FSilence

Coffee Maker System

Software Modeling and Analysis
Team Project #4
OSP 2200 OOAD

2"d cycle

Team 4
200611450 ZM &
200611458 ¥ =
200611518 =01 H

Phase 2230 Analyze

2231. Define Essential Use Cases

1. Add Employee

Use Case 1. Add Employee

Actor None or Manager

Purpose add new employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.1
Use Case : -

Pre-Requisite N/A

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) request add employees information
2. (S) check employees information

3. (S) give id number to employee

4. (S) add employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1. If invalid employee information is entered, indicate an

error.

2. Delete Employee

Use Case 2. Delete Employee
Actor None or Manager
Purpose Delete employee
Overview

Type Primary and Essential

Cross Reference

System Function: R1.1.2

Use Case : -

Pre-Requisite

Employee should be exists in the system.

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) fire Employee.

2. (A) delete employee's id
3.(

S) delete employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1. If invalid employee information is entered, indicate an

error.

3. Employee Modification

Use Case 3. Employee Modification
Actor None or Manager

Purpose Change Employee's information
Overview

Type Primary and Essential

Cross Reference

System Function: R1.1.3

Use Case : -

Pre-Requisite

Employee should be exists in the system.

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) need change to employee's information.
2. (A) insert employee's changed information.

3. (S) change employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid employee information is entered, indicate an

error.
4. Recipe Add

Use Case 4. Recipe Add

Actor Manager

Purpose Adding the recipe into the recipe list

Overview If manager want to add the new recipe, system should be
provide add recipe menu into coffee maker.

Type Primary and Essential

Cross Reference System Functional : R1.2.1
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager requests add recipe.

2. (S) Check the existence recipe and show the lists.
3. (A) Input the recipe data.

4. (S) Check if corresponding recipe exists.

5. (S) Add recipe date to list.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

5. Recipe Delete

Use Case 5. Recipe Delete

Actor Manager

Purpose Delete the recipe into the recipe lists.

Overview If manager want to delete recipe, systems should be check
recipe list and delete the recipe.

Type Primary and Essential

Cross Reference

System Function : R1.2.2

Use Case : -

Pre-Requisites

Recipe should be exists in the list.

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.
3. (S) Delete the recipe in the list.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

6. Recipe Modification

Use Case 6. Recipe Modification

Actor Manager

Purpose Modify the recipe into the recipe list.

Overview If manager want to modify the recipe, system should be check
recipe list and provide recipe modifying menu.

Type Primary and Essential

Cross Reference

System Function : R1.2.3

Use Case : -

Pre-Requisites

Recipe should ne exists in the list.

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Show the recipe data and provide modify menu.
4. (A) Input the change recipe.
5. (S)

(S) Save the modified recipe.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

7. Add Table

Use Case 7. Add Table

Actor Manager

Purpose Add Table in Store.
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.1

Pre-Requisite

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) bought a big table

2. (A) insert new table's information.
3. (S) checked new table's info

4. (S) give table-id to new table

5. (S) add new table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

8. Delete Table

Use Case 8. Delete Table

Actor Manager

Purpose Delete Table in Store.
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.2

Pre-Requisite

Table should be exists in the list.

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) sell or ban a table
2. (A) type table-id

3. (S) checked table-id

4. (S) delete table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

9. Table Modification

Use Case 9. Table Modification
Actor Manager

Purpose Change Table information
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.3

Pre-Requisite

Table should be exists in the list.

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) change table information

2. (A) insert changed table's information.
3. (S) checked table's id

4. (S) change table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

10. Order Coffee

Use Case 10. Order Coffee

Actors Customer

Purpose Order Customer's coffee
Overview

Type Primary and Essential

Cross Reference

System Function: R2.1

Pre-Requisite

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) Select menu on display
2. (S) Sequence save customer’s order in system

3. (S) System send message to coffee maker for make coffee

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

11. Voice Recognition

Use Case 11. Voice Recognition

Actors Customer

Purpose Perform voice recognition function
Overview

Type Primary and Essential

Cross Reference

System Function: R2.3

Pre-Requisite

N/A

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) request voice recognition
2. (S) execute voice recognition.

3. (S) inform employee about recognized voice

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

12. Voice Conversation

Use Case 12. Voice Conversation

Actors Employee

Purpose Play saved voice for customer
Overview

Type Primary and Essential

Cross Reference

System Function: R2.4

Pre-Requisite

System should have basic voice conversation

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) play saved voice conversation for customer’s request

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

13. Make Coffee

Use Case 13. Make Coffee

Actor None

Purpose Make coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.1

Pre-Requisite Order list should be exists in the list.

Typical Courses of Event (S) : System (C) : Coffee maker (W) : Employee

1. (C) received (S)'s message.

2. (C) start makes coffee.

3. (C) should be make coffee perfectly.

4. if (C) finished making coffee, call employee

Alternative Courses of Event N/A

Exceptional Courses of Event | N/A

14. Call Employee(of system)

Use Case 14. Call Employee(of system)

Actor System,

Purpose Call employee for bring to complete coffee
Overview

Type Primary and Essential

Cross Reference System Function: R3.2

Pre-Requisite Should finish making coffee

Typical Courses of Event (S) : System (C) : Coffee maker (W) : Employee

1. If (C) finished making coffee, send message to server.
2. (S) call employee after received message

3. (W) received coffee and press receive coffee button in iPAD.

Alternative Courses of Event N/A

Exceptional Courses of Event | N/A

15. Manager Call(of system)

Use Case 15. Manager Call(of system)

Actor None

Purpose Call a manager.

Overview If lack of coffee elements and delayed response of employee,
system should be call manager.

Type Primary and Essential

Cross Reference System Function : R3.3
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (S) Check if lack of coffee elements.
(S) Check if delayed response of employee.

2. (S) Sending to signal to manager.

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

16. Order Inquiry.

Use Case 16. Order Inquiry

Actor Manager

Purpose Inquire the whole order list each employee.

Overview Manager should be check employee order state so that order to
employee for ordering another work.

Type Primary and Essential

Cross Reference System Function : R4.1
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (A) A manager request showing employee’s order list.
2. (S) Check employee's order list.

3. (S) Show order list to manager.

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

17. Employee Call(of manager)

Use Case 17. Employee Call(of manager)

Actor Manager

Purpose Call an employee of manager.

Overview A manager should be calling an employee for ordering another
work.

Type Primary and Essential

Cross Reference System Function : R4.2
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager inputs employee’s id.

2. (S) Check if corresponding employee’s id.
3. (S) Call an employee.

