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Abstract

This paper introduces a new method for safety analysis which modifies, automates and integrates a number of classical safety analysis
techniques to address some of the problems currently encountered in complex safety assessments. The method enables the analysis of
complex programmable electronic system from the functional level through to low levels of its hardware and software implementation. In the
course of the assessment, the method integrates design and safety analysis and harmonises hardware safety analysis with the hazard analy:s
of software architectures. It also introduces an algorithm for the synthesis of fault trees, which mechanises and simplifies a large and
traditionally problematic part of the assessment, the development of fault trees. In this paper, we present the method and discuss its
application on a prototypical distributed brake-by-wire system for cars. We argue that the method can help us rationalise and simplify an
inherently creative and difficult task and therefore gain a consistent and meaningful picture of how a complex programmable system behaves
in conditions of failure© 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction tions that reflect different levels of abstraction in the system
design. While FFA requires only abstract functional
Classical safety analysis techniques such as Functionaldescriptions, for example, HAZOP and FMEA require
Failure Analysis (FFA) [1], Hazard and Operability Studies architectural designs of increasing detail and complexity.
((HAZOP)) [2], Failure Modes and Effects Analysis The problem here lies in that these different design repre-
(FMEA) [3] and Fault Tree Analysis (FTA) [4] have demon- sentations are often inconsistent. One of the reasons for that
strated real value over the years and they are still widely inconsistency is that different notations are employed at
practised in safety assessments. Indeed, those safety studiedifferent stages of the lifecycle. Perhaps more importantly,
still form the spinal element of the safety case, and provide a abstract designs are not always kept updated, and they do
frame for the interpretation of the results from other, usually not reflect changes made in lower level designs. Inevitably,
more localised, verification activities such as testing and the the analyses that are based on inconsistent designs are them-
application of formal methods. As the complexity of modern selves inconsistent. One significant conclusion that in our
programmable electronic systems increases, however, theview can be drawn from this discussion is that if we wish to
application of classical techniques is becoming increasingly address the problem of inconsistencies in the analyses then
more problematic. we must find ways to guarantee the consistency of the design
The first problem that can be observed is inconsistenciesas this evolves in the course of the lifecycle
in the results from the various safety studies of the system A second problem in classical safety analysis is the diffi-
which mainly arise from the selective and fragmented use of culty in relating the results of the various safety studies to
different methods at different stages of the design lifecycle. each other and back to the high-level FFA. One dimension
Classical techniques assume different design representaef this problem is that hardware safety analysis and software
hazard analysis typically form two separate parts of the
- assessment and, as a consequence, the relationship between
* Eor::ﬁzzf;"r?gsgu‘g?;is apadonoul0s @GS york a6 uk hardware and software failure often remains vague and
. Papadopoulos)’?;hn.mc'gefmidg)cslyork.ac'ik 2. MeDermid), unresolved. A second dimension of this problem is that, as
the analysis remains fragmented, the safety case usually
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guenter.heiner@daimlerchrysler.com (G. Heiner). fails to offer a coherent and complete picture of the ways
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Fig. 1. Architecture of the brake-by-wire system.

in which low-level component failures contribute to hazar- behaviour of a prototypical brake-by-wire system for cars,
dous malfunctions of the system. Although fault trees are and how at the end of the assessment process we have
built for this purpose, the traditional process of constructing achieved a consistent and meaningful safety case for this
these fault trees relies heavily on expert knowledge, and system. The brake-by-wire system not only provides the
lacks a systematic or structured algorithm which the analyst “case study” in this paper, but it also serves as a “running
can apply on a system model in order to derive the tree. In example” for the presentation of our approach to safety
the context of a complex system this process becomesanalysis. Itis, therefore, useful to start with a brief introduc-
tedious, time consuming and error prone, and the resultanttion to this system.
fault trees are large, but more importantly, difficult to inter- The brake-by-wire system is a prototype in a laboratory
pret and verify. In consequence, safety analyses are in prac-environment that has been developed by DaimlerChrysler
tice not only voluminous but also fragmented and Research in the context of the European Commission
inconsistent. Such analyses are also difficult to interpret funded project Time Triggered Architectures (THA5].
and do not always provide a useful resource in the designThe system provides a design concept for future brake-by-
of the system. But is it not the aim of safety analysis to wire applications in the automotive industry. The general
improve the system design? And does the fragmentationtopology of its architecture is illustrated in Fig. 1.
of classical techniques not compromise this aim? The system is implemented over a network of six
Our first aim in this paper is, precisely, to proposeeav
method for safety analysishich, we believe, can address ————— ) o )
some of the difficulties that we discussed above. Our second,_ CoF RIT Project 23396. The work that we present in this paper continues
. n the context of a new European Commission funded project called
aim is to demonstrate how the proposed method has helpe ETTA (System Engineering for Time Triggered Architectures-IST project
us analyse, and improve in our case study, the failure 10043).
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System Design

Safety Analysis Mechanically generated fault trees which
show how functional failures that we have
identified in the FFA arise from low-level
component failure modes that we have
identified in the IF-FMEAs
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IF-FMEAs: Interface Focused FMEAs (Analyses of the local failure behaviour of the system components)

Fig. 2. Overview of design and safety analysis in HiP-HOPS.

programmable electronic nodes which communicate 2. Overview of the safety analysis method

using TTP/C [6], a Time Triggered communication

Protocol? Two of those nodes, the pedal nodes, are The proposed method is called Hierarchically Performed
physically located near the braking pedal. Their function Hazard Origin and Propagation Studies (HiP-HOPS) and
is to read continuously and broadcast the braking enables the integrated assessment of a hierarchically
demand on two replicated busses. On the receiving described system from the functional level through to the
end, there are four wheel nodes, which receive the brak- low levels of its hardware and software implementation.

ing demand sent by the pedal nodes. By processing this To ensure the transferability of the vast practical experi-
information and sensory feedback from wheel-load, ence that classical analyses incorporate, we have founded
rotational acceleration and pressure sensors, each nodeéhe new method on a number of well-established techniques
calculates the value of the braking pressure that is fed such as FFA, FMEA and FTA. At the same time though, we
to an actuator which then applies the actual braking havemodified automatedndintegratedthese techniques to
pressure on the corresponding wheel of the car. The overcome some of the difficulties that we have already

overall system delivers a number of sophisticated
braking functions, which include braking proportional
to each wheel's load, anti-lock braking (ABS) and
electronic stability functions. This prototype is linked

discussed. The method mechanises and simplifies a large
and traditionally problematic part of the analysis, the devel-
opment of fault trees. It also integrates classical hardware
safety analysis with software hazard analysis and guarantees

to a simulation model of the dynamic behaviour of a the consistency of the results from the assessment.
passenger car on the road. The on-line visualisation Fig. 2 illustrates the safety analysis process in HiP-HOPS.
component of this simulator can dynamically show the The process starts early in the design lifecycle with explora-
reactions of the vehicle to control commands, injected tory FFA of an abstract functional model of the system. At
failures and automatic recovery actions. this stage, we employ an extension of classical FFA to
In the following sections, we will discuss the way in identify single and plausible combinations of multiple func-
which we have analysed and improved the behaviour of tional failures and assess their effects and criticality. This
this system in conditions of failure. Before we do so, study can assist the development of an appropriate initial
though, let us first develop the general method that we architecture for the system, which is then further refined as
propose for the assessment of programmable electronicthe system is decomposed into sub-systems and basic
systems. components. The result of this process in HIP-HOPS is a
consistenthierarchical modelthat progressively records
S — _ _ ' _ ~ with increasing detail the implementation of the system
TTP/C has a number of safety directed properties which make it parti- (see Fig. 2, belovBystem Design

