "Dependence” is ordinary linear dependence between (bit) vectors

« If e = #edges, n = #nodes, c = #connected components of a graph,
— e - n + c for an arbitrary graph
— e-n+ 2 fora CFG €« Cyclomatic complexity.

« Cyclomatic coverage counts the number of independent paths that have
been exercised, relative to cyclomatic complexity
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The criteria considered to this point measure coverage of control flow
within individual procedures.

— Not well suited to integration or system testing

Choose a coverage granularity commensurate with the granularity of
testing

— if unit testing has been effective, then faults that remain to be found in
integration testing will be primarily interface faults, and testing effort should
focus on interfaces between units rather than their internal details.

Procedure entry and exit testing

— Procedure may have multiple entry points (e.g., Fortran) and multiple exit
points.

Call coverage
— The same entry point may be called from many points.

Konkuk University 272



R
O

§

O

THEORETICAL CRITERIA

PRACTICAL CRITERIA

)

Q
w

)

Q
-3
~—
=
O
—+
—
Q
D
0p)
t
Q
)
.
~—
M
.
Q)

( Path Testing )
CBoundar}r interior testing )

@ompound condition testin@

C Cyclomatic testing > C MC/DC testing )

@ranch and condition testin@

C

LCSAJ testing )

( Basic condition testing )
< Branch testing >

( Loop boundary testing > C Statement testing )

Subsumption Relation among Structural Test Adequacy Criteria
Konkuk University
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« Sometimes criteria may not be satisfiable.
— The criterion requires execution of

« Statements that cannot be executed as a result of
— Defensive programming

— Code reuse (reusing code that is more general than strictly required for the
application)

« Conditions that cannot be satisfied as a result of
— Interdependent conditions

« Paths that cannot be executed as a result of
— Interdependent decisions



Large amounts of ‘fossil’ code may indicate serious maintainability
problems.

But some unreachable code is common even in well-designed and well-
maintained systems

Solutions:
1. Make allowances by setting a coverage goal less than 100%

2. Require justification of elements left uncovered
« As RTCA-DO-178B and EUROCAE ED-12B for modified MC/DC
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We defined a number of adequacy criteria.
— NOT test design techniques

« Different criteria address different classes of errors.

« Full coverage is usually unattainable.
— Attainability is an undecidable problem.

«  When attainable, “inversion” is usually hard.

— How do I find program inputs allowing to cover something buried deeply in
the CFG?

— Automated support (e.g., symbolic execution) may be necessary.

« Therefore, rather than requiring full adequacy, the "degree of adequacy”
of a test suite is estimated by coverage measures.
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Understand why data flow criteria have been designed and used

Recognize and distinguish basic DF criteria
— All DU pairs, all DU paths, all definitions

Understand how the infeasibility problem impacts data flow testing

Appreciate limits and potential practical uses of data flow testing
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« Middle ground in structural testing
— Node and edge coverage don't test interactions.

— Path-based criteria require impractical number of test cases.
* Only a few paths uncover additional faults, anyway

— Need to distinguish “important” paths

« Intuition: Statements interact through data flow
— Value computed in one statement, used in another
— Bad value computation revealed only when it is used



Value of x at 6 could be
computed at 1 or at 4.

Bad computation at 1 or 4 could
be revealed only if they are used
at 6.

(1, 6) and (4, 6) are def-use (DU)
pairs.

— defsatl, 4

— use at6
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« DU pair

— A pair of definition and use for some variable, such that at least one DU path
exists from the definition to the use.

— “x = ." Is a definition of x
— "= ..x.!"is ause of x

« DU path

— A definition-clear path on the CFG starting from a definition to a use of a
same variable

— Definition clear: Value is not replaced on path
— Note: Loops could create infinite DU paths between a def and a use.
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1,2,3,5,6 is a definition-clear path
from 1 to 6.

— X is not re-assigned between 1
and 6.

1,2,4,5,6 is not a definition-clear
path from 1 to 6.

— the value of x is "killed”
(reassigned) at node 4.

(1, 6) is a DU pair because
1,2,3,5,6 is a definition-clear path.
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All DU pairs
— Each DU pair is exercised by at least one test case.

All DU paths
— Each simple (non looping) DU path is exercised by at least one test case.

All definitions

— For each definition, there is at least one test case which exercises a DU pair
containing it.

— Because, every computed value is used somewhere.

