

『Silence』

Coffee Maker System
Software Modeling and Analysis

Team Project #4

OSP 2200 OOAD

2nd cycle

Team 4

200611450 강세용

200611458 김영승

200611518 조민경

Phase 2230 Analyze

 2231. Define Essential Use Cases

 1. Add Employee

2. Delete Employee

Use Case 1. Add Employee

Actor None or Manager

Purpose add new employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.1

Use Case : -

Pre-Requisite N/A

Typical Courses of Event (A) : Actor, (S) : System

1. (A) request add employees information

2. (S) check employees information

3. (S) give id number to employee

4. (S) add employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

Use Case 2. Delete Employee

Actor None or Manager

Purpose Delete employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.2

Use Case : -

Pre-Requisite Employee should be exists in the system.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) fire Employee.

2. (A) delete employee's id

3. (S) delete employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

 3. Employee Modification

Use Case 3. Employee Modification

Actor None or Manager

Purpose Change Employee's information

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.3

Use Case : -

Pre-Requisite Employee should be exists in the system.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) need change to employee's information.

2. (A) insert employee's changed information.

3. (S) change employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

 4. Recipe Add

Use Case 4. Recipe Add

Actor Manager

Purpose Adding the recipe into the recipe list

Overview If manager want to add the new recipe, system should be

provide add recipe menu into coffee maker.

Type Primary and Essential

Cross Reference System Functional : R1.2.1

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager requests add recipe.

2. (S) Check the existence recipe and show the lists.

3. (A) Input the recipe data.

4. (S) Check if corresponding recipe exists.

5. (S) Add recipe date to list.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 5. Recipe Delete

Use Case 5. Recipe Delete

Actor Manager

Purpose Delete the recipe into the recipe lists.

Overview If manager want to delete recipe, systems should be check

recipe list and delete the recipe.

Type Primary and Essential

Cross Reference System Function : R1.2.2

Use Case : -

Pre-Requisites Recipe should be exists in the list.

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Delete the recipe in the list.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 6. Recipe Modification

Use Case 6. Recipe Modification

Actor Manager

Purpose Modify the recipe into the recipe list.

Overview If manager want to modify the recipe, system should be check

recipe list and provide recipe modifying menu.

Type Primary and Essential

Cross Reference System Function : R1.2.3

Use Case : -

Pre-Requisites Recipe should ne exists in the list.

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Show the recipe data and provide modify menu.

4. (A) Input the change recipe.

5. (S) Save the modified recipe.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 7. Add Table

Use Case 7. Add Table

Actor Manager

Purpose Add Table in Store.

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.1

Pre-Requisite

Typical Courses of Event (A) : Actor, (S) : System

1. (A) bought a big table

2. (A) insert new table's information.

3. (S) checked new table's info

4. (S) give table-id to new table

5. (S) add new table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

 8. Delete Table

Use Case 8. Delete Table

Actor Manager

Purpose Delete Table in Store.

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.2

Pre-Requisite Table should be exists in the list.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) sell or ban a table

2. (A) type table-id

3. (S) checked table-id

4. (S) delete table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

 9. Table Modification

Use Case 9. Table Modification

Actor Manager

Purpose Change Table information

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.3

Pre-Requisite Table should be exists in the list.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) change table information

2. (A) insert changed table's information.

3. (S) checked table's id

4. (S) change table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

10. Order Coffee

Use Case 10. Order Coffee

Actors Customer

Purpose Order Customer’s coffee

Overview

Type Primary and Essential

Cross Reference System Function: R2.1

Pre-Requisite

Typical Courses of Event (A) : Actor, (S) : System

1. (A) Select menu on display

2. (S) Sequence save customer’s order in system

3. (S) System send message to coffee maker for make coffee

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

11. Voice Recognition

 12. Voice Conversation

Use Case 11. Voice Recognition

Actors Customer

Purpose Perform voice recognition function

Overview

Type Primary and Essential

Cross Reference System Function: R2.3

Pre-Requisite N/A

Typical Courses of Event (A) : Actor, (S) : System

1. (A) request voice recognition

2. (S) execute voice recognition.

3. (S) inform employee about recognized voice

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

Use Case 12. Voice Conversation

Actors Employee

Purpose Play saved voice for customer

Overview

Type Primary and Essential

Cross Reference System Function: R2.4

Pre-Requisite System should have basic voice conversation

Typical Courses of Event (A) : Actor, (S) : System

1. (A) play saved voice conversation for customer’s request

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

 13. Make Coffee

Use Case 13. Make Coffee

Actor None

Purpose Make coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.1

Pre-Requisite Order list should be exists in the list.

Typical Courses of Event (S) : System (C) : Coffee maker (W) : Employee

1. (C) received (S)'s message.

2. (C) start makes coffee.

3. (C) should be make coffee perfectly.

4. if (C) finished making coffee, call employee

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

 14. Call Employee(of system)

Use Case 14. Call Employee(of system)

Actor System,

Purpose Call employee for bring to complete coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.2

Pre-Requisite Should finish making coffee

Typical Courses of Event (S) : System (C) : Coffee maker (W) : Employee

1. If (C) finished making coffee, send message to server.

2. (S) call employee after received message

3. (W) received coffee and press receive coffee button in iPAD.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

 15. Manager Call(of system)

Use Case 15. Manager Call(of system)

Actor None

Purpose Call a manager.

Overview If lack of coffee elements and delayed response of employee,

system should be call manager.

Type Primary and Essential

Cross Reference System Function : R3.3

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (S) Check if lack of coffee elements.

 (S) Check if delayed response of employee.

2. (S) Sending to signal to manager.

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

 16. Order Inquiry.

Use Case 16. Order Inquiry

Actor Manager

Purpose Inquire the whole order list each employee.

Overview Manager should be check employee order state so that order to

employee for ordering another work.

Type Primary and Essential

Cross Reference System Function : R4.1

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager request showing employee’s order list.

2. (S) Check employee’s order list.

3. (S) Show order list to manager.

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

17. Employee Call(of manager)

Use Case 17. Employee Call(of manager)

Actor Manager

Purpose Call an employee of manager.

Overview A manager should be calling an employee for ordering another

work.

Type Primary and Essential

Cross Reference System Function : R4.2

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager inputs employee’s id.

2. (S) Check if corresponding employee’s id.

3. (S) Call an employee.