gularly suitable for application |n_ safety critical systems. In _fault free.condl- As the refinement of this hierarchical model proceeds, the
tions, for example, the communication controller ensures timely delivery of

all communication messages on the basis of a statically defined messagefa”ure behaviour of components in the model is analysed
schedule. In the presence of faults, the contrdlds silentin response to using a modification of classical FMEA called Interface
transient or permanent faults that could corrupt the temporal access patternFocused-FMEA (IF-FMEA). The application of this techni-
and the integrity of data on the bus. The controller also provides rapid fault que generates model of the local failure behaviowf the

detect!on of certain cIas;es of host fa||ur§s, bus fall_ure;s, other node fallurescomponent under examination, which is represented as a
and failures caused by disturbances during transmission. Finally, the proto-

col offers support for replicated buses and replicated nodes and enables théable' The table provides a list of component failures
implementation of fault-tolerant architectures [7]. modes as they can be observed at the component outputs,
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4F

Identification and listing of all system functions

&

Precise definition of purpose and behaviour of each function

L2k

Examination of each function for potential failure modes in three classes:
Loss of function
Function provided when not required (commission)
Incorrect operation of function

Determination of the effects of each failure. Wherever this is appropriate effects are

=

determined in combination with other contributing factors [environmental factors, for example]

2

Determination of the severity of each functional failure
f) Compilation of the results in tabular form

[function, failure mode, contributing factors, effect, severity]

Fig. 3. The standard FFA process.

and for each suchutput failure it determines the causes as first stepin the assessment of new or modified complex
a logical combination ofinternal malfunctions of the  systems. Fig. 3 records the main steps of a standard FFA
componentor deviations of the component inputén process as it is defined in SAE ARP-4761 [1]. The process
IF-FMEA table records how a hardware or software compo- starts with the identification and listing of the system func-
nent reacts to failures generated by other components. In additions and continues with the precise definition of the
tion, the table determines the failure modes that the componentpurpose and behaviour of each function. Each function is
itself generates or propagates to other components. As we shalthen examined for specific failure modes in three general
show (in Section 5 and Section 7.3), this type of analysis can categories of failure: loss, inadvertent delivery and incorrect
provide a useful resource in the design of the failure detection operation of function. For each identified failure, the analy-
and mitigation mechanisms of the component under sis determines the effects on the system and the severity of
examination and other components in its periphery. failure.

Once we have determined the local failure behaviour of  This standard process encourages and systematises the
all components, we can then proceed to the final stage of theanticipation of functional failures at the early stages of the
analysis where we determine the structure of the fault propa-design. The analysis, however, is restricteditagle func-
gation process in the system. At this stage, we determinetional failures and it does not address issues of failure detec-
how the functional failures that we have identified in the tion and recovery. This type of analysis is probably
exploratory FFA arise from combinations of the low-level sufficient if we can make valid assumptions of independence
component failure modes that we have identified in the between all system functions. In the general case, though,
IF-FMEAs. In HiP-HOPS, this is achievemhechanically there will be dependent functions, for example functions
with the aid of asystematic algorithnfor the synthesis of  that utilise common material, energy or information
fault trees Fault trees are constructed by exploiting the resources. In such cases, we need to address the possibility
structure of the hierarchical model and information about of multiple (dependent) functional failures. We believe that
the local failure behaviour of components that is contained one way to explore functional dependencies is by construct-
in low-level IF-FMEASs. ing a more elaborate functional model than the list of

The proposed fault tree synthesis algorithm is mechani- functions currently used in standard FFA.
cal, and it was, therefore, possible to automate it. Indeed, in  The model that we propose is a functional block diagram,
the context of this work we have implemented this algo- which identifies functions and records how these functions
rithm as part of an experimental tddhat enables hierarch-  rely on physical parameters or data. Fig. 4 illustrates an
ical modelling of the system and the safety analysis processexample of such a model for a system which delivers
defined by HiP-HOPS. In the following sections we exam- three functions 4,B,Q. The model clearly identifies two
ine in more detail the three stages of this procddsA, functional dependencies. The first such dependency is
component failure analysandfault tree synthesis between functioné\ andB. It can be noticed that the two
functions operate on a common physical inpp}. (Any
deviation of this input, therefore, is likely to cause a
malfunction of bothA andB. The second dependency that
the model identifies is between functioBsand C. Clearly
function C operates on the output of functigvand, there-
fore, relies on the correct operationAfThe construction of
™3 This tool is i , . - this functional model is the first step in an extended FFA

is tool is in fact an experimental extension of an existing commer- ) .
cially available tool for safety analysis called the Safety Argument process that we propose as part of HiP-HOPS and which we
Manager [8]. present here in Fig. 5.

3. An extended FFA process

FFA is a relatively recent safety analysis technique,
which is recommended by a number of standards as the
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— o — . The results of this analysis are listed in a tabular form. As
Fazfi(p) Fo=fs (Fa) we demonstrate in our case study, they provide a compre-
hensive picture of the ways that the system can fail, and

assist in focusing early the design effort to a number of
Function B Fo important issues:
Fe = f2 (p)
Fig. 4. Example functional model. 1. the prevention of hazardous single functional failures, by

identifying and allocating critical functions to reliable
fault tolerant architectures;
The first objective in this process is to identify and 2. the prevention of multiple (dependent) functional
remove any avoidable dependencies between the functions failures, by removing avoidable dependencies between
that we have specified in the functional model. Each  functions and developing partitions between the systems

function is then systematically examined for potential fail- that deliver those functions;
ure modes in a number of abstract failure classes, which3, the design of mechanisms for failure detection and
include theloss of function, theunintended deliveryof recovery from single and multiple functional failures.

function andmalfunctionssuch asarly or late deployment.

For each identified failure the analyst determines the effects

and severity of failure and lists the results in a tabular form.

At this point, analysts are also expected to think of potential 4. Hierarchical modelling

mechanisms for failure detection and recovery. We actually

believe that it is possible to address such issues at the early FFA assists the development of an appropriate initial

stages of the design and we, therefore, extend the FFA tablearchitecture, which identifies the basic failure detection

to include adetectionand arecoverycolumn. and fault tolerance strategies of the target system. During
Once we have identified all the single functional failures, the design decomposition, this initial architecture is further

we can then identify and lisplausible combinations of refined as the system is typically decomposed into sub-

multiple failures and, in a similar way, examine the effects systems, and then these sub-systems are decomposed into

and criticality of such failures. A difficulty that analysts may more basic architectural modules. In HiP-HOPS, the result

encounter here is the potentially large number of possible of this process is a consistehterarchical modelof the

combinations between functional failures. The number of system that progressively records with increasing detail

combinations that require examination can be constrainedthe implementation of the system. To achieve consistency

by exploiting symmetries in the functional model, by in this model, we place constraints on the modelling nota-

excluding combinations of failures that can only occur tions used, and introduce some additional notation for

under mutually exclusive conditions and by applying other describing levels of design.