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

2232. Refine Use Case Diagrams

Manager Call(of system)
Manager call(of Employee)

Recipe Modification

Q
A=

Add Recipe
Manager

Make Coffee

(_ order Inquiry
/ Employee

(\‘ all Employee(of manager)

\N

Modify Employee

call Emplyee(of Customer)

Order Coffee

System

System

Voice Recognition Voice Conversation

Customer

2133. Define Domain Model

Physical or tangible objects Employee(worker, manager) , table, store ,
recipe, alarm

Specifications, designs, or descriptions of thing | Customer, Worker , Manager, coffee

Places Cafe

Transactions Make Coffee, resist employee, resist recipe,
resist ~ table, calculation, using voice

conversation module , call employee, using

iPAD conversation.

Roles of people

Employee, Manager, Customer

Containers of other things

Café

Things in a container

Employee, table, store, Coffee, recipe

organizations

Café

Person Table

Coffee

recipe Bill

material

Store Order

Voice Module

1 1
DataBase communication Coffee Machine
CoffeeMaker Water Milk
-making: bool
iPAD Ice Steam
Coffee
VoiceModule ConversationModule GUI MENU TREE
Caramel Syrup
Mocha
FreshCream Cup
1
both gommunication both cgmmunication
PHP Server
@05
Store .
Material
-storelD: int 1 e
-tableList: Table -name: St.r!ng
-personList: Person “GENIIE |nt
-recipeList: Recipe 'M”.ner'.a”D' i3
-orderList: Order -price: int
-time: int
1
Recipe
-recipelD: int
-name: string
has -quantity: int
-MaterialList: Recipe
-price: int
has 0..*
has
Table oo™
-tablelD: int
-orderList: Order[100] pfer to
-payment: int
0.* -chair: int 1
- -locating: string 1 0.
Order
Person
- -orderlD: int
-grade.: int has O -tablelD: int
OEVILES S | -orderTimer: String
“pay: I 0.. -employeelD: String
jodsting .] -recipeList: recipe[100]
-password: String received _payment: int
-orderlList: Order[100] Pk el
“bellLevel: int -coursePercent: int
-priorityOder: static int
2234. Refine Glossary
Term Category Remarks
Store Class Cafe Main Class
Material Class Material Class
Recipe Class Sum of Recipe_Materials
Table Class Table Class
Person Class Person for employee or manager
Order Class Order to recipe

CoffeeMaker Class Main class of coffee machine
Water Class Water module class

Milk Class Milk module class

Ice Class Ice module class

Steam Class Steam module class

Coffee Class Coffee(espresso) module class
Caramel Class Caramel module class

Syrup Class Syrup module class

Mocha Class Mocha module class
FreshCream Class FreshCream module class
Cup Class Cup module class
VoiceModule Class VoiceModule for employee
ConversationModule Class ConversationModule for customer
GUI MENU TREE Class Main class of GUI
Store.storelD Attribute Unique Store id
Store.tablelList Attribute Store's table information List
Store.personList Attribute Store's person information List
Store.orderList Attribute Store's order information List
Material.name Attribute Material's name
Material.quantity Attribute Material's quantity
Material.MateriallD Attribute Material's unique id
Material.price Attribute Material's unit cost
Material.time Attribute Material's ready to start time.
Recipe.recipelD Attribute Recipe's unique id
Recipe.name Attribute Name of recipe
Recipe.quantity Attribute Quantity of recipe
Recipe.MaterialList Attribute Material List for Recipe
Recipe.price Attribute Recipe's price

Table.tableID Attribute Table's unique id
Table.orderList Attribute Order List for table
Table.payment Attribute Order recipe's all payment
Table.chair Attribute Table's chair

Table.location Attribute Location of table in the café
Person.grade Attribute Person's grade(employee, manager, ceo)
Person.name Attribute Person's name

Person.pay Attribute Person's pay

Person.id Attribute Person's unique id
Person.password Attribute Person's password

Person.orderList Attribute Person's order List
Person.bellLevel Attribute Person's bell Level
Order.orderlD Attribute Order's unique id
Order.tablelD Attribute Ordered ID of table.
Order.orderTimer Attribute Ordered time
Order.employeelD Attribute ID of employee to be ordered
Order.recipeList Attribute Recipe list to be ordered
Order.payment Attribute Total price of ordered list
Orderfinished Attribute Boolean check of order finished
Order.coursePercent Attribute Ordering state.
Order.priorityOrder Attribute Priority number of order
CoffeeMaker.making Attribute Condition of making coffee

2135. Define System Sequence Diagrams
1. Add employee

Controller

: Manager

1 : input Person Data()

PHP Server DataBase Mysql

] 2: Trans Person Data(

|

3 : Check Person Data()

|

check Clonflict Person()

5 : Save Person()

2. Delete Employee

: Manager

1: Input Delete 1D()

Controller

3. Modify Employee

: Manager

1 : Input Modify Person Data()

2 : Trans ID()

PHP Server

1

| S

Controller

DataBase (MySql)

3:R Del ID
>|] equest Delete ()>__

PHP Server

]

bI:-| 2 : Trans Modify Person Data()

3 : Request Modify Person()

T 4 : aind 1D()
: 5: D}alete 1D()

DataBase(MySql)

_zh Fing Person()
bl

5 :iM<odify Person Data()

T

4. Add Recipe

Controller

: Manager

1 : input Recipe()

5. Delete Recipe

[

PHP Server Database Mysql

2 : Trans Recipe()

Controller

: Manager

1 : Input Delete Recipe()

2 : Trans Delete Recipe()

T} 3 : Check Recipe()

—Eheck Jonflict Recipe()

5 : Adf Recipe()

[F Request Trans Recipe()’?