Corresponding coverage fractions can be defined similarly.
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X[ = ..; ..;y = x[J]
— DU pair (only) if i==]

p=8&;..;*p =99, ..,q9=X

— *p is an alias of x

m.putFoo(...); ... ; y=n.getFoo(...);
— Are m and n the same object?
— Do m and n share a “foo” field?

Problem of aliases:
— Which references are (always or sometimes) the same?



Data Flow Coverage with Complex Structures

« Arrays and pointers are critical for data flow analysis.
— Under-estimation of aliases may fail to include some DU pairs.
— Over-estimation, on the other hand, may introduce unfeasible test obligations.

« For testing, it may be preferable to accept under-estimation of alias set
rather than over-estimation or expensive analysis.

— Controversial: In other applications (e.g., compilers), a conservative over-
estimation of aliases is usually required.

— Alias analysis may rely on external guidance or other global analysis to
calculate good estimates.

— Undisciplined use of dynamic storage, pointer arithmetic, etc. may make the
whole analysis infeasible.



NN Why? — T don't Know!

« Suppose ‘cond’ has not changed
between 1 and 5.

— Or the conditions could be
different, but the first implies the
second.

« Then (3,5) is not a (feasible) DU
pair.
— But it is difficult or impossible to

NATrAs A A

determine which pailb are
infeasible.

« Infeasible test obligations are a
problem.
— No test case can cover them.
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The path-oriented nature of data flow analysis makes the infeasibility
problem especially relevant.

— Combinations of elements matter!

— Impossible to (infallibly) distinguish feasible from infeasible paths.
— More paths = More work to check manually

In practice, reasonable coverage is (often, not always) achievable.

— Number of paths is exponential in worst case, but often linear.
— All DU paths is more often impractical.
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« Data flow testing attempts to distinguish “important” paths: Interactions
between statements.

— Intermediate between simple statement and branch coverage and more
expensive path-based structural testing

« Cover Def-Use (DU) pairs: From computation of value to its use
— Intuition: Bad computed value is revealed only when it is used.
— Levels: All DU pairs, all DU paths, all defs (some use)

« Limits: Aliases, infeasible paths

— Worst case is bad (undecidable properties, exponential blowup of paths), so
pragmatic compromises are required.
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Understand the role of models in devising test cases

— Principles underlying functional and structural test adequacy criteria, as well
as model-based testing

Understand some examples of model-based testing techniques

— A few of the most common model-based techniques, representative of many
others

Be able to understand, devise and refine other model-based testing
techniques

— Grasp the basic approach and rationale well enough to apply it in other
contexts
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« Models used in specification or design have structure.

— Useful information for selecting representative classes of behavior; behaviors
that are treated differently with respect to the model should be tried by a
thorough test suite

— In combinatorial testing, it is difficult to capture that structure clearly and
correctly in constraints.

« We can devise test cases to check actual behavior against behavior
specified by the model.
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Deriving Test Cases from Finite State Machines

Informal Test Cases

Specification
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Informal Specification: Feature "Maintenance” of
the Chipmunk Web Site

Maintenance: The Maintenance function records the history of items undergoing maintenance.

If the product is covered by warranty or maintenance contract, maintenance can be requested either by
calling the maintenance toll free number, or through the web site, or by bringing the item to a
designated maintenance station.

If the maintenance is requested by phone or web site and the customer is a US or EU resident, the item
is picked up at the customer site, otherwise, the customer shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the item follows the
procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance can be requested only by
bringing the item to a maintenance station. The maintenance station informs the customer of the
estimated costs for repair. Maintenance starts only when the customer accepts the estimate.

If the customer does not accept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the maintenance station cannot
solve the problem, the product is sent to the maintenance regional headquarters (if in US or EU) or to
the maintenance main headquarters (otherwise).

If the maintenance regional headquarters cannot solve the problem, the product is sent to the
maintenance main headquarters.

Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.
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e FSM can be used both to

— Guide test selection (checking each state transition)
— Constructing an oracle that judge whether each observed behavior is correct

TC1 O 2 4 1 O

TC2 0 5 2 4 5 o6 O

TC3 0 3 5 9 6 O

TC4 0 3 5 7 5 8 7 8 9 6 O

* Questions:
— Is this a thorough test suite?
— How can we judge?
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« State coverage
— Every state in the model should be visited by at least one test case.