application specific plausibility criteria. The notation allows complex systems to be modelled as

a) Construct a functional block diagram, which identifies system functions and their dependencies
b) Remove any avoidable dependencies between functions
c) ldentify single functional failures examining each function for failure modes in a number of failure classes such as
- the loss of function,
- the inadvertent delivery of function, and
- malfunctions such as early or late deployment, or the function output being excessively high, low, stuck etc.
d) Assess single functional failures
. Determine any contributing factors (environmental factors, for example)
- Determine the effects and severity of failure
- Determine potential mechanisms for detection and recovery
_ Compile the results in a tabular form
[ failure mode, contributing factors, effect, severity, detection, recovery, recommendations]
e) ldentify unique, plausible combinations (first pairs then triplets etc) of multiple functional failures
- Identify which combinations are unique by examining any symmetries in the functional design
- Exclude those combinations that can only happen under different and mutually exclusive conditions
. Further constrain the number of combinations to be examined by applying other plausibility criteria
f) Assess multiple functional failures
- Asin step (d)

Fig. 5. The proposed extended FFA process.
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Component Basic, not further decomposed, component of the system. For each such component
there is an IF-FMEA which records the failure behaviour of the component
Subeyat Sub-system, further decomposed. For each such sub-system there is an architectural
uaoystom flow diagram which determines the implementation of the sub-system
Flow

L Physical parameter flow, or data flow between components and subsystems of the
architecture

Input
: ’ Physical parameter or data flow originating from outside the boundaries of the
Output architecture (input)

—H Qutput of the architecture

Fig. 6. Modelling notation.

hierarchies of architectural diagrams. At each level of the architecture of more basemmponentshe failure behaviour
system hierarchy, flow diagrams are used to describe theof which can be determined using IF-FME&omponents
operation of the system and its subsystems. At plant level, and subsystemscommunicate exchanging flows, which
such flow diagrams can be derived, for example, from engi- represent the material, energy or data transactions between
neering schematics or piping and instrumentation diagrams.the elements of the architecture. To enable this type of
At lower levels they can be derived from any form of modelling, we have implemented in the Safety Argument
structured design notation used for the architectural designManager ahierarchical model editorthat supports the
of software or hardware components, for example Data-flow proposed notation (see Fig. 7).
diagrams [9] or MASCOT diagrams [10]. The five primitive
elements of the proposed notation are illustrated in Fig. 6.

According to the notation, modules of an architecture can 5. Assessment of failure at component level
be represented either @smponentr subsystemdf the
failure behaviour of a module is known, and it can be  As the refinement of the hierarchical model proceeds, we
recorded in an IF-FMEA table, the module is represented identify basic hardware and software components. The fail-
as a basicomponentin the opposite case, the module is ure behaviour of these components is analysed using an
rendered as aubsystermmand is further decomposed into an extension of FMEA. Traditional FMEA examines the
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origins of failure within the component itself. In other

words, it examines the failure behaviour of the component
considering only internal malfunctions (possibly caused by
the environment). The function of a component in the fail-
ure domain, however, is significantly more complicated. A

235

3. failuresin the value domaisuch as the output value being

out of a valid range, stuck, biased, exhibiting a linear or
non-linear drift or erratic behaviout.

The result of this analysis is a model of the local failure

component does not only generate failure events. It can alsoyehayiour of the component under examination. This model

detect (or not) and respond (or not) to failure events gener-

is represented as a table and it provides a list of component

ated by other components which interface to the component¢ires modes as they can be observed at the component

via its inputs.

outputs. For each suautput failurethe analysis determines

A component, for example, may detect disturbances of its i causes as a logical combination of un-handéernal

input parameters, e.g. the absence of a power signal,
value that is out of range. In turn, the component oati-

gatethe propagation of such failure events. In the absence of
a power signal, for example, the component may automati-

cally switch to a redundant power supgigimilarly, it may
replace a detected invalid input value with a correct default
value. A component can also fail to detect such input fail-
ures and it carpropagatethose failures to other compo-
nents. Finally, it maytransform a certain input failure
event, to a different type of output failure. An example of
such a component is the TTP/C communication controller

O 8nalfunctions of the componeat un-handleddeviations of
the component inpufsFor each internal malfunction, the

analysis records an estimated or experimentally derived fail-
ure rate\ in failures per hour (f/h) or other suitable units.

In HiIP-HOPS, this technique replaces the traditional fail-
ure mode and effects analysis of hardware components.
Beyond hardware safety analysis though, IF-FMEA is also
used for the analysis of software architectures. In the case of
a software module, a task for example, the IF-FMEA table
records how the task responds to omission, commission or
corruption of input data caused lgrovision timing and

that is used for the exchange of messages between the nodeg, | e failures propagated by other software modules. In

of the brake-by-wire system. The controller detects the early
or late delivery of messages from the host and, in response

addition, the table shows how malfunctions of the task can

be caused by failures of subsidiary elements such as the

it cancels the transmission of those messages to ensure thﬁrocessor the operating system or the memory elements

integrity of other data on the bus [11]. This clearly repre-
sents a case of &ming failure being transformed into an
omissionfailure.

To capture those additional aspects of the behaviour of
the component in the failure domain, we propose an exten-

sion of FMEA, called IF-FMEA Interface Focused-
FMEA). IF-FMEA is a tabular technique, which can be
used in a similar way to traditional FMEA in order to exam-

ine component failure modes caused by internal component

used by the task. An example of software IF-FMEA is illu-
strated in Fig. 8.

The figure contains a fragment from the IF-FMEA of the
pedal task, which is located on the pedal node of the brake-
by-wire system. The task reads the braking demand
provided by two pedal sensors, detects invalid (out of

® The basis of this categorisation can be found in earlier work on classi-
fications of failures in particular domains (see [12—14]). In [14] for exam-

malfunctions. Beyond that, however, the method prOVideS aple, McDermid and Pumfrey propose a HAZOP inspired technique for

systematic way to examine ttaetection, mitigation and
propagation of failure across the componeiput and
output interfaces The method requires a model of the
component, which identifies the component inputs and

software hazard analysis in which the above classificatigmov{sion,
timing and value failure guides the identification and assessment of
hazards in software architectures. Their original classification distinguishes
between two broad classes of value failures: subtle and coarse failures.
Although we have essentially adopted this classification for the purposes

outputs. In the course of the analysis, each output of the ot r.FmEA, whenever this is appropriate we attempt a separation of value

component is systematically examined for potential devia-
tions from the intended normal behaviour. The specific fail-

failures in more detailed classes (such as valueof range stuck biased
etc). As we demonstrate in the brake-by-wire case study (Section 3.3.3), a

ure modes of each output are determined as the behaviour ofhere detailed classification of value failures can increase the information

the output is scrutinised for potential deviations that may fall in
one of the following three abstract categories of failure:

1. service provisiotfailures such as the omission or commis-
sion of the output;

2. timing failuressuch as the early or late delivery of the
output;

content and the value of the analysis and can help to identify appropriate
techniques for detecting failures that belong to particular classes.
® We must note that our work on IF-FMEA draws from the work of

Fenelon [15,16] on the Failure Propagation and Transformation Notation,
a graphical notation for the representation of the transformation and propa-
gation of failure in a system. Although an FPTN module and an IF-FMEA
table differ in form, they are conceptually similar in the sense that they both
define a set of equations which characterise the logical relationships
between input and output failure events. In contrast to FPTN modules
though, IF-FMEAs are semantically and syntactically linked to the design