PHP Server DataBase(MySq])

A
|

>|] 3 : Request Delete Recipe“ i
4 : Fiae Recipe()

E : Delgte Recipe()

6. Modify Recipe

Controller

: Manager

1 : Input Modify Recipe()

7. Add table

: Manager

1 : input Table Data()

PHP Server

2 : Trans Modify Recipe()

i

Controller

2 : Trans Table Data()

DataBase(MySql)

'L 3 : Request Modify Recipe()

PHP Server

14 : Fiad Recipe()

_ES:AMod fy Recipe()
-

T

DataBase Mysql

|

T] 3 : Check Table Data()

4L Check qionflict Table()

Rl

_:5‘ Sal/e Table()

«

8. Delete Table

Controller

PHP Server

: Manager

1: Input Delete Table()

9. Modify Table

2 : Trans Delete Table()

)

DataBase(MySq[l)

3 : Request Delete Table()

[

Controller PHP Server

: Manager

1 : Input Modify Table()

14 : Find Table()

: Delete Table()

2 : Trans Modify Table()

[

DataBase(MySq]l)

3 : Request Modify Table()>

A
|

L

4 Fi}‘d Table()
5 Mo}ﬁfy Table()

10. Order Coffee

: Customer

11. Voice

: Customer

1: Select Coffee()

iPad

Server

| 2 : Request Order()

Recognition

5 : Material fault or Make some trnlia_le

—5—4_—| <<create>>

Controller

1 : Request Recognition()

12. Voice Conversation

: Employee

1 : Request Conversation()

13 Request Coffee Recipe%

H

-

Data Base(MySq|l)

CoffeeMachine

4 : Send the Recipe()

6 : Make Order Class and re

Pl

7 : registing table and workei

hist recipe()

to new order class()

8 : Start making

Coffee()

Controller

i

i

13. Make Coffee

Controler Server Coffee Maker

1 : Make Coffee()

2 : Finish making coffee

3 : Send signal to call employee

14. Call Employee(of system)

Controler Server Coffee Maker

Employee :

1 : Finish making coffee

A

J 2 : Call employee()
3 : Vibration to call employee '

15. Manager Call(of system)

% Controler Server Coffee Maker
Manager :
- [_ 2 : Send message()
[r L

1 : Check lack of coffee elements or delayed response of employee()

3 : Call Manager()

4 : Viberation to call manager L

16. Order Inquiry

% Controller PHP Server DataBase(MySql)

: Manager

1 : Requset Order Inquiry()

2 : Trans Massage()

- 3 : Requst Order List()

4 : Trans Order List to Server()
:|<5 : Trans Order List to Controller()

1

17. Employee Call

% Controller_1 PHP Server Controller_2 %

: Manager : Employee

: Input Call Employee Number()

.

'|_ |2 : Trans Call Employee Number
o -| 3 : Trans Call Signal()
|

»

| 4 Call Signal() _
2236. Define Operation Contracts
Use Case Name of Actor-Activated Event | System Operations
1. Add Employee 1. input Person Data() 1. inputAddEmployee ()
2. Trans Person Data() 2. transAddEmployee ()
2. Delete Employee 1. Input Delete ID() 3. inputDeleteEmployee ()
2. Trans ID() 4. transDeleteEmployee ()
3. Modify Employee 1. Input Modify Person Data() | 5. inputModifyEmployee ()
2. Trans Modify Person Data() 6. transModifyEmployee ()
4. Add Recipe 1. input Recipe() 7. inputAddRecipe()
2. Trans Recipe() 8. transAddRecipe()
5. Delete Recipe 1. Input Delete Recipe() 9. inputDeleteRecipe()
2. Trans Delete Recipe() 10. transDeleteRecipe()
6. Modify Recipe 1. Input Modify Recipe() 11. inputModifyRecipe()
2. Trans Modify Recipe() 12. transModifyRecipe()
7. Add Table 1. input Table Data() 13. inputAddTable()

2. Trans Table Data() 14. trnasAddTable()
8. Delete Table 1. Input Delete Table() 15. inputDeleteTable()
2. Trans Delete Table() 16. transDeleteTable()
9. Modify table 1. Input Modify Table() 17. inputModifyTable()
2. Trans Modify Table() 18. transModifyTable()
10. Order Coffee 1. RequestOrder() 19. SaveOrder()
2. RequestCoffeeRecipe() 20. RequestRecipe()
3. Make OrderClass and regist | 21. MokeOrderClass()

recipe()

11. Voice Recognition 1. Request Recognition() 22. VoiceRecognition()
12. Voice Conversation 1. Request Conversation() 23. VoiceConversation()
13. Make Coffee 1. Make Coffee() 24. MakeCoffee()
14. Call Employee(of system) 1. Call employee() 25. CallEmployee()
15. Manager Call(of system) 1. Send message() 26. SendMessage()
2. Call manager() 27. CallManager()
16. Order Inquiry 1. Request Order Inquiry() 28. RequestOrderlnquiry()
2. Trans Massage() 29. TransMassage()
3. Request Order List() 30. RequestOrderList()
4. Trans Order List to Server() 31. TransOrderListServer()
5. Trans Order List to Controller() 32. TransOrderListController()
17. Call Employee(of manager) | 1. 33. InputCallNumber()

input Call Employee Number()

2. Trans Call Employee Number() | 34. TransCallNumber()

3. Trans Call Signal() 35. TransCallSignal()

4. Call Signal() 36. CallSignal()

1. Add Employee

Name

inputAddEmployee ()

Responsibilities

Insert Add Employee info

Type

Cross References

System Function: R1.1.1
Use-Case : "Add Employee "

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Employee information

Post-conditions

Name

transAddEmployee ()

Responsibilities

trans Add Employee info to server

Type

Cross References

System Function: R1.1.1
Use-Case : "Add Employee "

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Employee information

Post-conditions

2. Delete Employee

Name

inputDeleteEmployee ()

Responsibilities

Insert Delete Employee info

Type

Cross References

System Function: R1.1.2

Use-Case : "Delete Employee "

Notes

Exceptions

Output

Pre-conditions

Already exist Employee information

Post-conditions

Name

transDeleteEmployee ()

Responsibilities

trans Delete Employee info to server

Type

Cross References

System Function: R1.1.2

Use-Case : "Delete Employee "

Notes

Exceptions

Output

Pre-conditions

Already exist Employee information

Post-conditions

3. Modify Employee

Name

inputModifyEmployee ()

Responsibilities

Insert modify Employee info

Type

Cross References

System Function: R1.1.3
Use-Case : "Modify Employee "

Notes

Exceptions

Output

Pre-conditions

Already exist Employee information

Post-conditions

Name

transModifyEmployee ()

Responsibilities

trans modify Employee info to server

Type

Cross References

System Function: R1.1.3
Use-Case : "Modify Employee "

Notes

Exceptions

Output

Pre-conditions

Already exist Employee information

Post-conditions

4. Add Recipe

Name

inputAddRecipe ()

Responsibilities

Insert Add Recipe info

Type

Cross References

System Function: R1.2.1
Use-Case : "Add Recipe "

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Recipe information

Post-conditions

Name

transAdd Recipe ()

Responsibilities

trans Add Recipe info to server

Type

Cross References

System Function: R1.21
Use-Case : "Add Recipe "

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Table information

Post-conditions

5. Delete Recipe

Name

inputDeleteRecipe ()

Responsibilities

Insert Delete Recipe info

Type

Cross References

System Function: R1.2.2

Use-Case : "Delete Recipe "