« Transition coverage
— Every transition between states should be traversed by at least one test case.
— Most commonly used criterion
— A transition can be thought of as a (precondition, postcondition) pair
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« Basic assumption: States fully summarize history.
— No distinction based on how we reached a state.
— But, this should be true of well-designed state machine models.

« If the assumption is violated, we may distinguish paths and devise
criteria to cover them

— Single state path coverage:
« Traverse each subpath that reaches each state at most once

— Single transition path coverage:
« Traverse each subpath that reaches each transition at most once

— Boundary interior loop coverage:
« Each distinct loop of the state machine must be exercised the minimum, an
intermediate, and the maximum or a large number of times

« Of the path sensitive criteria, only boundary-interior is common.
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« Some specifications are structured as decision tables, decision trees, or
flow charts.

« We can exercise these as if they were program source code.

Informal Decision Test Cases

Specification Structures
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Informal Specification: Feature “Price” of the
Chipmunk Web Site

Pricing: The pricing function determines the adjusted price of a configuration for a
particular customer.

The scheduled price of a configuration is the sum of the scheduled price of the
model and the scheduled price of each component in the configuration. The adﬁ'usted
price is either the scheduled price, if no discounts are applicable, or the scheduled
price less any applicable discounts.

There are three price schedules and three corresponding discount schedules, Business,
Educational, and Individual.

Educational prices: The adjusted price for a purchase charged to an educational
account in good standing Is the scheduled price from the educational price schedule.
No further discounts apply.

Special-price non-discountable offers: Sometimes a complete configuration is offered
at a special, non-discountable price. When a special, non-discountable price is
available for a configuration, the adjusted price is the non-discountable price or the
regular price after any applicable discounts, whichever is less.
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Education Individual

EduAc T T F F F F F F
BusAc - - F F F F F F
CP>CT1 - - F F T T - -
YP >YT1 - - - - - - - -
CP>CT2 - - - - F F T T
YP >YT2 - - - - - - - -
SP < Sc F T F T - - - -
SP<T1 - - - - F T - -
SP<T2 - - - - - - F T
Out Edu SP ND SP T1 SP T2 SP

Constraints

at-most-one (EduAc, BusAc)

YP > YT2 — YP > YT1
CP>CT2 —-CP>(CT1
SP>T2—-SP>T1

at-most-one (YP < YT1, YP > YT2)

at-most-one (CP < CT1, CP > CT2)

at-most-one (SP < T1, SP > T2




Test Cases Generated from the Decision Table

« Basic condition coverage
— A test case specification for each column in the table

« Compound condition adequacy criterion

— A test case specification for each combination of truth values of basic
conditions

« Modified condition/decision adequacy criterion (MC/DC)
— Each column in the table represents a test case specification.

— We add columns that differ in one input row and in outcome, then merge
compatible columns.
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C.1 C.1a C.1b C.10
EduAc T F T -
BusAc - - - T\
CP>CT1 - - - F
YP>YT1 - - - F
CP>CT2 - - - -
YP>YT2 - - - -
SP > Sc F F T T
SP>T1 - - - -
SP>T2 - - -
Out Edu * * SP

Konkuk University

Generate C.1a and
C.1b by flipping one
element of C.1.

C.1b can be merged
with an existing

column (C.10) in the
specification. (?)

Outcome of
generated columns
must differ from
source column




Deriving Test Cases from Control and Data Flow
Graph

« If the specification or model has both decisions and sequential logic, we
can cover it like program source code.

« Flowgraph based testing

Informal Flowgraph Test Cases

Specification
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Informal Specification: Feature "Process Shipping
Order” of the Chipmunk Web Site

Process shipping order: The Process shipping order function checks the validity of orders and prepares the receipt.

A valid order contains the following data:

cost of goods: If the cost of goods is less than the minimum processable order (MinOrder) then the order is invalid.
shipping address: The address includes name, address, city, postal code, and country.

Freferred shipping method: If the address is domestic, the shipping method must be either land freight, expedited land
freigﬂt, or overnight air; If the address is international, the shipping method must be either air freight, or expedited air
reignt.

type of customer which can be individual, business, educational

preferred method of payment. Individual customers can use only credit cards, business and educational customers can
choose between credit card and invoice

card information: if the method of payment is credit card, fields credit card number, name on card, expiration date, and
billing address, if different than shipping address, must be provided. If credit card information is not valid the user can either
provide new data or abort the order.