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

2232. Refine Use Case Diagrams

System

System

Order Coffee

Add Recipe

Recipe Modification

Modify Employee

Table Modification

Add Table

Delete Table

Delete Recipe

Call Emplyee(of Customer)
Delete Employee

Add Employee

Call Employee(of manager)

Order Inquiry

Voice Recognition Voice Conversation

Make Coffee

Manager Call(of system)

Manager call(of Employee)

Employee

Manager

Customer

2133. Define Domain Model

Person Table

recipe

Store

Bill

Coffee

material

Order Voice Module

Physical or tangible objects Employee(worker, manager) , table, store ,

recipe, alarm

Specifications, designs, or descriptions of thing Customer, Worker , Manager, coffee

Places Cafe

Transactions Make Coffee, resist employee, resist recipe,

resist table, calculation, using voice

conversation module , call employee, using

iPAD conversation.

Roles of people Employee, Manager, Customer

Containers of other things Café

Things in a container Employee, table, store, Coffee, recipe

organizations Café

 2234. Refine Glossary

Term Category Remarks

Store Class Cafe Main Class

Material Class Material Class

Recipe Class Sum of Recipe_Materials

Table Class Table Class

Person Class Person for employee or manager

Order Class Order to recipe

iPAD

PHP Server

Person

-grade: int
-name: String
-pay: int
-id: String
-password: String
-orderList: Order[100]
-bellLevel: int

Order

-orderID: int
-tableID: int
-orderTimer: String
-employeeID: String
-recipeList: recipe[100]
-payment: int
-finished: boolean
-coursePercent: int
-priorityOder: static int

Table

-tableID: int
-orderList: Order[100]
-payment: int
-chair: int
-locating: string

Recipe

-recipeID: int
-name: string
-quantity: int
-MaterialList: Recipe
-price: int

Material

-name: String
-quantity: int
-MaterialID: int
-price: int
-time: int

Store

-storeID: int
-tableList: Table
-personList: Person
-recipeList: Recipe
-orderList: Order

refer to

1

1..*

received

1 0..*

has

1

0..*

has

1

0..*
has

1

0..*

has

1

0..*

has

1

0..*

VoiceModule ConversationModule

both communication

0..*

1

GUI MENU TREE

Coffee Machine

CoffeeMaker

-making: bool

Water Milk

Ice Steam

Coffee

Mocha

Caramel Syrup

FreshCream

both communication

1

1

Cup

DataBase communication

CoffeeMaker Class Main class of coffee machine

Water Class Water module class

Milk Class Milk module class

Ice Class Ice module class

Steam Class Steam module class

Coffee Class Coffee(espresso) module class

Caramel Class Caramel module class

Syrup Class Syrup module class

Mocha Class Mocha module class

FreshCream Class FreshCream module class

Cup Class Cup module class

VoiceModule Class VoiceModule for employee

ConversationModule Class ConversationModule for customer

GUI MENU TREE Class Main class of GUI

Store.storeID Attribute Unique Store id

Store.tableList Attribute Store's table information List

Store.personList Attribute Store's person information List

Store.orderList Attribute Store's order information List

Material.name Attribute Material's name

Material.quantity Attribute Material's quantity

Material.MaterialID Attribute Material's unique id

Material.price Attribute Material’s unit cost

Material.time Attribute Material’s ready to start time.

Recipe.recipeID Attribute Recipe's unique id

Recipe.name Attribute Name of recipe

Recipe.quantity Attribute Quantity of recipe

Recipe.MaterialList Attribute Material List for Recipe

Recipe.price Attribute Recipe's price

Table.tableID Attribute Table's unique id

Table.orderList Attribute Order List for table

Table.payment Attribute Order recipe's all payment

Table.chair Attribute Table's chair

Table.location Attribute Location of table in the café

Person.grade Attribute Person's grade(employee, manager, ceo)

Person.name Attribute Person's name

Person.pay Attribute Person's pay

Person.id Attribute Person's unique id

Person.password Attribute Person's password

Person.orderList Attribute Person's order List

Person.belLevel Attribute Person's bell Level

Order.orderID Attribute Order's unique id

Order.tableID Attribute Ordered ID of table.

Order.orderTimer Attribute Ordered time

Order.employeeID Attribute ID of employee to be ordered

Order.recipeList Attribute Recipe list to be ordered

Order.payment Attribute Total price of ordered list

Order.finished Attribute Boolean check of order finished

Order.coursePercent Attribute Ordering state.

Order.priorityOrder Attribute Priority number of order

CoffeeMaker.making Attribute Condition of making coffee

 2135. Define System Sequence Diagrams

1. Add employee

 : Manager

Controller PHP Server DataBase Mysql

1 : input Person Data()
2 : Trans Person Data()

3 : Check Person Data()

4 : Check Conflict Person()

5 : Save Person()

2. Delete Employee

3. Modify Employee

 : Manager

Controller PHP Server DataBase(MySql)

1 : Input Delete ID()
2 : Trans ID()

3 : Request Delete ID()

4 : Find ID()

5 : Delete ID()

 : Manager

Controller PHP Server DataBase(MySql)

1 : Input Modify Person Data()
2 : Trans Modify Person Data()

3 : Request Modify Person()

4 : Find Person()

5 : Modify Person Data()

4. Add Recipe

5. Delete Recipe

 : Manager

Controller PHP Server Database Mysql

1 : input Recipe()

2 : Trans Recipe()
3 : Check Recipe()

4 : Check Conflict Recipe()

5 : Add Recipe()

6 : Request Trans Recipe()

 : Manager

Controller PHP Server DataBase(MySql)

1 : Input Delete Recipe()
2 : Trans Delete Recipe()

3 : Request Delete Recipe()

4 : Fine Recipe()

5 : Delete Recipe()

 6. Modify Recipe

7. Add table

 : Manager

Controller PHP Server DataBase(MySql)

1 : Input Modify Recipe()
2 : Trans Modify Recipe()

3 : Request Modify Recipe()

4 : Find Recipe()

5 : Modify Recipe()

 : Manager

Controller PHP Server DataBase Mysql

1 : input Table Data()

2 : Trans Table Data()
3 : Check Table Data()

4 : Check Conflict Table()

5 : Save Table()

8. Delete Table

 9. Modify Table

 : Manager

Controller DataBase(MySql)PHP Server

1 : Input Delete Table()

2 : Trans Delete Table()
3 : Request Delete Table()

4 : Find Table()

5 : Delete Table()

 : Manager

Controller PHP Server DataBase(MySql)

1 : Input Modify Table()
2 : Trans Modify Table()