Notes

Exceptions

Output

Pre-conditions

Already exist Recipe information

Post-conditions

Name

transDelete Recipe ()

Responsibilities

trans Delete Recipe info to server

Type

Cross References

System Function: R1.2.2

Use-Case : "Delete Recipe "

Notes

Exceptions

Output

Pre-conditions

Already exist Recipe information

Post-conditions

6. Modify Recipe

Name

inputModifyRecipe ()

Responsibilities

Insert modify Recipe info

Type

Cross References

System Function: R1.2.3
Use-Case : "Modify Recipe "

Notes

Exceptions

Output

Pre-conditions

Already exist Recipe information

Post-conditions

Name

transModifyRecipe ()

Responsibilities

trans modify Recipe info to server

Type

Cross References

System Function: R1.2.3
Use-Case : "Modify Recipe "

Notes

Exceptions

Output

Pre-conditions

Already exist Recipe information

Post-conditions

7. Add table

Name

inputAddTable()

Responsibilities

Insert Add table info

Type

Cross References

System Function: R1.3.1
Use-Case : "Add Table"

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Table information

Post-conditions

Name

transAddTable()

Responsibilities

trans Add table info to server

Type

Cross References

System Function: R1.3.1
Use-Case : "Add Table"

Notes

Exceptions

Output

Pre-conditions

Already don't exist same Table information

Post-conditions

8. Delete table

Name

inputDeleteTable()

Responsibilities

Insert Delete table info

Type

Cross References

System Function: R1.3.2

Use-Case : "Delete Table"

Notes

Exceptions

Output

Pre-conditions

Already exist Table information

Post-conditions

Name

transDeleteTable()

Responsibilities

trans Delete table info to server

Type

Cross References

System Function: R1.3.2

Use-Case : "Delete Table"

Notes

Exceptions

Output

Pre-conditions

Already exist Table information

Post-conditions

9. Modify table

Name

inputModifyTable()

Responsibilities

Insert modify table info

Type

Cross References

System Function: R1.3.3
Use-Case : "Modify Table"

Notes

Exceptions

Output

Pre-conditions

Already exist Table information

Post-conditions

Name

transModifyTable()

Responsibilities

trans modify table info to server

Type

Cross References

System Function: R1.3.3
Use-Case : "Modify Table"

Notes

Exceptions

Output

Pre-conditions

Already exist Table information

Post-conditions

10. Order Coffee

Name

SaveOrder()

Responsibilities

Save order to server

Type

Server

Cross References

System functions : R2.1
Use Case : “"Order Coffee”

Notes
Exceptions N/A
Output Results from saving order

Pre-conditions

Post-conditions

A order saved in server

Name

RequestRecipe()

Responsibilities

Request recipe from DB

Type

Database

Cross References

System functions : R2.1
Use Case : “"Order Coffee”

Notes
Exceptions N/A
Output Results from request recipe

Pre-conditions

Recipe information should be entered

Post-conditions

Recipe is loaded from server.

Name

MakeOrderClass()

Responsibilities

Make order class and register recipe, table and employee to the order class

Type

Server

Cross References

System functions : R2.1
Use Case : "Order Coffee”

Notes
Exceptions If coffee material is little or some problem is caused, order is canceled.
Output Resulting from making order class.

Pre-conditions

Post-conditions

Order class is saved in server.

Several information are saved in order class. (recipe, table, employee)

11. Voice Recognition

Name

VoiceRecognition()

Responsibilities

Perform voice recognition function.

Type

Controller

Cross References

System functions : R2.3

Use Case : "Voice Recognition”

Notes
Exceptions If operation doesn’t recognize, controller retry this operation.
Output Result from recognizing voice.

Pre-conditions

Post-conditions

12. Voice Conversation

Name

VoiceConversation()

Responsibilities

Play embeded voice for customer

Type

Controller

Cross References

System functions : R2.4

Use Case : “Voice Conversation”

Notes
Exceptions N/A
Output Result from playing conversation.

Pre-conditions

Conversation should be saved.

Post-conditions

13. Make Coffee

Name

MakeCoffee()

Responsibilities

Start making coffee dependent ordering priority in coffee maker.

Type

CoffeeMaker

Cross References

System functions : R3.1
Use Case : "Make Coffee”

Notes
Exceptions If coffee material is little, call manager.
Output Result from making coffee.

Pre-conditions

Post-conditions

14. Call Employee(of system)

Name

CallEmployee()

Responsibilities

Call employee by system.

Type

Controller

Cross References

System functions : R3.2

Use Case : “Call Employee(of system)”

Notes
Exceptions N/A
Output Result from calling employee

Pre-conditions

Information of employee should be entered.

Post-conditions

15. Manager Call(of system)

Name

SendMessage()

Responsibilities

If coffee material is lack or serving is delayed, coffee maker send message to

Server.

Type

Server

Cross References

System functions : R3.3

Use Case : "“Manager Call(of system)”

Notes
Exceptions N/A
Output Result from sending message.

Pre-conditions

Information of manager should be entered.

Coffee material is lack or serving is delayed.

Post-conditions

When coffee material is lack or serving is delayed.

Name

CallManager ()

Responsibilities

If coffee material is lack or serving is delayed, server call manager.

Type

Controller

Cross References

System functions : R3.3

Use Case : “Manager Call(of system)”

Notes
Exceptions N/A
Output Result from calling manager.

Pre-conditions

Information of manager should be entered.

When coffee material is lack or serving is delayed.

Post-conditions

16. Order Inquiry

Name

Request Order Inquiry()

Responsibilities

Request to show the order list each employee.

Type

Controller

Cross References

System Function : R4.1
Use Case : Order Inquiry

Notes
Exceptions N/A
Output Trans this message to PHP server.

Pre-conditions

Manager should be login this system.

Post-conditions

Controller has to trans PHP server, and waiting for data get PHP server.

Name

TransMassage()

Responsibilities

Controller has to sending massage to PHP server.

Type

PHP Server

Cross References

System Function : R4.1
Use Case : Order Inquiry

Notes
Exceptions N/A
Output Request order list to database.

Pre-conditions

Controller is linked PHP server.

Post-conditions

Continue access PHP server and wait response.

Name

RequestOrderList()

Responsibilities

Send to order list to PHP server.

Type

Database

Cross References

System Function : R4.1
Use Case : Order Inquiry

Notes
Exceptions N/A
Output Database trans order list to PHP server.

Pre-conditions

Controller send massage for request order list.

Post-conditions

PHP server has to access database, and wait response database.

Name

TransOrderListServer()

Responsibilities

Order list should be trans, if don't have any data.