The outputs of Process shipping order are
validity: Validity is a boolean output which indicates whether the order can be processed.
total charge: The total charge is the sum of the value of goods and the computed shipping costs (only if validity = true).

payment status: if all data are processed correctly and the credit card information is valid or the payment is invoice, payment
status is set to valid, the order is entered and a receipt is prepared; otherwise validity = false.

Konkuk University 308
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Process shipping order

v

( CostOfGoods < MinOrder

preferred shipping method = air
freight OR expedited air freight

no

vrinternational shipping address domesticw

preferred shipping method = land freight,
OR expedited land freight OR overnight air

( calculate international shipping charge )

( calculate domestic shipping charge )

total charge = goods + shipping )4—)
an

individual customer

( method of payement h yes

yes
credit card Q

P

btain credit card data: number, nam

e
on card, expiration date )

yes< billing address = shipping address >

no

( obtain billing address )

no

abort order? J—

\ yes

valid credit card
information

invoice

yes Y

enter order

payement status = valid ‘
prepare receipt

> invalid order




Node adequacy criteria

. Ship Pay ,
Case Too Small  Ship Where Method Cust Type Method Same Address CC valid
TC-1 No Int Air Bus CcC No Yes
TC-2 No Dom Air Ind CC - No (abort)

« Branch adequacy criteria

Ship

Pay

Case Too Small ~ Ship Where Method Cust Type Method Same Address CC valid
TCA1 No Int Air Bus CC No Yes
TC-2 No Dom Land - - - -
TC-3 Yes - - - - - -
TC-4 No Dom Air - - - -
TC-5 No Int Land - - - -
TC-6 No - - Edu Inv - -
TC-7 No - - - CC Yes -
TC-8 No - - - CC - No (abort)

TC-9 No - - Konkuk University ~ CC - No (no abort)
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Grammars are good at:

— Representing inputs of varying and unbounded size
— With recursive structure

— And boundary conditions

Examples:
— Complex textual inputs
— Trees (search trees, parse trees, ...)
« Example: XML and HTMI are trees in textual form
— Program structures
« Which are also tree structures in textual format
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« Test cases are 'strings’ generated from the grammar

« Coverage criteria:
— Production coverage:

« Each production must be used to generate at least one (section of) test
case.

— Boundary condition:

« Annotate each recursive production with minimum and maximum number of
application, then generate:

— Minimum
— Minimum + 1
— Maximum -1
— Maximum

Informal Grammar Test Cases

Specification

312



Informal Specification: Feature “Check
Configuration” of the Chipmunk Web Site

Check configuration: The Check-configuration function checks the validity of a computer configuration.

Model: A model identifies a specific product and determines a set of constraints on available components.
Models are characterized by logical slots for components, which may or may not be implemented by
physical slots on a bus. Slots may be required or optional. Required slots must be assigned with a
suitable component to obtain a legal configuration, while optional slots may be left empty or filled
depending on the customers' needs

Example: The required “slots" of the Chipmunk C20 IaptoE computer include a screen, a processor, a hard
disk, memory, and an o,oerating system. (Of these, only the hard disk and memory are implemented

using actual hardware slots on a bus.) The optional slots include external storage devices such as a
CD/DVD writer.

Set of Components: A set of [slot,component] pairs, which must correspond to the required and optional
slots associated with the model. A component is a choice that can be varied within a model, and which is
not designed to be replaced by the end user. Available components and a default for each slot is
determined by the model. The special value empty is allowed (and may be the default selection) for
optional slots. In addition to being compatible or incompatible with a particular model and slot,
individual components may be compatible or incompatible with each other.

Example: The default configuration of the Chipmunk C20 includes 20 gigabytes of hard disk; 30 and 40
%igabyte disks are also available. (Since the hard disk is a required slot, emptg is not an allowed choice.)
he default operatindg Sﬁstem is RodentOS 3.2, personal edition, but RodentOS 3.2 mobile server edition

may also be selected. The mobile server edition requires at least 30 gigabytes of hard disk.