3 : Request Modify Table()

4 : Find Table()

5 : Modify Table()

10. Order Coffee

 11. Voice Recognition

 12. Voice Conversation

 : Customer

iPad Server Data Base(MySql) CoffeeMachine

1 : Select Coffee()
2 : Request Order()

3 : Request Coffee Recipe()

4 : Send the Recipe()

5 : Material fault or Make some truble

6 : Make Order Class and regist recipe()
<<create>>

7 : registing table and worker to new order class()

8 : Start making Coffee()

 : Customer

Controller

1 : Request Recognition()

 : Employee

Controller

1 : Request Conversation()

13. Make Coffee

14. Call Employee(of system)

15. Manager Call(of system)

Controler Coffee MakerServer

1 : Make Coffee()

2 : Finish making coffee

3 : Send signal to call employee

Controler
Coffee Maker

Employee :

Server

1 : Finish making coffee

2 : Call employee()
3 : Vibration to call employee

Manager :

Controler Coffee MakerServer

1 : Check lack of coffee elements or delayed response of employee()

2 : Send message()

3 : Call Manager()
4 : Viberation to call manager

 16. Order Inquiry

 17. Employee Call

 2236. Define Operation Contracts

Use Case Name of Actor-Activated Event System Operations

1. Add Employee 1. input Person Data() 1. inputAddEmployee ()

2. Trans Person Data() 2. transAddEmployee ()

2. Delete Employee 1. Input Delete ID() 3. inputDeleteEmployee ()

2. Trans ID() 4. transDeleteEmployee ()

3. Modify Employee 1. Input Modify Person Data() 5. inputModifyEmployee ()

2. Trans Modify Person Data() 6. transModifyEmployee ()

4. Add Recipe 1. input Recipe() 7. inputAddRecipe()

2. Trans Recipe() 8. transAddRecipe()

5. Delete Recipe 1. Input Delete Recipe() 9. inputDeleteRecipe()

2. Trans Delete Recipe() 10. transDeleteRecipe()

6. Modify Recipe 1. Input Modify Recipe() 11. inputModifyRecipe()

2. Trans Modify Recipe() 12. transModifyRecipe()

7. Add Table 1. input Table Data() 13. inputAddTable()

 : Manager

Controller PHP Server DataBase(MySql)

1 : Requset Order Inquiry()

2 : Trans Massage()

3 : Requst Order List()

4 : Trans Order List to Server()
5 : Trans Order List to Controller()

 : Manager

Controller_1 PHP Server Controller_2

 : Employee

1 : Input Call Employee Number()

2 : Trans Call Employee Number()
3 : Trans Call Signal()

4 : Call Signal()

2. Trans Table Data() 14. trnasAddTable()

8. Delete Table 1. Input Delete Table() 15. inputDeleteTable()

2. Trans Delete Table() 16. transDeleteTable()

9. Modify table 1. Input Modify Table() 17. inputModifyTable()

2. Trans Modify Table() 18. transModifyTable()

10. Order Coffee 1. RequestOrder() 19. SaveOrder()

2. RequestCoffeeRecipe() 20. RequestRecipe()

3. Make OrderClass and regist

recipe()

21. MokeOrderClass()

11. Voice Recognition 1. Request Recognition() 22. VoiceRecognition()

12. Voice Conversation 1. Request Conversation() 23. VoiceConversation()

13. Make Coffee 1. Make Coffee() 24. MakeCoffee()

14. Call Employee(of system) 1. Call employee() 25. CallEmployee()

15. Manager Call(of system) 1. Send message() 26. SendMessage()

2. Call manager() 27. CallManager()

16. Order Inquiry 1. Request Order Inquiry() 28. RequestOrderInquiry()

2. Trans Massage() 29. TransMassage()

3. Request Order List() 30. RequestOrderList()

4. Trans Order List to Server() 31. TransOrderListServer()

5. Trans Order List to Controller() 32. TransOrderListController()

17. Call Employee(of manager) 1.

input Call Employee Number()

33. InputCallNumber()

2. Trans Call Employee Number() 34. TransCallNumber()

3. Trans Call Signal() 35. TransCallSignal()

4. Call Signal() 36. CallSignal()

1. Add Employee

Name inputAddEmployee ()

Responsibilities Insert Add Employee info

Type

Cross References System Function: R1.1.1

Use-Case : "Add Employee "

Notes

Exceptions

Output

Pre-conditions Already don't exist same Employee information

Post-conditions

Name transAddEmployee ()

Responsibilities trans Add Employee info to server

Type

Cross References System Function: R1.1.1

Use-Case : "Add Employee "

Notes

Exceptions

Output

Pre-conditions Already don't exist same Employee information

Post-conditions

2. Delete Employee

Name inputDeleteEmployee ()

Responsibilities Insert Delete Employee info

Type

Cross References System Function: R1.1.2

Use-Case : "Delete Employee "

Notes

Exceptions

Output

Pre-conditions Already exist Employee information

Post-conditions

Name transDeleteEmployee ()

Responsibilities trans Delete Employee info to server

Type

Cross References System Function: R1.1.2

Use-Case : "Delete Employee "

Notes

Exceptions

Output

Pre-conditions Already exist Employee information

Post-conditions

3. Modify Employee

Name inputModifyEmployee ()

Responsibilities Insert modify Employee info

Type

Cross References System Function: R1.1.3

Use-Case : "Modify Employee "

Notes

Exceptions

Output

Pre-conditions Already exist Employee information

Post-conditions

Name transModifyEmployee ()

Responsibilities trans modify Employee info to server

Type

Cross References System Function: R1.1.3

Use-Case : "Modify Employee "

Notes

Exceptions

Output

Pre-conditions Already exist Employee information

Post-conditions

4. Add Recipe

Name inputAddRecipe ()

Responsibilities Insert Add Recipe info

Type

Cross References System Function: R1.2.1

Use-Case : "Add Recipe "

Notes

Exceptions

Output

Pre-conditions Already don't exist same Recipe information

Post-conditions

Name transAdd Recipe ()

Responsibilities trans Add Recipe info to server

Type

Cross References System Function: R1.21

Use-Case : "Add Recipe "

Notes

Exceptions

Output

Pre-conditions Already don't exist same Table information

Post-conditions

5. Delete Recipe

Name inputDeleteRecipe ()

Responsibilities Insert Delete Recipe info

Type

Cross References System Function: R1.2.2

Use-Case : "Delete Recipe "