Type

PHP Server

Cross References

System Function : R4.1
Use Case : Order Inquiry

Notes
Exceptions N/A
Output PHP server is received the order list.

Pre-conditions

Database is requested order list by PHP server

Post-conditions

Database is waiting another event.

Name

TransOrderListController()

Responsibilities

PHP server trans order list to manager controller.

Type

Controller

Cross References

System Function : R4.1
Use Case : Order Inquiry

Notes
Exceptions N/A
Output Controller received the order list.

Pre-conditions

Controller has to access the PHP server.

Post-conditions

PHP server is waiting another request.

17. Call Employee(of manager)

Name

InputCallNumber()

Responsibilities

Manager entered number and this number is trans to PHP server.

Type

Controller_1

Cross References

System Function: R3.2

Use Case : Employee Call

Notes
Exceptions N/A
Output Controller_1 is send employee number to destination controller.

Pre-conditions

Manager should be login this system.

Post-conditions

Controller_1 is send number to PHP server.

Name

TransCallINumber()

Responsibilities

Controller_1 trans employee number to PHP server.

Type

PHP Server

Cross References

System Function: R3.2

Use Case : Employee Call

Notes
Exceptions N/A
Output PHP server trans calling signal to destination controller.

Pre-conditions

Controller_1 is linked PHP server.

Post-conditions

Controller_1 is waiting another event.

Name

TransCallSignal()

Responsibilities

PHP server trans calling signal to destination employee controller.

Type

Controller_2

Cross References

System Function: R3.2

Use Case : Employee Call

Notes
Exceptions N/A
Output Controller_2 is received calling signal.

Pre-conditions

Controller_2 is linked PHP server.

Post-conditions

PHP server is waiting another request.

Name

CallSignal()

Responsibilities

Controller_2 is noticed to employee.

Type

Employee

Cross References

System Function: R3.2

Use Case : Employee Call

Notes
Exceptions N/A
Output Employee realized signal to manager.

Pre-conditions

Employee should be take the controller.

Post-conditions

Controller is waiting another event.

Employee go to manager.

2237. Define State Diagrams

State Diagrams for <Coffee Maker>

Finished making Coffeg

Order Coffee

Make Coffee Another Order

OSP 2240 Design(2st cycle)

Phase 2241. Define Real Use Cases

1. Add Employee

Use Case 1. Add Employee

Actor None or Manager

Purpose add new employee

Overview

Type Primary and Essential

Cross Reference System Function: R1.1.1
Use Case : -

Pre-Requisite N/A

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) request add employees information
2. (S) check employees information

3. (S) give id number to employee

4. (S) add employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1. If invalid employee information is entered, indicate an

error.

2. Delete Employee

Use Case 2. Delete Employee
Actor None or Manager
Purpose Delete employee
Overview

Type Primary and Essential

Cross Reference

System Function: R1.1.2

Use Case : -

Pre-Requisite

Employee should be exists in the system.

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) fire Employee.

2. (A) delete employee's id
3.(

S) delete employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1. If invalid employee information is entered, indicate an

error.

3. Employee Modification

Use Case 3. Employee Modification
Actor None or Manager

Purpose Change Employee's information
Overview

Type Primary and Essential

Cross Reference

System Function: R1.1.3

Use Case : -

Pre-Requisite

Employee should be exists in the system.

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) need change to employee's information.
2. (A) insert employee's changed information.

3. (S) change employees information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid employee information is entered, indicate an

error.
4. Recipe Add

Use Case 4. Recipe Add

Actor Manager

Purpose Adding the recipe into the recipe list

Overview If manager want to add the new recipe, system should be
provide add recipe menu into coffee maker.

Type Primary and Essential

Cross Reference System Functional : R1.2.1
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager requests to add recipe.

2. (S) Check the existence recipe and show the lists.
3. (A) Input the recipe data.

4. (S) Check if corresponding recipe exists.

5. (S) Add recipe date to list.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

5. Recipe Delete

Use Case 5. Recipe Delete

Actor Manager

Purpose Delete the recipe into the recipe lists.

Overview If manager want to delete recipe, systems should be check
recipe list and delete the recipe.

Type Primary and Essential

Cross Reference

System Function : R1.2.2

Use Case : -

Pre-Requisites

Recipe should be exists in the list.

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.
3. (S) Delete the recipe in the list.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

6. Recipe Modification

Use Case 6. Recipe Modification

Actor Manager

Purpose Modify the recipe into the recipe list.

Overview If manager want to modify the recipe, system should be check
recipe list and provide recipe modifying menu.

Type Primary and Essential

Cross Reference

System Function : R1.2.3

Use Case : -

Pre-Requisites

Recipe should ne exists in the list.

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager Inputs a recipe title.

2. (S) Check if a corresponding recipe in the list.

3. (S) Show the recipe data and provide modify menu.
4. (A) Input the change recipe.
5. (S)

(S) Save the modified recipe.

Alternative Courses of Events

N/A

Exceptional Courses of Events

Line 1: If invalid recipe information is entered, indicate an error.

7. Add Table

Use Case 7. Add Table

Actor Manager

Purpose Add Table in Store.
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.1

Pre-Requisite

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) bought a big table

2. (A) insert new table's information.
3. (S) checked new table's info

4. (S) give table-id to new table

5. (S) add new table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

8. Delete Table

Use Case 8. Delete Table

Actor Manager

Purpose Delete Table in Store.
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.2

Pre-Requisite

Table should be exists in the list.

Typical Courses of Event

(A) : Actor, (S) : System
1. (A) sell or ban a table
2. (A) type table-id

3. (S) checked table-id

4. (S) delete table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

9. Table Modification

Use Case 9. Table Modification
Actor Manager

Purpose Change Table information
Overview

Type Primary and Essential

Cross Reference

System Function: R1.3.3

Pre-Requisite

Table should be exists in the list.

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) change table information

2. (A) insert changed table's information.
3. (S) checked table's id

4. (S) change table's information to Database

Alternative Courses of Event

N/A

Exceptional Courses of Event

Line 1: If invalid table information is entered, indicate an error.

10. Order Coffee

Use Case 10. Order Coffee

Actors Customer

Purpose Order Customer's coffee
Overview

Type Primary and Essential

Cross Reference

System Function: R2.1

Pre-Requisite

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) SelecteCoffeeMenu on display

2. (S) iPAD send to Store class for tablelD, employeelD) recipelD
3. (S) Store class is checkrecipe and decide to fault or continue

4. (S) Store class creates to orderlist and set oder data(orderiD
tablelD orderTime, employeelD, recipelist payment.