4 The component, for example, is connected to the second power supply representation of the system. Input and output failure events, for example,

through a normally open contact which is relayed to the main power signal.

always represent deviations of parameters that are explicitly represented as

As long as power is received from the primary supply, the contact remains flows in the hierarchical model of the system, and they strictly refer to those
open and breaks the secondary circuit. In the case of power failure, the parameters with the name that they possess in the model. As we shall show
contact closes and the component automatically connects to the secondaryn the following section this link enables the mechanical generation of fault

power source.

trees from the design representation and the IF-FMEAs of its components.
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sensor_a

pedal_output
C izeaal (driver's message)

sensor_b Task |
Qutput Description Input Component 4
Failure Deviation Malfunction (£/h)
Mode Logic Logic
O-pedal_cutput Omission of Pedal output (V>max-sensor_a | processor_ 1.00E-07|
(driver’s message) . Vemin-sensor_a) & failure | 9.00E-07
V>max-sensor_b operatin
It can be caused by task é >_ E) l B N nd_
. <min-sensor system
malfunction or out of = fy‘l -
ailure
range failures of both
pedal sensors.
Vs_0- Pedal output (driver's Vs_min-sensor_a & Memory_ 2.00E-06
pedal output message) stuck at 0. Vs_min-sensor_b stuck_at_0

It can be caused by memory
stuck at 0 failures, or by
stuck at minimum failures

of both pedal sensors.

Fig. 8. Model and fragment of the IF-FMEA of the pedal task.

range) measurements and provides as output the average afxamination and other components in its periphery. To
the valid sensor readings. The output of the pedal task is theenable this type of analysis and integrate it with the
driver message that is send over the bus to the wheel nodesierarchical model of the system, we have developed in
(see Fig. 1). The IF-FMEA table examines two potentially the Safety Argument Manager tool a tabular (spreadsheet
hazardous failure modes of this output. like) editor (Fig. 9).

The first such failure is an omission of the driver message.
The analysis shows that this event can arise from a task
malfunction with an assumedoverall failure rate of 6. Analgorithm for the mechanical synthesis of fault
1061077 +9x 107 =10"%f/h). Such a malfunction  trees
can be caused by a failure of the processerl0 ' f/h) . ) )
or a failure of the operating syste(s 9x 10”7 f/h). The IF—FMI_EAS contain expressions f[hat de_scrlbe the causes of
output event can also be caused by deviations of the inputs@UtPut fa_llures as Io_glqal combinations of mternal component
that the task receives from the pedal sensors. Indeed, if bothmalfunctionsor deviations of the component inputs. These
sensor readings are out of the valid range of measurement&xPressions are described in two columns of the IF-FMEA
the task is unable to produce the driver message. The secondfble: thelnput Deviation Logiccolumn and thecomponent
hazardous output failure examined in the table is a condition Malfunction - Logic column. The semantic relationship
wherethe value of the driver message is stuck at zamd between the expressions in those two columns is a disjunction
does not represent the actual pedal stretch. This (i-€. a@logical OR). Thus, given an arbitrary row of the IF-
condition can be caused by stuck at zero failures of FMEAtabIe,the_ Ioglt_:al re_zlat|onsh|p between atput Fail-
the memory elements used by the task with a failure rate Ureé Modedescribed in this row and the correspondingut
of 2x 107 f/h. In addition, the analysis shows that the DeviationandComponent Malfunction Logis:
condit_io_n will also occur if both sensor inputs are stuck at Output Failure Mode
the minimum of the normal measurement range. Note that
the above failure rates are only given as examples and do not  — jnput Deviation Logic |
represent reliability data of a real system.

Clearly, an IF-FMEA of a component shows how the Component Malfunction Logic
component reacts to failures generated by other compo-
nents. The table for the pedal task, for example, shows
how the task responds to failures generated by the two
sensors. In addition, the table determines the failure operator (OR
modes that the component itself generates or propagates.
Such a table, we believe, can be employed usefully by the The grammar of a combined expression that determines the
designer of the system in order to improve the failure detec- causes of output failure in the above form is given in Fig. 10
tion and mitigation mechanisms of the component under (described in Extended Backus Naur Form). This grammar

where | represents the disjunction
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Fig. 9. Component and its safety analysis (IF-FMEA).

recognises parenthesised logical expressions that contairparser [17] that can perform syntactic analysis and interpre-
conjunction (&) and disjunction) operators and other term-  tation of expressions that conform to the foregoing grammar
inal symbols representingpmponent malfunctionsr input without backtracking through production rules in the course
deviations Such terminals are recognised asmponent of the translation process.

malfunctionsunless they contain a hyphen (-) in which case  Fig. 11 shows the parse tree generated when, for example,
they are recognised agut deviationsThe part precedingthe  the parser processes the expression:

hyphen s interpreted as tfeglure clasy' O for omission, C

for commission,Vs_0’ for value stuck at zero etc.) while the
remaining part of the string is interpreted as the name of the
component input.

The grammar of Fig. 10 is right recursive and gives prece- It can be noticed easily that the logical structure of this
dence to conjunction operators. Thus, for example, the parse tree is identical to that of a mini fault tree that
expression [b&c is interpreted as |éb&c) and not as represents in graphical form the failure logic described
(a@b)&c. In terms of syntactical analysis, the grammar can in the expression. Fig. 12 illustrates the equivalent mini
be interpreted by a relatively simple and efficient parsing fault tree for the expression. We can clearly notice the
scheme. This scheme is, in fact, a top—down predictive identical position of logical connectives within the two

short_circuit | mechanical_failure |

(O—input 1|0 — input 2)& O — power .

Causes_of Output_Failure ::= Or_Term { | Or_Term }

Or_Term ::= And_Term { & And Term |}

And_Term ::= Cause | ( Causes_of Output_Failure )
Cause ::= Deviation | Comp_Malfunction
Deviation ::= Failure_Class - Input_Name

where

Failure_Class The failure class

Input_Name The name of a component input

Comp_Malfunction The name of a component malfunction

Fig. 10. Grammar for IF-FMEA expressions.
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\ \ e b
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I | I I
o input1 o input2

Fig. 11. The parse tree for the given example expression.

tree structures. The relationship between the parse treepropagated by other components. The synthesis algorithm
and the fault tree is not coincidental nor is it limited to proceeds in two dimensions:

the above example. It reflects a generic property of the 1. vertically, translating system (or sub-system) failures to
parser, which enables the simple and straightforward component failures;

synthesis of a mini fault tree for any expression that 2. horizontally, translating output failures to combinations

conforms to the proposed grammar, in the course of the of component malfunctions and deviations of component
translation process. inputs.