Notes

Exceptions

Output

Pre-conditions Already exist Recipe information

Post-conditions

Name transDelete Recipe ()

Responsibilities trans Delete Recipe info to server

Type

Cross References System Function: R1.2.2

Use-Case : "Delete Recipe "

Notes

Exceptions

Output

Pre-conditions Already exist Recipe information

Post-conditions

6. Modify Recipe

Name inputModifyRecipe ()

Responsibilities Insert modify Recipe info

Type

Cross References System Function: R1.2.3

Use-Case : "Modify Recipe "

Notes

Exceptions

Output

Pre-conditions Already exist Recipe information

Post-conditions

Name transModifyRecipe ()

Responsibilities trans modify Recipe info to server

Type

Cross References System Function: R1.2.3

Use-Case : "Modify Recipe "

Notes

Exceptions

Output

Pre-conditions Already exist Recipe information

Post-conditions

7. Add table

Name inputAddTable()

Responsibilities Insert Add table info

Type

Cross References System Function: R1.3.1

Use-Case : "Add Table"

Notes

Exceptions

Output

Pre-conditions Already don't exist same Table information

Post-conditions

Name transAddTable()

Responsibilities trans Add table info to server

Type

Cross References System Function: R1.3.1

Use-Case : "Add Table"

Notes

Exceptions

Output

Pre-conditions Already don't exist same Table information

Post-conditions

8. Delete table

Name inputDeleteTable()

Responsibilities Insert Delete table info

Type

Cross References System Function: R1.3.2

Use-Case : "Delete Table"

Notes

Exceptions

Output

Pre-conditions Already exist Table information

Post-conditions

Name transDeleteTable()

Responsibilities trans Delete table info to server

Type

Cross References System Function: R1.3.2

Use-Case : "Delete Table"

Notes

Exceptions

Output

Pre-conditions Already exist Table information

Post-conditions

9. Modify table

Name inputModifyTable()

Responsibilities Insert modify table info

Type

Cross References System Function: R1.3.3

Use-Case : "Modify Table"

Notes

Exceptions

Output

Pre-conditions Already exist Table information

Post-conditions

Name transModifyTable()

Responsibilities trans modify table info to server

Type

Cross References System Function: R1.3.3

Use-Case : "Modify Table"

Notes

Exceptions

Output

Pre-conditions Already exist Table information

Post-conditions

10. Order Coffee

Name SaveOrder()

Responsibilities Save order to server

Type Server

Cross References System functions : R2.1

Use Case : “Order Coffee”

Notes

Exceptions N/A

Output Results from saving order

Pre-conditions -

Post-conditions A order saved in server

Name RequestRecipe()

Responsibilities Request recipe from DB

Type Database

Cross References System functions : R2.1

Use Case : “Order Coffee”

Notes

Exceptions N/A

Output Results from request recipe

Pre-conditions Recipe information should be entered

Post-conditions Recipe is loaded from server.

Name MakeOrderClass()

Responsibilities Make order class and register recipe, table and employee to the order class

Type Server

Cross References System functions : R2.1

Use Case : “Order Coffee”

Notes

Exceptions If coffee material is little or some problem is caused, order is canceled.

Output Resulting from making order class.

Pre-conditions -

Post-conditions Order class is saved in server.

Several information are saved in order class. (recipe, table, employee)

11. Voice Recognition

Name VoiceRecognition()

Responsibilities Perform voice recognition function.

Type Controller

Cross References System functions : R2.3

Use Case : “Voice Recognition”

Notes

Exceptions If operation doesn’t recognize, controller retry this operation.

Output Result from recognizing voice.

Pre-conditions -

Post-conditions -

12. Voice Conversation

Name VoiceConversation()

Responsibilities Play embeded voice for customer

Type Controller

Cross References System functions : R2.4

Use Case : “Voice Conversation”

Notes

Exceptions N/A

Output Result from playing conversation.

Pre-conditions Conversation should be saved.

Post-conditions -

13. Make Coffee

Name MakeCoffee()

Responsibilities Start making coffee dependent ordering priority in coffee maker.

Type CoffeeMaker

Cross References System functions : R3.1

Use Case : “Make Coffee”

Notes

Exceptions If coffee material is little, call manager.

Output Result from making coffee.

Pre-conditions -

Post-conditions -

14. Call Employee(of system)

Name CallEmployee()

Responsibilities Call employee by system.

Type Controller

Cross References System functions : R3.2

Use Case : “Call Employee(of system)”

Notes

Exceptions N/A

Output Result from calling employee

Pre-conditions Information of employee should be entered.

Post-conditions -

15. Manager Call(of system)

Name SendMessage()

Responsibilities If coffee material is lack or serving is delayed, coffee maker send message to

server.

Type Server

Cross References System functions : R3.3

Use Case : “Manager Call(of system)”

Notes

Exceptions N/A

Output Result from sending message.

Pre-conditions Information of manager should be entered.

Coffee material is lack or serving is delayed.

Post-conditions When coffee material is lack or serving is delayed.

Name CallManager ()

Responsibilities If coffee material is lack or serving is delayed, server call manager.

Type Controller

Cross References System functions : R3.3

Use Case : “Manager Call(of system)”

Notes

Exceptions N/A

Output Result from calling manager.

Pre-conditions Information of manager should be entered.

When coffee material is lack or serving is delayed.

Post-conditions -

16. Order Inquiry

Name Request Order Inquiry()

Responsibilities Request to show the order list each employee.

Type Controller

Cross References System Function : R4.1

Use Case : Order Inquiry

Notes

Exceptions N/A

Output Trans this message to PHP server.

Pre-conditions Manager should be login this system.

Post-conditions Controller has to trans PHP server, and waiting for data get PHP server.

Name TransMassage()

Responsibilities Controller has to sending massage to PHP server.

Type PHP Server

Cross References System Function : R4.1

Use Case : Order Inquiry

Notes

Exceptions N/A

Output Request order list to database.

Pre-conditions Controller is linked PHP server.

Post-conditions Continue access PHP server and wait response.

Name RequestOrderList()

Responsibilities Send to order list to PHP server.

Type Database

Cross References System Function : R4.1

Use Case : Order Inquiry

Notes

Exceptions N/A

Output Database trans order list to PHP server.

Pre-conditions Controller send massage for request order list.

Post-conditions PHP server has to access database, and wait response database.

Name TransOrderListServer()

Responsibilities Order list should be trans, if don’t have any data.