It is not the example in the text!!!
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Model <Model> igrjtfggrﬁs'\‘emsi;:CompSequence>
compSeql [0, 16] <compSequence> == <Component> <compSequence>
compSeq?2 <compSequence> n= empty
optCompSeql [0, 16] <optCompSequence> == <OptionalComponent> <optCompSequence>
optCompSeq?2 <optCompSequence> n= empty
Comp <Component> = <ComponentType> <ComponentValue>
OptComp <OptionalComponent> = <ComponentType>
modNum <modelNumber> = string
CompTyp <ComponentType> = string
CompVal <ComponentValue> == string
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«  "Mod000"
— Covers Model, compSeql[0], compSeq2, optCompSeql[0], optCompSeq2,

modNum

« “Mod000 (Comp000, Val000) (OptComp000)”
— Covers Model, compSeql[1l], compSeq2, optCompSeq2[0], optCompSeq2,
Comp, OptComp, modNum, CompTyp, CompVal

e Etc.

e Comments:;

— By first applying productions with nonterminals on the right side, we obtain
few, large test cases.

— By first applying productions with terminals on the right side, we obtain many,
small test cases.
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« Combinatorial specification-based testing is good for “mostly
independent” parameters.

— We can incorporate a few constraints, but complex constraints are hard to
represent and use.

— We must often “factor and flatten.”

— E.g., separate “set of slots” into characteristics “number of slots” and
predicates about what is in the slots (all together)

« Grammar describes sequences and nested structure naturally.

— But some relations among different parts may be difficult to describe and
exercise systematically, e.g., compatibility of components with slots.
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« Models are useful abstractions.

— In specification and design, they help us think and communicate about
complex artifacts by emphasizing key features and suppressing details.

— Models convey structure and help us focus on one thing at a time.

« We can use them in systematic testing.

— If a model divides behavior into classes, we probably want to exercise each of
those classes.

— Common model-based testing techniques are based on state machines,
decision structures, and grammars.

— But, we can apply the same approach to other models.
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Chapter 15.
Testing Object-Oriented Software
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« Understand the basic ideas of fault-based testing

— How knowledge of a fault model can be used to create useful tests and judge
the quality of test cases.

— Understand the rationale of fault-based testing well enough to distinguish
between valid and invalid uses

« Understand mutation testing as one application of fault-based testing
principles



« Suppose we have a big bowl of
marbles. How can we estimate
how many?

— [ don't want to count every
marble individually.

— I have a bag of 100 other
marbles of the same size, but a
different color.

— What if I mix them?

Photo credit: (c) KaCey97007 on
Flickr, Creative Commons license

Konkuk University 323



§

Q

)

r-'l-.
Q

<

Q)

=
O
M
n

Cc
)

« I mix 100 black marbles into the
bowl

— Stir well.

« [ draw out 100 marbles at
random.

— 20 of them are black

How many marbles were in the
bowl to begin with?
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Now, instead of a bowl of marbles, [ have a program with bugs.

Add 100 new bugs.
— Assume they are exactly like real bugs in every way
— I'make 100 copies of my program, each with one of my 100 new bugs.

Run my test suite on the programs with seeded bugs
— And the tests reveal 20 of the bugs
— The other 80 program copies do not fail.

What can I infer about my test suite?
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« We want to judge effectiveness of a test suite in finding real faults,
— by measuring how well it finds seeded fake faults.

« Valid to the extent that the seeded bugs are representative of real bugs
— Not necessarily identical (e.g. black marbles are not identical to clear marbles)

— But the differences should not affect the selection

« E.g. if I mix metal ball bearings into the marbles, and pull them out with
a magnet, I don't learn anything about how many marbles were in the

bowl.
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« A mutant is a copy of a program with a mutation.

« A mutation is a syntactic change (a seeded bug).
— Example: change (i < 0) to (i <= 0)

« Run test suite on all the mutant programs
« A mutant is killed, if it fails on at least one test case

« If many mutants are killed, infer that the test suite is also effective at
finding real bugs
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« Competent programmer hypothesis:

— Programs are nearly correct.
+ Real faults are small variations from the correct program.
* Therefore, mutants are reasonable models of real buggy programs.

« Coupling effect hypothesis:
— Tests that find simple faults also find more complex faults.

— Even if mutants are not perfect representatives of real faults, a test suite that
kills mutants is good at finding real faults too.
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« Syntactic change from legal program to legal program
— Specific to each programming language.
— C++ mutations don't work for Java, Java mutations don’t work for Python.