In HIP-HOPS this mechanism is used as part of an algo-
rithm for the automatic synthesis of fault trees. Fault trees The search across the vertical axis of the hierarchy has
for hazardous functional failures, as they are observed at thealways a higher priority. The rule is that when a sub-system
outputs of the system or its subsystems, are constructed byis encountered during the traversal of the hierarchical
traversing the hierarchical model of the system and by model, the causes of its output failure are always traced
following the propagation of failure backwards from the first at the sub-ordinate hierarchical level of the design,
final elements of the design (actuators) towards the systemwhich describes the architecture of the sub-system.
inputs (sensors). The fault tree is generated incrementally as  To integrate the fault tree synthesis into the modelling
we parse the expressions contained in the IF-FMEAs of theand safety analysis process, we have implemented the
components that we encounter during the traversal, and assynthesis algorithm in our tool and integrated it with the
we progressively substitute the input deviations received by modelling and IF-FMEA editors. The tool can now synthe-
each component with the corresponding output failures sise fault trees for functional failures at the outputs of the
system or its sub-systems by traversing the system model
and parsing the IF-FMEAs of its components. In practice,
= when we wish to generate a fault tree, we select an output
Output_Failure parameter or an internal flow in the model and specify a
T deviation of this parameter from its intended behaviour
Sh“m mech'amcal (see Fig. 13). In response, the tool generates the fault tree
circuit H failure for the given deviation. During the synthesis, the Safety
[ Argument Manager derives the probabilities of component
malfunctions from IF-FMEAs, and uses these data to
O-power perform minimal cut-set analysis and probabilistic calcula-
) tions on the fault tree.
The fault tree is drawn on a scrollable canvas upon which
O:inputt C-input2 we can zoom to study different parts of a large and complex
fault tree. During the synthesis, the tool hyperlinks nodes of
Fig. 12. The equivalent mini fault tree. the fault tree to component renderings. Thus, it enables
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Fig. 13. Tool support for automatic Fault tree synthesis.

direct navigation between nodes of the fault tree and the of the fault trees that contribute more to the overall failure
hierarchical model of the system, so that we can always probability can directly point out weak areas of the design
trace easily the origins and propagation of failure back to and initiate useful design iterations. Currently, re-design
the system design. This aids review of the fault trees, and creates enormous difficulties in the maintenance of large
helps gain confidence that the mechanically constructedmanually constructed fault trees. In contrast, design itera-
trees represent the failure behaviour of the design. tions would not pose problems to the synthesis of the fault
The synthesised fault trees record the propagation of fail- trees as new fault trees could be re-constructed automati-
ure in a very strict and methodical way. They start from cally after each design iteration after certain changes in the
failures of the final elements of the design (actuators) and underlying safety analyses.
following the dependencies between components in the The idea underlying the proposed fault tree synthesis is a
model, they progressively record other component failures simple one and it can be summarised in the following
and deviations of the system inputs. The rules that we apply proposition:
to capture the fault propagation in the tree structure are
explicit, consistent and always the same. The resultant |f we know the “structure” of a system (model) and
fault trees, therefore, have a logical structure which is deter-  the “local failure behaviour of its components”
mined by the application of these rules (synthesis algo-  (JF-FMEAs) then we can mechanically derive the
rithm), the interconnections between the components of  “fajlure behaviour of the system” (fault trees).
the model and the IF-FMEAs of those components. This
logical structure is straightforward and can be easily under- This proposition implies that the synthesis algorithm could
stood, unlike the structure of many manually constructed also be used for the mechanical synthesissygdtem IF-
fault trees, which is often defined by implicit assumptions FMEAs Indeed, to synthesise an IF-FMEA for a system
made by analysts. one would just need to construct the fault trees for all the
For those reasons, we believe that the synthesised faultpossible deviations at the system outputs, and then derive
trees are easier to interpret in the context of the systemthe minimal disjunctive form of those fault trees. Such IF-
model, and that such fault trees can provide a useful FMEASs could help in rationalising and simplifying complex
resource in the system design. The probabilistic calculation safety assessments, as they would provide failure models
on these fault trees can indicate if the target failure rates for which could be re-used within the same application or
the critical functions of the system have been met. Cut-setseven across different applications, possibly after some
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necessary minor adjustments to reflect the effects of athe tasks running on the nodes of the distributed architec-
different environment. ture.

Finally, we must point out that the quality of the mechani- In this section we discuss the results from this study and
cally generated fault trees is strongly contingent to the qual- highlight our most significant findings. Drawing from these
ity of the system model and the low-level analyses of its results, we will attempt to illustrate how HiP-HOPS has
components. But while the method does not necessarily helped us to overcome some of the problems of classical
generate perfect fault trees, on the other hand it ensuresechniques, improve the system design, and how at the end
that the assumptions underlying the structure and contentof the assessment process we have achieved a consistent and
of those trees (i.e. model and IF-FMEAs) have been meaningful safety case.
recorded and they are in an explicit, complete and accessible
form for reviews. This, in our view, is probably the most 7.1. FFA
significant contribution of the synthesis algorithm in
improving the quality of the results from the safety
assessment.

The FFA of the brake-by-wire system was carried out
early in the design process. Although it was based on a
conceptual design of the system, it helped us to determine
ways in which the system can fail beyond the obvious loss
of braking, and to consider detection and recovery mechan-
7. Case study isms for these failures. Fig. 14 illustrates the abstract func-

tional model of the brake-by-wire system which provided

Our case study on the brake-by-wire system is a safety the basis for the analysis. The model shows the four braking
case that we have produced in parallel to the development offunctions delivered by the system (one on each wheel), their
this system using HiP-HOPS and the Safety Argument input parameters and their outputs.

Manager tool. The study is based on a detailed hierarchical Our first observation on the model is that foer braking
model of the implementation of the system. Our analysis functions are dependesince they rely on the same physical
starts at the functional level of the design, and proceeds allinput, the braking demandprovided by the driver. This
the way down the design hierarchy to examine the failure dependency is essential and it cannot be removed. The
behaviour of low-level hardware components such as implication for the design is that the braking demand must
sensors and actuators and software components such abe carried in a reliable manner from the driver’s pedal to the
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Fig. 14. Abstract functional model of the brake-by-wire system.
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wheels. We have, therefore, decided early to replicate thetion and malfunctions such as early or late deployment. For
pedal nodes, which capture the braking demand and use aach failure that we have identified, the analysis records the
dual bus for carrying this information to the wheel nodes. effects in terms of the impact on three parameters of the car:
The model also shows that the four braking functions are stability, steerability and braking capacity. The severity of
almost identical. They perform identical calculations on each failure is described using the standard four severity
identical typesof input data (braking demand, axle load, classes of IEC-61508 [18] (catastrophic, critical, marginal,
wheel rotational acceleration, and pressure feedback) andnsignificant). Our analysis shows that certain functional
generate identical types of output (braking pressure to thefailures can be mapped to other types of failuteste and
wheel). less brakingfor example, can be seen as tempotass of
Their only difference is defined by the parameters KF and braking with obviously less severe effects than permanent
KR which determine the distribution of braking between the loss of braking. Table 1 summarises the four most severe
front and rear axle of the car (the rafront:rear is approxi- failures of each braking function.
mately 60:40). This symmetry of the functional design It can be noticed that in this type of distributed system
across the longitudinal axis of the car made it possible to there is nacatastrophicsingle functional failure and that all
examine only two out of the four braking functions in the single functional failures are tolerable (althougtitical).
course of the FFA. There are also possibilities for detection and recovery from
The first part of the FFA identifiesinglefunctional fail- a number of failures. Some of the effects of a permanently
ures of thefront-left andrear-left wheelbraking functions. locked wheel on the stability of a car, for example, can be
Each of the two functions has been systematically examinedcompensated by a recovery function which in response to
for potential failures in a number of failure classes, which the initial failure locks the diagonal wheel (see Table 1;

include the loss of function, the unintended delivery of func- FL7).