Type PHP Server

Cross References System Function : R4.1

Use Case : Order Inquiry

Notes

Exceptions N/A

Output PHP server is received the order list.

Pre-conditions Database is requested order list by PHP server

Post-conditions Database is waiting another event.

Name TransOrderListController()

Responsibilities PHP server trans order list to manager controller.

Type Controller

Cross References System Function : R4.1

Use Case : Order Inquiry

Notes

Exceptions N/A

Output Controller received the order list.

Pre-conditions Controller has to access the PHP server.

Post-conditions PHP server is waiting another request.

17. Call Employee(of manager)

Name InputCallNumber()

Responsibilities Manager entered number and this number is trans to PHP server.

Type Controller_1

Cross References System Function: R3.2

Use Case : Employee Call

Notes

Exceptions N/A

Output Controller_1 is send employee number to destination controller.

Pre-conditions Manager should be login this system.

Post-conditions Controller_1 is send number to PHP server.

Name TransCallNumber()

Responsibilities Controller_1 trans employee number to PHP server.

Type PHP Server

Cross References System Function: R3.2

Use Case : Employee Call

Notes

Exceptions N/A

Output PHP server trans calling signal to destination controller.

Pre-conditions Controller_1 is linked PHP server.

Post-conditions Controller_1 is waiting another event.

Name TransCallSignal()

Responsibilities PHP server trans calling signal to destination employee controller.

Type Controller_2

Cross References System Function: R3.2

Use Case : Employee Call

Notes

Exceptions N/A

Output Controller_2 is received calling signal.

Pre-conditions Controller_2 is linked PHP server.

Post-conditions PHP server is waiting another request.

Name CallSignal()

Responsibilities Controller_2 is noticed to employee.

Type Employee

Cross References System Function: R3.2

Use Case : Employee Call

Notes

Exceptions N/A

Output Employee realized signal to manager.

Pre-conditions Employee should be take the controller.

Post-conditions Controller is waiting another event.

Employee go to manager.

2237. Define State Diagrams

 State Diagrams for <Coffee Maker>

Ready

Make Coffee

Finished making Coffee Order Coffee

Another Order

OSP 2240 Design(2st cycle)

 Phase 2241. Define Real Use Cases

1. Add Employee

2. Delete Employee

Use Case 1. Add Employee

Actor None or Manager

Purpose add new employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.1

Use Case : -

Pre-Requisite N/A

Typical Courses of Event (A) : Actor, (S) : System

1. (A) request add employees information

2. (S) check employees information

3. (S) give id number to employee

4. (S) add employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

Use Case 2. Delete Employee

Actor None or Manager

Purpose Delete employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.2

Use Case : -

Pre-Requisite Employee should be exists in the system.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) fire Employee.

2. (A) delete employee's id

3. (S) delete employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

 3. Employee Modification

Use Case 3. Employee Modification

Actor None or Manager

Purpose Change Employee's information

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.3

Use Case : -

Pre-Requisite Employee should be exists in the system.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) need change to employee's information.

2. (A) insert employee's changed information.

3. (S) change employees information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid employee information is entered, indicate an

error.

 4. Recipe Add

Use Case 4. Recipe Add

Actor Manager

Purpose Adding the recipe into the recipe list

Overview If manager want to add the new recipe, system should be

provide add recipe menu into coffee maker.

Type Primary and Essential

Cross Reference System Functional : R1.2.1

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager requests to add recipe.

2. (S) Check the existence recipe and show the lists.

3. (A) Input the recipe data.

4. (S) Check if corresponding recipe exists.

5. (S) Add recipe date to list.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 5. Recipe Delete

Use Case 5. Recipe Delete

Actor Manager

Purpose Delete the recipe into the recipe lists.

Overview If manager want to delete recipe, systems should be check

recipe list and delete the recipe.

Type Primary and Essential

Cross Reference System Function : R1.2.2

Use Case : -

Pre-Requisites Recipe should be exists in the list.

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Delete the recipe in the list.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 6. Recipe Modification

Use Case 6. Recipe Modification

Actor Manager

Purpose Modify the recipe into the recipe list.

Overview If manager want to modify the recipe, system should be check

recipe list and provide recipe modifying menu.

Type Primary and Essential

Cross Reference System Function : R1.2.3

Use Case : -

Pre-Requisites Recipe should ne exists in the list.

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Show the recipe data and provide modify menu.

4. (A) Input the change recipe.

5. (S) Save the modified recipe.

Alternative Courses of Events N/A

Exceptional Courses of Events Line 1: If invalid recipe information is entered, indicate an error.

 7. Add Table

Use Case 7. Add Table

Actor Manager

Purpose Add Table in Store.

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.1

Pre-Requisite

Typical Courses of Event (A) : Actor, (S) : System

1. (A) bought a big table

2. (A) insert new table's information.

3. (S) checked new table's info

4. (S) give table-id to new table

5. (S) add new table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

 8. Delete Table

Use Case 8. Delete Table

Actor Manager

Purpose Delete Table in Store.

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.2

Pre-Requisite Table should be exists in the list.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) sell or ban a table

2. (A) type table-id

3. (S) checked table-id

4. (S) delete table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

 9. Table Modification

Use Case 9. Table Modification

Actor Manager

Purpose Change Table information

Overview

Type Primary and Essential

Cross Reference System Function: R1.3.3

Pre-Requisite Table should be exists in the list.

Typical Courses of Event (A) : Actor, (S) : System

1. (A) change table information

2. (A) insert changed table's information.

3. (S) checked table's id

4. (S) change table's information to Database

Alternative Courses of Event N/A

Exceptional Courses of Event Line 1: If invalid table information is entered, indicate an error.

10. Order Coffee

Use Case 10. Order Coffee

Actors Customer

Purpose Order Customer’s coffee

Overview

Type Primary and Essential

Cross Reference System Function: R2.1

Pre-Requisite

Typical Courses of Event (A) : Actor, (S) : System

1. (A) SelecteCoffeeMenu on display

2. (S) iPAD send to Store class for tableID, employeeID, recipeID

3. (S) Store class is checkrecipe and decide to fault or continue

4. (S) Store class creates to orderList and set oder data(orderID,

tableID, orderTime, employeeID, recipeList, payment).