« Examples:
— crp: constant for constant replacement
« E.g. from (x < 5) to (x < 12)
+ Select from constants found somewhere in program text
— ror: relational operator replacement
« E.g. from (x <= 5)to (x < 5)
— vie: variable initialization elimination
« E.g. change int x =5; to int x;
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« Mutation analysis consists of the following steps:
1. Select mutation operators
2. Generate mutants
3. Distinguish mutants

« Live mutants
— Mutants not killed by a test suite

« Given a set of mutants SM and a test suite 7 the fraction of
nonequivalence mutants killed by 7 measures the adequacy of 7 with
respect to SM.
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«  Weak mutation
— Problem: There are lots of mutants. Running each test case to completion on
every mutant is expensive.
* Number of mutants grows with the square of program size.
— Approach:
« Execute meta-mutant (with many seeded faults) together with original program
« Mark a seeded fault as “killed” as soon as a difference in intermediate state is found
— Without waiting for program completion
— Restart with new mutant selection after each “kill”
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« Statistical Mutation

— Problem: There are lots of mutants. Running each test case on every mutant
IS expensive.
« It's just too expensive to create N? mutants for a program of N lines (even if we
don't run each test case separately to completion)
— Approach: Just create a random sample of mutants
« May be just as good for assessing a test suite

— Provided we don't design test cases to kill particular mutants (which would be
like selectively picking out black marbles anyway)
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Fault-based testing is a widely used in semiconductor manufacturing.
— With good fault models of typical manufacturing faults, e.g. “stuck-at-one” for a transistor
— But fault-based testing for design errors is more challenging (as in software).

Mutation testing is not widely used in industry.

— But plays a role in software testing research, to compare effectiveness of
testing techniques

Some use of fault models to design test cases is important and widely
practiced.



1 1 A rm

C ~
SUIlTIllida

v\ 7
|

y

« If bugs were marbles,
— We could get some nice black marbles to judge the quality of test suites.

« Since bugs aren’t marbles,

— Mutation testing rests on some troubling assumptions about seeded faults,
which may not be statistically representative of real faults.

« Nonetheless,

— A model of typical or important faults is invaluable information for designing
and assessing test suites.
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Appreciate the purpose of test automation

— Factoring repetitive, mechanical tasks from creative, human design tasks in
testing

Recognize main kinds and components of test scaffolding
Understand some key dimensions in test automation design
— Design for testability: Controllability and observability

— Degrees of generality in drivers and stubs

— Comparison-based oracles and self-checks
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« Designing test cases and test suites is creative.

— A demanding intellectual activity, requiring human judgment

« Executing test cases should be automatic.
— Design once, execute many times

« Test automation separates the creative human process from the
mechanical process of test execution.
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Test design often yields test case specifications, rather than concrete data.
— Ex: "a large positive number”, not 420,023
— Ex: "a sorted sequence, length > 2" not "Alpha, Beta, Chi, Omega”

Other details for execution may be omitted.

Generation creates concrete, executable test cases from test case
specifications.

Tool chain for test case generation & execution

— A combinatorial test case generation (like genpairs.py) to create test data

« Optional: Constraint-based data generator to “concretize” individual values, e.g.,
from “positive integer” to 42

— 'DDSteps’ to convert from spreadsheet data to Junit’ test cases
— JUnit to execute concrete test cases
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« Code produced to support development activities (especially testing)
— Not part of the “product” as seen by the end user
— May be temporary (like scaffolding in construction of buildings)

« Scaffolding includes
— Test harnesses

— Drivers
— Stubs
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Test driver
— A "main” program for running a test
« May be produced before a “real” main program
» Provides more control than the “real” main program
— To driver program under test through test cases
Test stub

— Substitute for called functions/methods/objects

Test harness
— Substitutes for other parts of the deployed environment
— Ex: Software simulation of a hardware device
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« Example: We want automated tests,
— But, interactive input provides limited control and
— Graphical output provides limited observability.

GUI input (MVC “Controller”)

. B

Program Functionality

.z

Graphical output (MVC “View")
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« Solution: A design for automated test includes provides interfaces for
control (API) and observation (wrapper on ouput)

GUI input (MVC “Controller”) Test driver
API
Program Functionality Log behavior
- o

Capture wrapper

Graphical output (MVC “View")

J
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« How general should scaffolding be?
— We could build a driver and stubs for each test case.

— Or at least factor out some common code of the driver and test management
(e.g. JUnit)

— Or further factor out some common support code, to drive a large number of
test cases from data (as in DDSteps)

— Or further, generate the data automatically from a more abstract model (e.g.
network traffic model)

« A question of costs and re-use just as for other kinds of software



« “Did this test case succeed or fail?”