5. (S) Store class save order to database and send to signal to
/PAD, and send to order to CoffeeMaker.

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

11. Voice Recognition

Use Case 11. Voice Recognition

Actors Customer

Purpose Perform voice recognition function
Overview

Type Primary and Essential

Cross Reference

System Function: R2.3

Pre-Requisite

N/A

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) Request voice recognition.

2. (S) Ready to recognition, and then show display.
3. (A) Speak massage to iPAD.

4. (S) Execute voice recognition and print masaage.

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

12. Voice Conversation

Use Case 12. Voice Conversation

Actors Employee

Purpose Play saved voice for customer
Overview

Type Primary and Essential

Cross Reference

System Function: R2.4

Pre-Requisite

System should have basic voice conversation

Typical Courses of Event

(A) : Actor, (S) : System

1. (A) Request voice conversation.

2. (S) Ready to conversation, and then show massage display.
3. (A) Selected massage to iPAD.

4. (S) Execute voice conversation and speak masaage.

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

13. Make Coffee

Use Case 13. Make Coffee

Actor None

Purpose Make coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.1

Pre-Requisite Order list should be exists in the list.
Typical Courses of Event (S) : System (C) : Coffee maker

1. (S) Store class call functions of CoffeeMaker.
(AddWater(), AddMilk(), Addice() AddSteam(), AddCoffee(),
AddMocha(), AddCaramel(), AddSyrup(), AddFreshCream())

X Each functions are selected by recipe, and executed

sequentially. This timer counted by system.

2. (S) If called function finished normally, call next function
following recipe.

3. (S) If called every function finished normally, Store class set
order.coursPercent to 30%.

3. (S) f CoffeMaker is jammed in process of calling functions,

Store class send message to /PAD to system error.

N

. (C) CoffeeMaker send message that finished job to Store class.

(9]

. (S) If CoffeeMaker is finished job, Store class is setting

order.coursPercent to 70%.

(o))

. (S) Store class send message to iPAD to notice finished

making coffee.

Alternative Courses of Event N/A

Exceptional Courses of Event | N/A

14. Call Employee(of system)

Use Case 14. Call Employee(of system)

Actor Employee

Purpose Call employee for bring to complete coffee

Overview

Type Primary and Essential

Cross Reference System Function: R3.2

Pre-Requisite Should finish making coffee

Typical Courses of Event (A) : Actor (S) : System
1. (S) If finished making coffee, increase coursCount in the Order.
2. (S) Send message to controller.

3. (S) Call employee after received message

4. (A) received coffee and press receive coffee button in iPAD.

Alternative Courses of Event

N/A

Exceptional Courses of Event

N/A

15. Manager Call(of system)

Use Case 15. Manager Call(of system)

Actor None

Purpose Call a manager.

Overview If lack of coffee elements and delayed response of employee,
system should be call manager.

Type Primary and Essential

Cross Reference

System Function : R3.3

Use Case : -

Pre-Requisites

N/A

Typical Courses of Events

(A) : Actor, (S) : System
1. (S) Check if lack of coffee elements.
(S) Check if delayed response of employee.

2. (S) Sending to signal to manager.

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

16. Order Inquiry.

Use Case 16. Order Inquiry

Actor Manager

Purpose Inquire the whole order list each employee.

Overview Manager should be check employee order state so that order to
employee for ordering another work.

Type Primary and Essential

Cross Reference System Function : R4.1
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System (D) : Database

1. (A) A manager request showing employee'’s order list.
2. (S) Request order list to (D).

3. (D) Find order list.

4. (S) Display order list..

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

17. Employee Call(of manager)

Use Case 17. Employee Call(of manager)

Actor Manager

Purpose Call an employee of manager.

Overview A manager should be calling an employee for ordering another
work.

Type Primary and Essential

Cross Reference System Function : R4.2
Use Case : -

Pre-Requisites N/A

Typical Courses of Events

(A) : Actor, (S) : System

1. (A) A manager inputs employee’s /d.

2. (S) Check if corresponding employee’s id.
3. (S) Call an employee.

Alternative Courses of Events

N/A

Exceptional Courses of Events

N/A

Phase 2242. Define Reports, Ul, and Stiryboards
- This phase is skips in this cycle.

Phase 2243. Refine System Architecture

iPAD

GUI MENU TREE

Conversation Module

VOICE Recognition

Server

Store

-store ID: int
-tableList: table
-personList: Person
-recipeList: Recipe
-oderList: Order

Person

+AddEmployee(grade: int, name: string, pay: int, id: string, password: string)
+ModifyEmployee(grade: int, pay: int, password: string, name: string)

+DeleteEmployee(id: string)

+AddRecipe(name: string, quantity: int, price: int)
+ModifyRecipe(name: string, quantity: int, price: int)

+DeleteRecipe(recipelD: int)

+AddOrder(tablelD: int, employeelD: int, recipelD: int)

+DeleteOrder(orderID: int)
+AddTable(location: string, char: int)
+Modify Table(location: string, char: int)

-grade: int

-name: string

-pay: int

-id: string

-password: string
-orderList: Order[100]
-bellLevel: int

+SetGrade(grade: int)
+GetGrade(): int
+SetName(name: string)
+GetName(): string
+SetPay(pay: int)

+GetPay(): int
+SetPassword(password: string)
+GetPassword(): string

Order

-orderID: int

-tablelD: int
-orderTime: string
-priorityOrder: static int
-employeelD: string
-recipelList: recipe[100]
-payment: int
-finished: boolean
-coursePercent: int

+AddOrderRecipe(recipe: Recipe): bool
+setOrderID(ID: int)

+setTableID(ID: int)

+setOrderTime()

+setEmployeelD(ID: string)
“+countUp()

+coursCount(percent: int)