5. (S) Store class save order to database and send to signal to

iPAD, and send to order to CoffeeMaker.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

11. Voice Recognition

12. Voice Conversation

Use Case 11. Voice Recognition

Actors Customer

Purpose Perform voice recognition function

Overview

Type Primary and Essential

Cross Reference System Function: R2.3

Pre-Requisite N/A

Typical Courses of Event (A) : Actor, (S) : System

1. (A) Request voice recognition.

2. (S) Ready to recognition, and then show display.

3. (A) Speak massage to iPAD.

4. (S) Execute voice recognition and print masaage.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

Use Case 12. Voice Conversation

Actors Employee

Purpose Play saved voice for customer

Overview

Type Primary and Essential

Cross Reference System Function: R2.4

Pre-Requisite System should have basic voice conversation

Typical Courses of Event (A) : Actor, (S) : System

1. (A) Request voice conversation.

2. (S) Ready to conversation, and then show massage display.

3. (A) Selected massage to iPAD.

4. (S) Execute voice conversation and speak masaage.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

 13. Make Coffee

Use Case 13. Make Coffee

Actor None

Purpose Make coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.1

Pre-Requisite Order list should be exists in the list.

Typical Courses of Event (S) : System (C) : Coffee maker

1. (S) Store class call functions of CoffeeMaker.

(AddWater(), AddMilk(), AddIce(), AddSteam(), AddCoffee(),

AddMocha(), AddCaramel(), AddSyrup(), AddFreshCream())

※ Each functions are selected by recipe, and executed

sequentially. This timer counted by system.

2. (S) If called function finished normally, call next function

following recipe.

3. (S) If called every function finished normally, Store class set

order.coursPercent to 30%.

3. (S) If CoffeMaker is jammed in process of calling functions,

Store class send message to iPAD to system error.

4. (C) CoffeeMaker send message that finished job to Store class.

5. (S) If CoffeeMaker is finished job, Store class is setting

 order.coursPercent to 70%.

6. (S) Store class send message to iPAD to notice finished

 making coffee.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

14. Call Employee(of system)

Use Case 14. Call Employee(of system)

Actor Employee

Purpose Call employee for bring to complete coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.2

Pre-Requisite Should finish making coffee

Typical Courses of Event (A) : Actor (S) : System

1. (S) If finished making coffee, increase coursCount in the Order.

2. (S) Send message to controller.

3. (S) Call employee after received message

4. (A) received coffee and press receive coffee button in iPAD.

Alternative Courses of Event N/A

Exceptional Courses of Event N/A

 15. Manager Call(of system)

Use Case 15. Manager Call(of system)

Actor None

Purpose Call a manager.

Overview If lack of coffee elements and delayed response of employee,

system should be call manager.

Type Primary and Essential

Cross Reference System Function : R3.3

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (S) Check if lack of coffee elements.

 (S) Check if delayed response of employee.

2. (S) Sending to signal to manager.

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

16. Order Inquiry.

Use Case 16. Order Inquiry

Actor Manager

Purpose Inquire the whole order list each employee.

Overview Manager should be check employee order state so that order to

employee for ordering another work.

Type Primary and Essential

Cross Reference System Function : R4.1

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System (D) : Database

1. (A) A manager request showing employee’s order list.

2. (S) Request order list to (D).

3. (D) Find order list.

4. (S) Display order list..

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

17. Employee Call(of manager)

Use Case 17. Employee Call(of manager)

Actor Manager

Purpose Call an employee of manager.

Overview A manager should be calling an employee for ordering another

work.

Type Primary and Essential

Cross Reference System Function : R4.2

Use Case : -

Pre-Requisites N/A

Typical Courses of Events (A) : Actor, (S) : System

1. (A) A manager inputs employee’s id.

2. (S) Check if corresponding employee’s id.

3. (S) Call an employee.

Alternative Courses of Events N/A

Exceptional Courses of Events N/A

Phase 2242. Define Reports, UI, and Stiryboards

 - This phase is skips in this cycle.

 Phase 2243. Refine System Architecture

Coffee Machine

iPAD

DataBase

+DataBase()

Server

Store

-store ID: int
-tableList: table
-personList: Person
-recipeList: Recipe
-oderList: Order

+AddEmployee(grade: int, name: string, pay: int, id: string, password: string)
+ModifyEmployee(grade: int, pay: int, password: string, name: string)
+DeleteEmployee(id: string)
+AddRecipe(name: string, quantity: int, price: int)
+ModifyRecipe(name: string, quantity: int, price: int)
+DeleteRecipe(recipeID: int)
+AddOrder(tableID: int, employeeID: int, recipeID: int)
+DeleteOrder(orderID: int)
+AddTable(location: string, char: int)
+ModifyTable(location: string, char: int)
+DeleteTable(tableID: int)
+EmployeeCall(personID: int)
+getOrderList()
+checkRecipeofMaterial(recipeID: int)
+MakeCoffee(oderList: Order)
+Store()
~Store()

Material

-name: string
-quantity: int
-materialID: int
-price: int
-time: int

+ModifyMaterial(name: string, quantity: int)
+SetName(name: string)
+GetName(): string
+SetQuantity(quantity: int)
+GetQuantity(): int
+SetID(materialID: int)
+GetID(): int
+Setprice(price: int)
+Getprice(): int
+SetTime(time: int)
+GetTime(): int
+Material()
~Material()

Order

-orderID: int
-tableID: int
-orderTime: string
-priorityOrder: static int
-employeeID: string
-recipeList: recipe[100]
-payment: int
-finished: boolean
-coursePercent: int

+AddOrderRecipe(recipe: Recipe): bool
+setOrderID(ID: int)
+setTableID(ID: int)
+setOrderTime()
+setEmployeeID(ID: string)
+countUp()
+coursCount(percent: int)
+finishedMake(finished: bool)
+calcPayment()
+Order()
~Order()Table

-tableID: int
-orderList: Order[100]
-payment: int
-chair: int
-location: string

+SetID(tableID: int)
+GetID(): int
+SetChair(chair: int)
+GetChair(): int
+SetPayment(payment: int)
+GetPayment(): int
+SetLocation(location: string)
+GetLocation(): string
+Table()
~Table()

Person

-grade: int
-name: string
-pay: int
-id: string
-password: string
-orderList: Order[100]
-bellLevel: int

+SetGrade(grade: int)
+GetGrade(): int
+SetName(name: string)
+GetName(): string
+SetPay(pay: int)
+GetPay(): int
+SetPassword(password: string)
+GetPassword(): string
+Person()
~Person()