— No use running 10,000 test cases automatically, if the results must be checked
by hand!

« Range of specific to general, again
— ex. JUnit: Specific oracle (“assert”) coded by hand in each test case

« Typical approach:
— "comparison-based” oracle with predicted output value
— But, not the only approach
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« With a comparison-based oracle, we need predicted output for each
input.
— Oracle compares actual to predicted output, and reports failure if they differ.
— Fine for a small number of hand-generated test cases
— E.g. for hand-written JUnit test cases

Test Harness

Test Case
with Compariscn Based
| Testinput | \ Oracie
Expected Output (- \ » Compare }—Pass/Fail:
e . /f

Program
Under Test
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« An oracle can also be written as self-checks.
— Often possible to judge correctness without predicting results
« Advantages and limits: Usable with large, automatically generated test
suites, but often only a partial check
— E.g., structural invariants of data structures
— Recognize many or most failures, but not all

Test Harness

Test Case Program
Under Test
Test Input o —— —— = | - e
Self-checks | aiiure
---------------------------------- ]| Notification
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« Sometimes there is no alternative to human input and observation.

— Even if we separate testing program functionality from GUI, some testing of
the GUI is required.

« We can at least cut repetition of human testing.

« Capture a manually run test case, replay it automatically

— With a comparison-based test oracle: behavior same as previously accepted
behavior

— Reusable only until a program change invalidates it
— Lifetime depends on abstraction level of input and output
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« Goal: Separate creative task of test design from mechanical task of test
execution

— Enable generation and execution of large test suites
— Re-execute test suites frequently (e.g., nightly or after each program change)

« Scaffolding: Code to support development and testing
— Test drivers, stubs, harness, including oracles

— Ranging from individual, hand-written test case drivers to automatic
generation and testing of large test suites

— Capture/replay where human interaction is required.
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« Understand how automated program analysis complements testing and
manual inspection

— Most useful for properties that are difficult to test

« Understand fundamental approaches of a few representative techniques

— Lockset analysis, pointer analysis, symbolic testing, dynamic model extraction:
A sample of contemporary techniques across a broad spectrum

— Recognize the same basic approaches and design trade-offs in other program
analysis techniques
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« Automated program analysis techniques complement test and inspection
In two ways:
— (Can exhaustively check some important properties
« Which conventional testing is particularly ill-suited.
— Can extract and summarize information for test and inspection design
» Replacing or augmenting human efforts

« Automated analysis

— Replace human inspection for some class of faults
— Support inspection by

» Automating extracting and summarizing information
» Navigating through relevant information
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« Static analysis

— Examine program source code
« Examine the complete execution space
« But, may lead to false alarms

« Dynamic analysis
— Examine program execution traces

* No infeasible path problem
« But, cannot examine the execution space exhaustively

« Example:
— Concurrency faults
— Memory faults
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« Our aim is to find all program faults of a certain kind.

— We cannot simply prune exploration of certain program paths as in symbolic
testing.

« Instead, we must abstract enough to fold the state space down to a size
that can be exhaustively explored.
— Example: analyses based on finite state machines (FSM)

+ data values by states
« operations by state transitions

— The approaches taken in flow analysis and finite state verification
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« Instrument program to trace memory access dynamically
— Record the state of each memory location

— Detect accesses incompatible with the current state
« Attempts to access unallocated memory
» Read from uninitialized memory locations
— Array bounds violations:
« Add memory locations with state unallocated before and after each array
« Attempts to access these locations are detected immediately
— Example:
« Purify

» Garbage detector

allocate Unallocated
f (unwritable and unreadable) g

eallocate

|
Allocated and uninitialized j [ Allocated and initialized

[(writable, but unreadable) deallocate (readable and writable)

initialize
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Pointer variable represented by a machine with three states:
— invalid value

— possibly null value

— definitely not null value

Deallocation triggers transition from non-null to invalid.

Conditional branches may trigger transitions.