Table 1

Main functional failures of a wheel braking function

Failure ID  Effects on System Severity Detection Recovery Recommendation
Loss of Braking (omission) FL3 The car tends to drift to the sideCritical ~ Locally, using Not Possible In addition, the failure can

When there is braking intention

Unintended Braking FL4
(Commission) When there is no
braking intention

Permanently Locked Wheel = FL7

When there is braking intention

Permanently Locked Wheel  FL8
When there is no braking

intention

—30% stability —18/—32%
braking (rear/front)-15%
steerability In the worst case the
drift is opposite to the drivers
intention

The car tends to drift to the side Critical

The car tends to drift to the sideCritical

—30% of stability —1/—2% of
braking (rear/front)-65%
steerability In the worst case the
drift is opposite to the drivers
intention

Equivalent to FL4 but more
severe since maximum braking is
applied

Critical

feedback from
a pressure
sensor
Remotely, by a
local status
reporter and a
remote monitor
task

comparing the
state of the
pedal with a

It is possible iRelease actuator
certain cases by

pressure sensor

feedback from
the wheel

It is possible,
by using
feedback from
a rotational
acceleration
sensor

It is possible,
see FL4 and
additionally by
using feedback
from a
rotational
acceleration
sensor

Release pressure
until wheel
unlocked If for any
reason the wheel
remains locked,
then lock the
diagonal wheel

See FL4

be detected by a global
rotational acceleration
sensor. An Electronic
Stability Program device
may handle the problem
(this is out of the scope of
this brake-by-wire system)

The detection algorithm
should be sufficient to detect
pedal sensor failures and
internal corruption of the
pedal messages. There
should be provisions to keep
commission failures
temporally limited

Incorporate an ABS
algorithm, to prevent
permanent locking of wheel.
In addition implement a
detection mechanism for
ABS failure and a recovery
mechanism at system level
(locking of diagonal wheel)

See FL4
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In the second part of the FFA, we have considered combi- analysis also confirms that the locking of four wheels is less
nations of multiple (two, three and four) functional severe €ritical) than the locking of three or, in some cases,
failures. The first step here was to identify the plausible two wheels. Thus, intentional locking of all wheels can be
combinations of such failures. The system has four braking used as a compensatory mechanism against certain more
functions and each function has four major failure modes serious locking failures.

(see Table 1). Although the number of the possible combi-

nations of those failures is large, a systematic examination7 o Hierarchical model

of those combinations has shown that the numbemidue

combinations is relatively small. One reason is the symme- This high-level FFA equipped us with a comprehensive
try in the functional design of the brake-by-wire system. In view of the ways in which the system can fail, and helped
addition, certain combinations are impossible because theythe design of the initial architecture of the system. To ensure
can only occur in different and mutually exclusive consistency between the analyses, all the remaining aspects
conditions (braking intention/no braking intention). of safety assessment were performed on a consiktent

The analysis has shown that, with the exception of loss of archical model of this architecture. The hierarchy was
rear axle braking and loss of “diagonal braking”, the loss of developed during the design decomposition process. The
two or more braking functions is intolerable (severty process involved the decomposition of the system into
catastrophi¢, mainly because of unacceptable loss of brak- sub-systems, and then further decomposition of each sub-
ing capacity. Recovery is impossible and, therefore, such system into more basic modules. The hierarchical model
multiple failures shall be prevented by design, for example that we have developed in the Safety Argument Manager
by taking measures against common cause failure. Thetool is precise and is based on the actual hardware and soft-
analysis also indicates that the commission of two or more ware implementation ofne braking function over two
functions (unintended braking) can be tolerable if it is pedal nodes and one wheel node.
temporally limited, in other words if it is a result of short Fig. 15 illustrates the top-level architecture of this model.
transient failures or if there is rapid detection and release of It can be noticed that the pedal nodes (P1, P2) and the wheel
the braking actuator. node (W) are marked as sub-systems. Each such sub-system

Finally, the analysis shows that wheel locking affects the in the model has a subordinate hierarchical level, which
stability and steerability of the car. The severity of the describes the architecture of this sub-system. This decom-
effects varies fronmarginal (two diagonal wheels), toata- position process is repeated until we reach the low levels of
strophic (rear axle, three wheels). An interesting observa- the hardware and software implementation. Fig. 16, for
tion is that while the severity of a single locked wheel is example illustrates two successive layers in the architectural
critical, the severity of two locked diagonal wheels is decomposition of the wheel node sub-system (W).
marginal This indicates that it is possible to use the inten-  In the first layer, we see the architecture of the wheel
tional locking of the diagonal wheel as a simple recovery node, composed of a communication controller, an actuator
from a single wheel locking failure (see Table 1:FL8). The unit, three sensors (rotational acceleration, load and
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Fig. 15. Top level of the hierarchical model of the brake-by-wire system.
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Fig. 16. Two successive levels in the hierarchy of the brake-by-wire model.

pressure feedback sensor) and a wheel controller. At the Fig. 17 illustrates an example of a sensor/converter unit.
second level of the decomposition, Fig. 16 illustrates The unit receives one input, the signal that triggers the
the architecture of the wheel controller. The model at this analogue to digitalconversion, and delivers one output,
level identifies the software tasks that compose the softwarethe measurement value. The IF-FMEA of this unit is
architecture of the wheel controller as well as the data flows presented in Table 2. The table lists all the potential failure
between them. We must point out that the intention of those modes that can be observed at the output of the component.
figures is rather to provide an indication of the complexity In other words, it provides a detailed account of the failures
of the model than to show details of the design. that the component generates and that it potentially propa-
gates to other components. Let us now see how this table can
assist the design of a component that interfaces to the sensor
and operates on the measurement that the sensor provides at
As the hierarchical model of the system evolved, IF- its output.
FMEAs contributed further to its improvement. Sensor IF-
FMEAs, for example, provided lists of sensor failure modes
as these can be observed at the sensor outputs (e.g. output i (trigger) . o (measurement).
stuck, biased, out of range, exhibiting non-linear drift etc.). " [N anvarter Unit Lo
These IF-FMEAs have directly supported the design of
hardware redundancy schemes and averaging or voting
algorithms for the detection and masking of sensor failures. Fig. 17. Sensor and analogue to digital converter unit.

7.3. Component safety analyses
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Table 2
Sensor IF-FMEA

Output failure mode Description Input deviation logic ~ Component malfunction logic A (f/h)

Vy<min — O QOutput value below valid range. — Short_circuit_to_grourjNoise 1E-42E-4
Caused by a short circuit to
ground (e.g. because insulation
has failed) or by noise when the
value is close to the minimum of
the measurement range.
Vy=max— O Output value above valid range. — Short_circuit_to_power_supp@pen_lingNoise ~ 1E-4E-41E-5
Caused by a short circuit to
power supply or by open line or
by noise when the value is close
to the maximum of the
measurement range.
V, priFr — O Output drifts from actual - Noisd¢Temperaturechanically biased 2E}UE-41E-3
measurement. Caused by noise,
high temperature or more subtle
mechanical problems
Vy stuck — O QOutput stuck at a certain value. — Mechanically_studiMemory_buffer_stuck 1E{3E-5
Caused by mechanical parts
being stuck or by memory buffer
failure
O-o Failure to update the sensor value O — i Converter_failure 1E-5
buffer. Caused by a converter
failure or by an omission of the
trigger signal (e.g. trigger line is
broken). Similar effect to
Vy_sTuck — O
C-o Inadvertent update of sensor C—1 Converter_failurdElectromagnetic_interference 1R26-5
value buffer. Caused by a
converter failure,
electromagnetic interference
(e.g. lightning) or by a
commission of the trigger signal
E-o Early delivery of measurement - Converter_failure 1E-5
Caused by a timing failure of the
converter. Similar effect to a
commission failure€ — 0)
L-o Late delivery of measurement. - Converter_failure 1E-5
Caused by a timing failure of the
converter