GUI MENU TREE VOICE RecognitionConversation Module

Recipe

-recipeID: int
-name: string
-quantity: int
-MateialList: Material
-price: int

+AddMaterial(material: RecipeMaterial)
+SetName(name: string)
+GetName(): string
+SetQuantity(quantity: int)
+GetQuantity(): int
+DeleteMaterial(materialID: int): bool
+ModifyMeteral(materialID: int)
+SetRecipeID(recipeID: int)
+GetRecipeID(): int
+SetRecipeQuantity(recipeuantity: int)
+GetRecipeQuantity(): int
+Recipe()
~Recipe()

CoffeeMaker

-making: bool

+Ready(Quantity: int)
+AddWater(water: int)
+AddMilk(milk: int)
+AddIce(ice: int)
+AddSteam(steam: int)
+AddCoffee(coffe: int)
+AddMocha(Mocha: int)
+AddCaramel(Caramel: int)
+AddSyrup(Syrup: int)
+AddFreshCream(FreshCream: int)

Water Milk Ice

Steam Coffee Mocha

Caramel Syrup FreshCream

Cup

Phase 2244. Define Interaction Diagrams

1. Add Employee

2. Delete Employee

3. Modify Employee

iPAD : Store DataBase

1 : AddEmployee()

2 : Create Person Class()

<<create>>

3 : Save Person Class Data

4 : boolean

iPAD : Store DataBase : Person

1 : DeleteEmployee()
2 : Request Delete Employee's info()

<<destroy>>

3 : Delete Employee's info

4 : bool

5 : boolean

iPAD : Store DataBase

1 : ModifyEmployee()

2 : Send Modify Employee's info

3 : boolean

4. Add Recipe

5. Delete Recipe

iPAD : Store : Recipe DataBase : Material

1 : AddRecipe()

2 : Make Recipe Class()
<<create>>

3 : AddMaterial

4 : AddMaterial()

5 : Make Material()

<<create>>

6 : Save Recipe Data

7 : Boolean
8 : Boolean

iPAD : Store : Table DataBase

1 : DeleteRecipe()

2 : Request Delete Recipe

3 : Delete Recipe Data()

<<destroy>>

4 : Boolean
5 : Boolean

6. Modify Recipe

7. Add Table

8. Delete Table

 : StoreiPAD DataBase

1 : ModifyRecipe()
2 : RequestModifyRecipe

3 : Boolean

iPAD : Store DataBase

1 : AddTable()

2 : CreateTable Class()

<<create>>

3 : Save Table Class Data

4 : boolean

iPAD : Store DataBase : Table

1 : DeleteTable()

2 : Request DeleteTable's info()
<<destroy>>

3 : Delete Table's info

4 : bool
5 : boolean

9. Modify Table

10. Order Coffee

iPAD : Store DataBase

1 : ModifyTable()

2 : Send ModifyTable's info

3 : boolean

iPAD

 : Customer

 : Store : Order DataBase CoffeeMaker

1 : ShowManu

2 : SelecteCoffeeManu
3 : AddOrder()

4 : checkRecipeofMaterial()

5 : checkMaterial

6 : OrderFault
7 : OrderCancle 8 : AddOrderRecipe()

9 : setOrderTime()

10 : countUp()

11 : setOrderID()

12 : setTableID()

13 : setEmployeeID()

14 : calcPayment()

15 : SaveOrder()
<<create>>

16 : OderSuccess

11. Voice Recognition

12. Voice Conversation

 : Customer

iPAD

1 : requestRecognition

2 : ready

3 : speakMassage

4 : printMassage

 : Employee

iPAD

1 : RequestConversation

2 : ShowMassage

3 : SelectMassage

4 : SpeakMassage

13. Make Coffee

iPad Store Order CoffeeMaker

1 : Ready()

2 : AddWater()

3 : AddMilk()

4 : AddIce()

5 : AddSteam()

6 : AddCoffee()

7 : AddMocha()

8 : AddCaramel()

9 : AddSyrup()

10 : AddFreshCream()

11 : courseCount()

12 : Jammed

13 : SystemError

14 : Finished

15 : courseCount()

16 : FinishedMake

14. Call Employee(of system)

15. Manager Call(of system)

16. Order Inquiry

CoffeeMaker : Store iPAD

 : Employee

 : Order

1 : finished
2 : coursCount()

3 : FinishedMake

4 : finishedMakeCallSignal

CoffeeMaker Store iPAD

 : Manager
1 : SystemError

2 : CallManager

3 : CallSignal

iPAD : Store Database

 : Manager

1 : RequestOrderInquiry

2 : XML := getOrderList()
3 : RequestOrderList

4 : TransOrderListServer
5 : TransOrderListColtroller

6 : displayOrderList

17. Employee Call(of manager)

 Phase 2245. Define Design Class Diagrams

iPAD_1 : Store
iPAD_2

 : Manager
 : Employee

1 : InputCallNumber

2 : EmployeeCall()

3 : TransCallSignal

4 : CallSignal

Store

-store ID: int
-tableList: table
-personList: Person
-recipeList: Recipe
-oderList: Order

+AddEmployee(grade: int, name: string, pay: int, id: string, password: string)
+ModifyEmployee(grade: int, pay: int, password: string, name: string)
+DeleteEmployee(id: string)
+AddRecipe(name: string, quantity: int, price: int)
+ModifyRecipe(name: string, quantity: int, price: int)
+DeleteRecipe(recipeID: int)
+AddOrder(tableID: int, employeeID: int, recipeID: int)
+DeleteOrder(orderID: int)
+AddTable(location: string, char: int)
+ModifyTable(location: string, char: int)
+DeleteTable(tableID: int)
+EmployeeCall(personID: int)
+getOrderList()
+checkRecipeofMaterial(recipeID: int)
+MakeCoffee(oderList: Order)
+Store()
~Store()

Table

-tableID: int
-orderList: Order[100]
-payment: int
-chair: int
-location: string

+SetID(tableID: int)
+GetID(): int
+SetChair(chair: int)
+GetChair(): int
+SetPayment(payment: int)
+GetPayment(): int
+SetLocation(location: string)
+GetLocation(): string
+Table()
~Table()

Person

-grade: int
-name: string
-pay: int
-id: string
-password: string
-orderList: Order[100]
-bellLevel: int

+SetGrade(grade: int)
+GetGrade(): int
+SetName(name: string)
+GetName(): string
+SetPay(pay: int)
+GetPay(): int
+SetPassword(password: string)
+GetPassword(): string
+Person()
~Person()Order