— E.g. testing a pointer for non-null triggers a transition from possibly null to
definitely non-null

Potential misuse

— Deallocation in possibly null state
— Dereference in possibly null

— Dereference in invalid states



A F DrAa~nrAanr \Al:-l-lr'\ ”Dl .-F-an- f\\ If\lf"clt\\nl"
M\ | y adlll Vviill DUIICT UVCIIIUVV
int main (int argc, char *argv[]) {
char sentinel_pre[] = "2B2B2B2B2B";
char subject[] = "AndPlus+%26%2B+%0D%";
char sentinel_post[] = "26262626"; | )
char *outbuf = (char *) malloc(10); Output parameter of fixed
int return_code; “ length can overrun the
o o ) output buffer.

printf("First test, subject into outbuf\n");

return_code = cgi_decode(subject, outbuf);

printf("Original: %s\n", subject);
printf("Decoded: %s\n", outbuf);
printf("Return code: %d\n", return_code);

printf("Second test, argv[1] into outbuf\n");
printf("Argc is %d\n", argc);
assert(argc == 2);

return_code = cgi_decode(argv[1], outbuf);
printf("Original: %s\n", argv[1]);

printf("Decoded: %s\n", outbuf);
printf("Return code: %d\n", return_code);
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[I] Starting main

[E] ABR: Array bounds read in printf {1 occurrence}
Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000

Thread ID: 0xd64

[E] ABR: Array bounds read in printf {1 occurrence}
Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc'd block in heap 0x00e70000

Thread ID: 0xd64

[E] ABWL: Late detect array bounds write {1 occurrence}
Memory corruption detected, 14 bytes at 0x00e74b02
Address 0x00e74b02 is 1 byte past the end of a 10 byte block at 0x00e74af8

Address 0x00e74b02 points to a malloc'd block in heap 0x00e70000
63 memory operations and 3 seconds since last-known good heap state k

Detection I_ocation - error occurred before the following function call
printf [MSVCRT.dII Identifies the problem

Allocation location
malloc [MSVCRT.AII]

[1] Summary of all memory leaks... {482 bytes, 5 blocks}
[1] Exiting with code 0 (0x00000000)

Process time: 50 milliseconds
[I] Program terminated ...
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« Data races are hard to reveal with testing.

« Static analysis:
— Computationally expensive, and approximated
« Dynamic analysis:
— Can amplify sensitivity of testing to detect potential data races

» Avoid pessimistic inaccuracy of finite state verification
» Reduce optimistic inaccuracy of testing
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« Lockset discipline: set of rules to prevent data races

— Every variable shared between threads must be protected by a mutual
exclusion lock.

« Dynamic lockset analysis detects violation of the locking discipline.

— Identify set of mutual exclusion locks held by threads when accessing each
shared variable.

— INIT: each shared variable is associated with all available locks
— RUN: thread accesses a shared variable
 intersect current set of candidate locks with locks held by the thread

— END: set of locks after executing a test
= set of locks always held by threads accessing that variable
« empty set for v = no lock consistently protects v
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Thread Program trace Locks held Lockset(x)
{} {lck1, Ick2}  INIT:all locks for x
thread A | lock(lck1)
ck1 he
{Ick1} Ick1 held
X=X+1
{lck1} Intersect with
locks held
unlock(lck1}
{
tread B | lock{lck2}
{Ick2} Ick2 held
X=xX+1
{} Empty intersection
unlock(Ick2} -> potential race
{}
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« Simple locking discipline violated by
— Initialization of shared variables without holding a lock
— Writing shared variables during initialization without locks
— Allowing multiple readers in mutual exclusion with single writers

— Delay analysis
( Virgin ) till after initialization
. (second thread)
wrvlte Multiple writers

4 : : report violations
S Exclusive }wrlte/new thread

g
read/write/first thread }

('Shared-Modified )

read/new thread

read l v
%

Shared >7Wﬂt Multiple readers single writer

\‘ do not report violations
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Behavior analysis can

— Gather information from executing several test cases
— And synthesize a model that characterizes those execution,
— To the extent that they are representative, other executions as well.

Using behavioral models for

Testing : validate tests thoroughness

Program analysis : understand program behavior

Regression testing : compare versions or configurations

Testing of component-based software : compare components in different contexts
Debugging : Identify anomalous behaviors and understand causes
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« Program analysis complements testing and inspection.

— Addresses problems (e.g., race conditions, memory leaks) for which
conventional testing is ineffective

— Can be tuned to balance exhaustiveness, precision, and cost (e.g., path-
sensitive or insensitive)

— Can check for faults or produce information for other uses (debugging,
documentation, testing)

« A few basic strategies

— Build an abstract representation of program states by monitoring real or
simulated (abstract) execution
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Chapter 21.
Integration and Component-based
Software Testing
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