Let us assume for example, that the sensor of Fig. 17 is abrake. To prevent hazardous false alarms arising from noise
pedal sensor, and that we want to desigredaltask which in border conditions, the pedal task should consider the
reads the braking demand and then broadcasts this value opossible presence of noise in its interpretation of the sensor
the dual bus. The failure rates in the IF-FMEA of the sensor output. A simple way to achieve this is by relaxing the range
suggest that the sensor is a fairly unreliable component. Toof valid measurements to tolerate a reasonable level of
capture the braking demand in a fairly reliable manner we, noise. Beyond noise, high temperature and mechanical
therefore, need to employ at least two sensors. The tableproblems can also cause small drifts, which distort the
also indicates that the pedal task should perform range measurement of the physical paramet®f, frer — 0).
checks on the value of the monitored variable in order to One way to compensate against such drifts is by averaging

detect invalid ¢ut of rangé measurements/(yn — 0 and the valid sensor values.
V,-max— 0) that can be caused by a number of sensor It is important to point out that this strategy also offers
failures. some protection againstuck at(Vy_struck— 0) and omis-

It can be noticed that noise may also cause invalid Of sion (O — o) failures of the sensors. Indeed, the average of
rangg indications, when the value of the parameter lies the two measurements will luck ata certain value only if
close to the minimum or maximum of the measurement both measurements are stuck at the same or different values.
range. In the worst case noise will shift a value, which The pedal task, therefore, will fail to deliver a non-zero
reflects a demand for maximum braking into the region of braking demand only if both sensors are stuck at zero.
invalid measurements. This in turn may cause a failure to Indeed, if only one measurement &uck at zerp the
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- cause thestuck atfailure at the output. An obvious case of
m o= e aBima o such a deviation is themissiorof input. For as long there is
“measurement | Ife{:;ali i “output an omission of input, the output will be stuck at a value
“' defined by the average of tHelast valid measurements.

More importantly thestuck atfailure may persist following
Fig. 18. Simplified model of the peak detection and removal task. the end of a temporary omission. Indeédhe omission is
long enoughto create a deviation between the restored
pedalwill average zero with the correct measurement and measurement and the last valid average which is greater
send to the wheel nodes a non-zero value which representshan ¢, then all new measurements will be discarded as
half of the actual braking demand. invalid, i.e. we will have a persistent stuck at failure.
IF-FMEA also contributed in the analysis of software Let us now assume that the task is part of the wheel node
architectures and the identification of subtle errors in certain implementation. The task input is the pedal message arriv-
software algorithms. The technique has helped us, for exam-ing through the bus and the task output is the braking pres-
ple, to identify a condition that could make an early version sure applied to the wheel. Our analysis has shown that if
of the generipeak detectiomlgorithm of the brake-by-wire  there is atemporary omissiomf the pedal message at the
system fail with possibly severe consequences for the early stages of braking (e.g. due to electromagnetic inter-
system. The peak detection algorithm is applied to sensorference), the output might lpermanently stuck at zero or at
readings in order to detect and remove transients that violatea low braking valuevhich will causea failure to brake This
the normal dynamic behaviour of the physical parameter. problem was rectified in a redesign of the peak detection
The average of thkelast valid readingsvim...vmy) is calcu- algorithm.
lated in every cycle of measurement. If the current reading
(m deviatgs_from.thi.f, average more than a maximum 7.4. Fault tree synthesis
allowable limit (), i.e. if
In the course of this study we also mechanically gener-
k
Im— (Z vm)/k| > & ated, regenerat.ed and evalu_ated a number of fault trees for
the brake-by-wire system. Fig. 19 illustrates, for example,
the fault tree that we synthesised for one of the main hazar-
then it is considered invalid and is discarded. The model of a dous functional failure modes of the system: “omission of
software task that uses such a mechanism is illustrated inbraking”. We must clarify that the intention of this figure is
Fig. 18. The task performs peak detection on the input value to illustrate the level of complexity and the form of the
(m. When the input value does not violate the peak detec- mechanically generated trees rather than to show details
tion criterion, it is copied to the task outpud)( In the of the case study.
opposite case, the output carries the average of theklast  The mechanical analysis of the fault trees that we synthe-

i=1

valid values &). sised pointed out weak areas of the design and focused our
During the IF-FMEA analysis of the task and as we efforts on those areas. Thminimal cut-setanalysis, for
systematically examine the task outpai} for potential fail- example, pointed out single points of failure and areas of

ure modes, we will have to consider the possibility of the the design that contributed more to the overall failure prob-
output beingstuck ata certain value. Part of the examination ability of the system. These results initiated a number of
process is to identify deviations of the inputj(that can useful design iterations and guided the revision of the

-5

—_—
mi  ®
B
s )
maw 5o

Fig. 19. Distant view of the fault tree for the event “Omission of braking”.
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fault tolerance strategies in the system and the allocation ofencountered in the quantitative aspects of complex
additional redundant resources. safety assessments.

It is equally important to point out that the synthesis  Secondly, the results from the analysis helped us to
algorithm could not have generated those fault trees if improve systematically the failure detection and control
there were any inconsistencies in the hierarchical model mechanisms of the brake-by-wire system. The FFA, for
or among the analyses of the components of that model.example, helped the design of mechanisms for the recovery
In that case, the algorithm would have simply pointed out from single and multiple wheel locking failures. Sensor IF-
the inconsistencies. The synthesised fault trees, therefore FMEAs directly supported the design of hardware redun-
link in a consistent manner the results from the various dancy schemes and averaging or voting algorithms for the
analyses to each other and back to the high-level FFA, detection and masking of sensor failures. IF-FMEAs also
and hence guarantee the consistency of the safety case. helped us analyse the pedal and wheel node architectures,
and to identify subtle errors in the design of certain software
algorithms. Finally, the mechanical analysis of fault trees
further helped us to identify weak areas of the design and
focus our efforts to those areas.

In this paper we identified a number of problems arising Our “m't?d experience from the appllcat_|on pf the

. method indicates that the method can rationalise and
in complex safety assessments and proposed a way tosimplify an inherently difficult and costly task, the safety
address those problems by extending, automating and inte- '

grating a number of classical techniques into a new methodassessment of progr‘?‘mm‘?‘b'e electronic §ys_ter_ns. The
for safety analysis method, though, also inherits some of the limitations of

The proposed method enables the assessment of é:lassmal safety analysis. In the quantitative aspects of the

complex system from the functional level through to low assessment, for example, we still rely on component failure

levels of the hardware and software implementation of the rates ¢) which are often difficult to pbtam and the validity
and value of which are generally disputed [19,20].

system. It integrates design and safety analysis, and in the A second limitation of HIP-HOPS is that the predominantly

process of the assessment, links a consistent hierarChicalsztructuraI model currently providing the basis for the analysis
model of the system to the results from the safety studies. yp 9 Y

) .~ does not enable the representation of highly interactive
The method also harmonises hardware safety analysis with . y
. . : systems where operator errors can contribute significantly to
the hazard analysis of software architectures, and introduce

an algorithm for the synthesis of fault trees, which Sthe failure of the system. The application of the method is

. L . therefore currently restricted to electromechanical systems
mechanises and simplifies a large and difficult part of the L ; . "
. 7 that have limited interaction with human operators. Finally,
analysis, the development of fault trees.