-orderID: int
-tableID: int
-orderTime: string
-priorityOrder: static int
-employeeID: string
-recipeList: recipe[100]
-payment: int
-finished: boolean
-coursePercent: int

+AddOrderRecipe(recipe: Recipe): bool
+setOrderID(ID: int)
+setTableID(ID: int)
+setOrderTime()
+setEmployeeID(ID: string)
+countUp()
+coursCount(percent: int)
+finishedMake(finished: bool)
+calcPayment()
+Order()
~Order()

Recipe

-recipeID: int
-name: string
-quantity: int
-MateialList: Material
-price: int

+AddMaterial(material: RecipeMaterial)
+SetName(name: string)
+GetName(): string
+SetQuantity(quantity: int)
+GetQuantity(): int
+DeleteMaterial(materialID: int): bool
+ModifyMeteral(materialID: int)
+SetRecipeID(recipeID: int)
+GetRecipeID(): int
+SetRecipeQuantity(recipeuantity: int)
+GetRecipeQuantity(): int
+Recipe()
~Recipe()

1..*1

1 1

1

1..*

1

0..*1

CoffeeMaker

-making: bool

+Ready(Quantity: int)
+AddWater(water: int)
+AddMilk(milk: int)
+AddIce(ice: int)
+AddSteam(steam: int)
+AddCoffee(coffe: int)
+AddMocha(Mocha: int)
+AddCaramel(Caramel: int)
+AddSyrup(Syrup: int)
+AddFreshCream(FreshCream: int)

Material

-name: string
-quantity: int
-materialID: int
-price: int
-time: int

+ModifyMaterial(name: string, quantity: int)
+SetName(name: string)
+GetName(): string
+SetQuantity(quantity: int)
+GetQuantity(): int
+SetID(materialID: int)
+GetID(): int
+Setprice(price: int)
+Getprice(): int
+SetTime(time: int)
+GetTime(): int
+Material()
~Material()

1..*

1

 Phase 2246. Define Database Schema

CREATE TABLE person (

personID int NOT NULL auto_increment,

name varchar(60) NOT NULL,

pay int NOT NULL default '40',

id varchar(60) NOT NULL,

PRIMARY KEY (personID),

)

CREATE TABLE Order (

orderID int NOT NULL auto_increment,

tableID int NOT NULL,

employeeID int NOT NULL,

orderTimer timestamp CURRENT_TIMESTAMP,

priorityOrder int NOT NULL DEFAULT '10',

payment int NOT NULL, DEFAULT '0',

finished bool NOT NULL DEFAULT 'FALSE',

coursePercent int NOT NULL DEFAULT '0',

PRIMARY KEY (orderID),

)

CREATE TABLE Recipe (

 RecipeID int NOT NULL auto_increment,

 name varchar(60) NOT NULL,

 quantity int NOT NULL DEFAULT '0',

 price int NOT NULL DEFAULT '0',

 recipeType varchar(60) NOT NULL DEFAULT 'material',

 PRIMARY KEY (recipeID),

)

CREATE TABLE Material(

 MaterialID int NOT NULL auto_increment,

 name varchar(60) NOT NULL,

 quantity int NOT NULL DEFAULT '0',

 time int NOT NULL DEFAULT '0',

 price int NOT NULL DEFAULT '0',

 PRIMARY KEY (materialID),

)

CREATE TABLE Order_RecipeMaterial{

OrderID int NOT NULL,

RecipeMaterialID int NOT NULL,

count int NOT NULL DEFAULT ',

}

CREATE TABLE Store_Table{

tableID int NOT NULL auto_increment,

chair int NOT NULL DEFAULT '1',

location varchar(60) NOT NULL,

PRIMARY KEY (tableID),

}

CREATE TABLE Recipe_Compibation_Material{

Recipe_Compination_MaterialID int NOT NULL auto_increment,

Main_RecipeID int NOT NULL,

MaterialID int NOT NULL,

recipeQuentity int NOT NULL DEFAULT '0',

recipeTime int NOT NULL DEFAULT '0',

* PRIMARY KEY (Recipe_Compination_MaterialID),

}

Impression

- 이번 프로젝트는 객체지향 설계 방법론의 하나인 OSP의 단계를 따라서 분석부터 설계까지의

단계를 진행하는 것이었다. 초기에는 각각의 프로세스를 진행하며 이러한 것만으로 시스템을 개

발할 수 있다는 것에 의구심이 들기도 하였지만 각각의 단계를 지날 때마다 조금씩 구체화 되는

시스템을 보면서 이론으로 알고 있었던 방법론이 실제 개발에서도 자연스럽게 적용될 수 있다는

것을 알 수 있었다.

 우리가 진행한 OSP의 단계는 크게 3가지로 구성되었다. 먼저 Plan&Elaboration 단계를 통하여

프로젝트의 방향과 기본적인 Use Case를 뽑아 내고 개발하고자 하는 시스템에 대한 정의를 내리

게 된다. 이 내용을 토대로 Analysis 단계에서 Use Case를 분석하여 전체적인 Class 모형을 도식

화하고 각 class의 Attribute를 정의하게 된다. 마지막 Design 단계는 class 간의 interaction 을

sequence 다이어그램을 통하여 구체화하고 완성된 class 다이어그램을 작성할 수 있도록 한다.

 각 단계는 분리되어 수행되기는 하지만, 실제 프로젝트를 진행하다 보면 각 단계는 자연스러운

하나의 흐름이라는 것을 알 수 있었다. 앞의 단계에서 잘못된 분석이나 설계는 다음 단계에 영향

을 미치고 결과물이 원하지 않는 방향으로 나타나게 된다. 우리의 경우, 첫 번째 단계에서 시스템

의 boundary에 대한 부정확한 정의 때문에 전체적인 시스템의 구성을 한 번 더 설계하기도 하였

다.

 또한 프로젝트를 진행하며 Use Case의 중요성을 알 수 있었다. Use Case는 새로운 것을 작성하

는 것이 아니라, 전 단계에서 분석했던 Use Case를 좀 더 자세하게 분석하여 그 것을 토대로 분

석 및 설계를 진행하게 하는 기본 틀인 것이다. 한마디로 말하자면 Use Case는 OOD의 핵심이 되

는 것이다. 실제 프로젝트를 진행하면서 Use Case의 레벨이나 잘못된 분석으로 인해서 몇 번씩

수정하며 프로세스를 진행하면서 Use Case가 얼마나 중요한지 몸으로 느끼게 되었다.