+DeleteTable(tableID: int)_ +Person() oL e
+EmployeeCall(personlID: int) ~Person() +finishedMake(finished: bool)
+getOrderList() +calcPayment()
+checkRecipeofMaterial(recipelD: int) +Order()
+MakeCoffee(oderList: Order) Table ~Order()
+Store()
~Store() ~tableID: int
-orderList: Order[100]
g t: int
Material Recipe _Eﬁg{:ﬁ:t n
-name: string -recipelD: int -location: string
-quantity: int -name: string +SetID(tableID: int)
-materiallD: int -quantity: int +GetID(): int
-price: int -MateialList: Material +SetChai}(chair: int)
-time: int -price: int +GetChair(): int
+ModifyMaterial(name: string, quantity: int)| | +AddMaterial(material: RecipeMaterial) +SetPayment(p.a_yment: int)
+SetName(name: string) +SetName(name: string) :(SSetanm_entP. int e
+GetName(): string +GetName(): string GetLocau_on(o.catlpn. string)
+SetQuantity(quantity: int) +SetQuantity(quantity: int) +GetLocation(): string
+GetQuantity(): int +GetQuantity(): int +Table()
+SetID(materiallD: int) +DeleteMaterial(materiallD: int): bool ~Table()
+GetID(): int +ModifyMeteral(materiallD: int)
+Setprice(price: int) +SetRecipelD(recipelD: int)
+Getprice(): int +GetRecipelD(): int
+SetTime(time: int) +SetRecipeQuantity (recipeuantity: int)
+GetTime(): int +GetRecipeQuantity(): int
+Material() +Recipe()
~Material() ~Recipe()
t
DataBase Coffee Machine
+DataBase()
Water Milk Ice CoffeeMaker
-making: bool
+Ready(Quantity: int)
+AddWater(water: int)
Steam Coffee Mocha +AddMik(milk: int)
+Addlce(ice: int)
+AddSteam(steam: int)
+AddCoffee(coffe: int)
+AddMocha(Mocha: int)
Caramel Syrup FreshCream +AddCaramel(Caramel: int)
+AddSyrup(Syrup: int)
+AddFreshCream(FreshCream: int)
Cup

Phase 2244. Define Interaction Diagrams
1. Add Employee

<<create>>

2 : Create Person Class()

3 : Save Person Class Data

DataBase

iPAD : Store
1 : AddEmployee()
4 : boolean
2. Delete Employee
iPAD : Store
1 : DeleteEmployee
ployee() » L

: Person

<<destroy>>

2 : Request Delete Employee's info
1

DataBase

-| 3 : Delete Employee's infq

5 : boolean

3. Modify Employee

iPAD

: Store

1 : ModifyEmployee()

4 : bool

2 : Send Modify Employee's info

DataBase

3 : boolean

4. Add Recipe

iPAD

1 : AddRecipe()

3 : AddMaterial

8 : Boolean

5. Delete Recipe

iPAD

1 : DeleteRecipe()

Store : Recipe : Material DataBase
>
<<create>>
2 : Make Recipe Class()
>_._
4 : AddMaterial() _:-
<<create>>
5 : Make Material() >]
6 : Save Refipe Data
7 : Boolean T
: Store : Table DataBase
2 : Request Delete Recipe
3 : Delete Recipe Data()
|7T <<destroy>>
4 : Boolean

5 : Boolean

6. Modify Recipe

iPAD

1 : ModifyRecipe()

: Store

DataBase

2 : RequestModifyRecipe

7. Add Table

3 : Boolean

iPAD

8. Delete Table

1 : AddTable()

. Store

DataBase

<<create>>
2 : CreateTable Class()

iPAD

4 : boolean

" 3 : Save Table Class Data

- Store : Table

1: DeleteTable()

<<destroy>>
2 : Request DeleteTable's info()

3 : Delete Table's info

DataBase

5 : boolean

4 : bpol

9. Modify Table

iPAD

1 : ModifyTable()

: Store

DataBase

2 : Send ModifyTable's info

10. Order Coffee

: Customer

1 : ShowManu

3 : boolean

iPAD

2 : SelecteCoffeeManu

: Store

3 : AddOrder()

: Order

IN
=)

ec‘kR;IcipeofMaterial()
<

5 : che¢kMaterial

DataBase

CoffeeMaker

7 : OrderCancle

6 : OrderFault

[~ 8: AddOrderRecipe()

11 : setOrderID()

»

: setQrderTime()

12 : setTableID()

»

13 : setEmployeelD() :|-|-|

14 : calcPayment()

<<crelte>>

15 : SaveOrder()

4

16 : OderSuccess

11. Voice Recognition

: Customer

1 : requestRecognition

iPAD

2 : ready

3 : speakMassage

12. Voice Conversation

: Employee

A : priﬂ\tMassage

iPAD

1 : RequestConversation

2 : ShowMassage

3 : SelectMassage

4: SpelakMassage

13. Make Coffee

iPad

Store

Or

der

1: Ready()

CoffeeMaker

iWater()

A 4

HdMilk()

ddlce()

ISteam()

6 : AddCoffee()

Mocha()

8 :Add

Caramel()

9:Ad

dSyrup()

10 : AddF

reshCream()

VVVV‘VVVV

11 : courseCount()

13 : SystemError

12

Jammed

14 :
15 : courseCount()

16 : FinishedMake

i

Finished

14. Call Employee(of system)

CoffeeMaker

1 : finished

15. Manager Call(of system)

CoffeeMaker

1 : SystemError

16. Order Inquiry

: Manager

1 : RequestOrderInquir

2 : XML := getOrderList()

: Store : Order iPAD
: Employee
2 : coursCount() =
3 : FinishedMake
4 : finishedMakeCallSignal
Store iPAD
: Manager
2 : CallManager
3 : CallSignal
iPAD : Store Database

3 : RequestOrderList

6 : displayOrderList

5 : TransOrderListColtroller I—

4 : TransOrderListServer

17. Employee Call(of manager)

. iPAD_2
iPAD_1 : Store -
: Employee
: Manager iy
1 : InputCallNumber
2: EmployeeCall)
| 3 : TransCallSignal
il .
4 : CallSignal
Phase 2245. Define Design Class Diagrams
CoffeeMaker
-making: bool
Store +Ready(Quantity: int)
— +AddWater(water: int)
-store ID: int +AddMilk(milk: int)
~tableList: table +AddIce(ice: int)
-personList: Person +AddSteam(steam: int)
-rempe_us;t: Recipe +AddCoffee(coffe: int)
-oderList: Order +AddMocha(Mocha: int)
+AddEmployee(grade: int, name: string, pay: int, id: string, password: string) +AddCarameI(Can:a\rreI: int)
+ModifyEmployee(grade: int, pay: int, password: string, name: string) I:ﬁﬂiyruﬁ((;synﬁplm)hc : int)
+DeleteEmployee(id: string) reshtream(reshtream: ini
+AddRecipe(name: string, quantity: int, price: int)
+ModifyRecipe(hame: string, quantity: int, price: int) 1
+DeleteRecipe(recipelD: int) -
+AddOrder(tableID: int, employeelD: int, recipelD: int) Material
+DeleteOrder(orderID: int) o Gl
+AddTable(location: string, char: int) -nanE{its _n‘n%
+Modify Table(location: string, char: int) :?[:E:gra);lblr]-m
+DeleteTable(tablelD: int) . rice‘lint !
+EmployeeCall(personID: int) -?ime‘-int
+getOrderList() Person -
+checkRecipeofMaterial(recipeID: int) +ModifyMaterial(name: string, quantity: int)
+MakeCoffee(oderList: Order) -grade: int +SetName(name: string)
+Store() -name: string +GetName(): string
~Store() -pay: int +SetQuantity (quantity: int)
-id: string +GetQuantity(): int
-password: string +SetID(materiallD: int)
1 1 -orderList: Order[100] +GetID(): int
-bellLevel: int +Setprice(price: int)

e +Getprice(): int
+SetGrade(grade: int) 2 Al
+GetGrade(): int :Zzt‘..?nn:((t)mﬁl int)
+SetName(name: string) o Iri s [
+GetName(): string _Mate .aIO
+SetPay(pay: int) aterialQ
+GetPay(): int
+SetPassword(password: string) 1..%
+GetPassword(): string 1
+Person()