We described the method and demonstrated its applica-we must point out that the process that we described in this

. o . . paper requires that thbehaviour or configuration of the
tion on a distributed brake-by-wire prototype in a laboratory : - . .

. . system remains stable within the period of operation covered
environment. In the course of our presentation, we attempted

) . by the analysisif the system undergoes behavioural or struc-
to address two questions concerning our approach to safety . : )
tural transformations during operation, a separate set of

analysis. Firstly, can the method help us rationalise and : o .
Lo . analyses must be carried out within each phase of operation.
simplity safety assessment, and generate consistent safety We currently extend our method to resolve the complica-

P .
cases? Secondly, can the results from the analysis help YSions caused in safety analysis by the often interactive or

improve the failure detection and recovery mechanisms ofd namic character of complex svstems. Our approach is to
the system under examination and, if so, how? We believe . y b y ' pp

. . —introduce in the centre stage of the assessment process a
that the brake-by-wire case study demonstrates positive ; .
. ; dynamic model that can capture the behavioural of struc-
results with regard to both those questions.

Firstly, the fault trees that we mechanically generated tural transformations that occur in such systems. In its

. general form, this model is a hierarchy of abstract state-
guarantee consistency among the low-level safety analyse

and between those analyses and the hierarchical modeImaChineS' which is structured around the current static
They also indicate that HiP-HOPS can rationalise the (structural) hierarchy of HiP-HOPS. We hope that we will

. . soon be in a position to demonstrate that, with those exten-
development and maintenance of large fault trees, and, in

that sense, can alleviate some of the problems currentl sions, the principles that we have developed in this paper
' P Y could also be applied effectively in the context of highly

dynamic or interactive systems.

" We are aware of other approaches to the synthesis of fault trees, which
exhibit some conceptual similarity to our approach, in that they also use a
description of the system to trace dependencies and the propagation °fAckn0WIedgements
failure between components (see for example, [21-24]). However, it is
beyond the scope of this paper to discuss the precise relationship of this .
aspect of HiP-HOPS to previous attempts for the automatic synthesis of 1he authors would like to thank the European
fault trees. Commission for the continuing support of this research.

8. Conclusions and further work



References

(1]

(2]

K]

[4] Vesely WE. Fault tree handbook, US Nuclear Regulatory Committee

(5]

(6]

(7]
(8]

Y. Papadopoulos et al. / Reliability Engineering and System Safety 71 (2001) 229-247 247

Distributed Software and Database Systems, LA United States,
1986. p. 215-22.

[13] Bondavalli A, Simoncini L. Failure classification with respect to
detection. In: Predictably Dependable Computing Systems — First
year Report, Task B, vol. 2, May 1990.

[14] McDermid JA, Pumfrey DJ. A development of hazard analysis to aid

software design, COMPASS'94, Gaithersburg MD. Silver Spring,

MD: IEEE Computer Society Press, 1994.

Fenelon P, McDermid JA, Nicholson M, Pumfrey DJ. Towards

Integrated Safety Analysis and Design. ACM Applied Computing

Review 1994;2(1):21-32.

Fenelon P, Kelly TP, McDermid JA. Safety cases for software appli-

cation reuse. In: Proceedings of the 14th International Conference on

Software Safety, Reliability and Security (SAFECOMP '95),

Belgirate, Italy, 1995.

[17] Aho AV, Sethi R, Ullman JD. Compilers: principles techniques and

tools. Reading, MA: Addison-Wesley, 1986 ISBN: 0-201-10194-7.

International Electrotechnical Commission 65A/179-185, IEC-61508:

Functional safety of electrical/electronic/programmable electronic

Society of Automotive Engineers, ARP-4761: Aerospace recom-
mended practice: guidelines and methods for conducting the safety
assessment process on civil airborne systems and equipment, 12th
edition, SAE, 400 Commonwealth Drive Warrendale PA United
States, 1996.

Kletz T. HAZOP and HAZAN: Identifying and assessing process
industry standards. 3rd ed. Washington, DC: Hemisphere, 1992
(ISBN: 1-56032-276-4).

Palady P. Failure modes and effects analysis. PT Publications, West
Palm Beach, FL, 1995 (ISBN: 0-94545-617-4).

[15]

[16]

Report NUREG-0492, US NRC, Washington DC, United States,
1981. p. X.15-8.

Heiner G, Thurner T. Time-triggered architecture for safety-related
distributed real-time systems in transportation systems. In:

18
Proceedings of FTCS-28, June 1998. p. 402-7. [18]

Kopetz H, Damm A, Koza C, Mulazzani M, Schwabl W, Senft C,

Zainlinger R. Distributed fault tolerant real-time systems: the MARS
approach. |IEEE Micro 1989;9(1):25-40.

Kopetz H, Grinsteidl G. TTP: a protocol for fault tolerant real-time

systems. IEEE Computer 1994;27(1):14—23.

McDermid JA. Support for safety cases and safety arguments using [20]

SAM. Reliability Engineering and System Safety 1994;43:111-27.

[9] Yourdon E, Constantine L. Structured design: fundamentals of a

[10]

(1]

(12]

discipline of computer program and systems design. Englewood [21]

Cliffs, NJ: Prentice-Hall, 1986 ISBN: 0-13854-471-9.
Budgen D. Combining MASCOT with Modula-2 to aid the

safety-related systems, IEC, 3 rue de Varén@ti¢ 1211 Geneva
Switzerland, 1997.

O’Connor PDT. Fundamental limitations of reliability prediction and
modelling. In: O’'Connor PDT, editor. Practical reliability engineer-
ing, New York: Willey, 1991. p. 111-7 (ISBN: 0-47192-696-5).
Khrishna CM, Shin KG. Reliability evaluation techniques. In:
Khrishna CM, Shin KG, editors. Real-time systems, New York:
McGraw Hill, 1997. p. 327-60 (ISBN: 0-07-0557043-4).

Salem SL, Apostolakis GE, Okrent D. A new methodology for
computer aided construction of fault trees. Annals of Nuclear Energy
1977;41:417-33.

engineering of real-time systems. Software Practice and Engineering [22] Apostolakis GE. CAT: a computer code for the automated construc-

1985;15(8):767-93.
Kopetz H. The time-triggered approach to real-time system design.
In: Randel B, Laprie J-C, Kopetz H, Littlewood B, editors.

Predictably dependable computing systems, ESPRIT Basic Research

SeriesBerlin: Springer, 1995 (ISBN: 3-54059-334-9).
Ezhilchelvan PD, Shrivastava SK. A characterisation of faults in
systems. In: Proceedings of the 5th Symposium on Reliability in

[23] Taylor JR. An algorithm for fault tree construction.

tion of fault trees. EPRI Technical Report NP-705, Electric Power
Research Institute, Palo Alto California United States, 1978.

IEEE
Transactions on Reliability 1982;R-29(1):2-9.

[24] Poucet A. STARS: Knowledge Based Tools for Safety and

Reliability Analysis. Reliability Engineering and System Safety
1990;30:379-97.