Order ~Person()
Recipe
-orderID: int
Table -tablelD: int 1 -recipelD: int
. -orderTime: string -name: string
-tablelD: int Py . e B
B o -priorityOrder: static int -quantity: int
_°;dent';:: i?]:de'[loo] -employeelD: string -MateialList: Material
DOYETS -recipelist: recipe[100] -price: int
-chair: int _payment: int
-location: string _p_ Y o +AddMaterial(material: RecipeMaterial
finished: boolean
+SetID(tableID: int) -coursePercent: int 1.% iiﬁﬁiﬁﬁ??;‘ﬁ;g‘”"w
Ig:t‘é"hgr(';‘;a" int) 1 o.* |+AddOrderRecipe(recipe: Recipe): bool 1 1« | *+SetQuantity(quantity: int)
+GetChair(y: int +setOrderID(ID: int) " | +GetQuantity(): int
s r.\t —_— +setTableID(ID: int) +DeleteMaterial(materiallD: int): bool
+Ge[payme t(p.a_yr[ne : int) +setOrderTime() +ModifyMeteral(materiallD: int)
ethayment():lint s +setEmployeelD(ID: string) +SetRecipelD(recipelD: int)
+SetLocat|_on(Iocat|9n. string) +countUp() +GetRecipelD(): int
:?:lt]ll_:((;ation() string “+coursCount(percent: int) +SetRecipeQuantity (recipeuantity: int)
Table() +finishedMake(finished: bool) +GetRecipeQuantity(): int
+calcPayment() +Recipe()
+0rder() ~Recipe()
~Order()

Phase 2246. Define Database Schema

CREATE TABLE person (

personID int NOT NULL auto_increment,

name varchar(60) NOT NULL,

pay int NOT NULL default 40,

id varchar(60) NOT NULL,

PRIMARY KEY (personID),

)

CREATE TABLE Order (

orderID int NOT NULL auto_increment,

tablelD int NOT NULL,

employeelD int NOT NULL,

orderTimer timestamp CURRENT_TIMESTAMP,

priorityOrder int NOT NULL DEFAULT '10',

payment int NOT NULL, DEFAULT '0,

finished bool NOT NULL DEFAULT 'FALSE',

coursePercent int NOT NULL DEFAULT '0,

PRIMARY KEY (orderID),

)

CREATE TABLE Recipe (
RecipelD int NOT NULL auto_increment,
name varchar(60) NOT NULL,
quantity int NOT NULL DEFAULT '0',
price int NOT NULL DEFAULT '0',
recipeType varchar(60) NOT NULL DEFAULT 'material’,
PRIMARY KEY (recipelD),

)

CREATE TABLE Material(
MateriallD int NOT NULL auto_increment,
name varchar(60) NOT NULL,
quantity int NOT NULL DEFAULT '0',
time int NOT NULL DEFAULT '0',
price int NOT NULL DEFAULT '0',
PRIMARY KEY (materiallD),

)

CREATE TABLE Order_RecipeMaterial{

OrderID int NOT NULL,

RecipeMateriallD int NOT NULL,

count int NOT NULL DEFAULT ',

}

CREATE TABLE Store_Table{

tableID int NOT NULL auto_increment,

chair int NOT NULL DEFAULT '1',

location varchar(60) NOT NULL,

PRIMARY KEY (tablelD),

}

CREATE TABLE Recipe_Compibation_Material{
Recipe_Compination_MaterialID int NOT NULL auto_increment,
Main_RecipelD int NOT NULL,

MaterialID int NOT NULL,

recipeQuentity int NOT NULL DEFAULT '0’,
recipeTime int NOT NULL DEFAULT 'O,

* PRIMARY KEY (Recipe_Compination_MateriallD),
}

Impression
- O Z2MEE= ANXE 274 YYES Sl OSPe| HHAE WatM A FE 2A X<
2 Tyt HOIQUCE A7|olE Zzto| ZEAAS YD 0| HBOE AAHES I
T Att= Ao Yol 7| SIAX|T Z2zte| THAE R WotLt =gk =2
2 2 =

=1
A [}
20 AAE SHEO| HH NLAME AALEA H

Isisl OSPO| CHAl= 3 A 37X 2 FAE|QCE X Plan&Elaboration EHAHE £330
stap 7|25 Q1 Use CaseE &OF LY 7SI OX}; Sh= A[AEIO CHoE HolE LHZ|
A =Ch O] WHES ECHE Analysis THAOA Use CaseE Z43t0] MAEQl Class ZEE T4

ststn 2k classQ| AttributeE HO|stA Z=ICt. OrX|2t Design EtAl= class 79| interaction =

sequence CIO|OIOM S St FH2HStn HYE class CHO|O{OME XEY &+ UA=F DO
2 BHAE 2250 sdE 7| ST, 2X ZRNES sttt HEH ZF HA= A2
StLte| S EO0|2k= As & & UMUCE o EAAM ERE 40| A= oS BHAN I
SHA| B= Y= LIEfLA ECh 229 4%, A HM THAAM Al

= O[X|Z Zat=0| 2SHA|

LS
| boundary0f Cigt Fg=ot o 20| HEMAL ALES F95 o H o A |E 5t

Lot ZRHEZS TIASHH Use Case2| S2ES & =+ URULE Use Cases 22 AS gt
Zi0| otLfzt, ™ EHAO|M 2AME Use CaseE & O XbMISHA 2435t 1 AS EUE &

= £¢ ZAO|C}. otOjC|= SIALH Use Case= OOD2| 4O

S Use Case| 2fHO|LE ZRE 402 QM A
e

CaseZ} OtLt ZLQ3X| FL2 7| A Z|RULCH

