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In this paper we present an approach to combined discrete-continuous modelling which can be used to
model and simulate an intelligent multi-layer control architecture as can be found in high autonomy
systems. The modelling approach is based on system theoretical concepts; the three system specification
formalisms—differential equation, discrete time, and the discrete event system specification formal-
ism—have been combined to facilitate multi-formalisms modelling. Simulation concepts are based on
the abstract simulator concept for discrete event simulation developed by Zeigler. Similar simulation
methods have been developed to simulate modular, hierarchical discrete time and differential equation
specified systems as well as multi-formalism models. Included in the paper are several examples of
multi-formalism models together with the simulation results from the STIMS environment—an imple-
mentation of the modelling and simulation concepts in Interlisp-D/LOOPS.

INDEX TERMS: Systems theory, combined discrete-continuous simulation, multi-formalism models,
event-based control.

1. INTRODUCTION

High autonomy systems as defined by NASA' are artifacts which have the ability
to function as independent units over an extended period of time and to perform a
variety of actions to achieve predesignated objectives. To fulfill their tasks they have
to accept a variety of stimuli produced by integrally contained sensors and, in re-
sponse to them, they have to effect the environment by a variety of actions in pursuit
of the given goal.?

According to this definition, a high autonomy system can be understood as a con-
trol system where first we have perceptlon then control, and finally action. The new
paradigm of intelligent control*™ which tries to incorporate techmques emerged from
artificial intelligence into classical control seems to be a promising technology to
achieve high autonomy.” The intelligent control paradigm uses a hierarchy of layers
for a control system which reflects the increasing intelligence with decreasing pre-
cision. Saridis’ distinguishes the execution layer, the coordination layer, and the
management layer. The execution layer contains the system to control—the sensors,
actuators and effectors. The coordination layer receives the sensor values from the
lower layers as well as the high level commands from the management layer and
generates sequences of action commands for the lower layer. The management layer
now uses artificial intelligence techniques-to make the decisions to fuifill tasks in
pursuit of varying objectives.
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To model and simulate such a layered control architecture different models have
to be employed.” Lower layers more likely will use differential or difference equation
specified models while the higher layers will require symbolic modelling paradigms.
Antsaklis* proposes a so-called hybrid modelling methodology therefor.

In this paper we will outline an approach to address this issue. We will present
an approach to integrate the traditional differential and difference equation specified
system formalisms and the newly developed discrete event system (DEVS)®’ for-
malism. In section 2 we will review the traditional differential and difference equa-
tion as well as the discrete event modelling paradigm. We will do this from a systems
theory point of view. Then in section 3 we will introduce several new systems spec-
ification formalisms for combined discrete-continuous modelling. In section 4 sim-
ulation concepts for the different types of systems which are based on the abstract
simulator for DEVS’ will be presented.

In section 5 we will demonstrate our modelling and simulation concepts by an
example of a combined event-based and analog motor speed control system. The
event-based control paradigm is based on the DEVS formalism and has been intro-
duced by Zeigler.®® In this new approach to control, the controller receives threshold
sensor inputs from the continuous process. The threshold sensor inputs of the new
event-based control paradigm may arrive at arbitrary time instances, indicating the
time of event when the threshold sensor flips from one state to another. The event-
based controller then reacts whenever such an event input occurs and exerts com-
mands to the process to drive it to a desired goal state. An event-based controller
uses time windows to determine if a process run is correct or a failure has occurred.
If the reaction of the threshold sensor lies within a predefined time window, it is
assumed that the process operation is correct and the next control command can be
exerted. Otherwise the process operation is regarded as faulty and corrective action
has to be undertaken.

In our example a conventional analog controller has the task to bring the motor
to different nominal speeds. An event-based controller issues the nominal speeds as
well as different work loads and supervises the analog-control process. While the
motor and the analog control system will be modeled by a differential equation spec-
ified system, the event-based controller will be modeled by a discrete event model.
The model has been implemented using the STIMS modelling and simulation en-
vironment. STIMS is a prototypic implementation of the modelling and simulation
concepts discussed in section 2, 3 and 4 in Interlisp-D/LOOPS™ and runs on the
SIEMENS 5815 (XEROX 1108) workstations. Simulation results will also be in-
cluded in section 5.

2. A BRIEF REVIEW OF SYSTEM FORMALISMS

In this section we review the traditional system specification formalism for simu-
lation modelling—the differential equation specified system (DESS) and the discrete
time specified system (DTSS) formalism—as well as the system specification for-
malism for event oriented simulation modelhng mtroduced by Zeigler—the discrete
event system specification (DEVS) formalism.%’ We will do this review from two
points of view—first from a systems theory point of view and second from a sim-
ulation Pomt of view. In particular, we will take the perspective of Zelgler6 " and
Oren."
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Differential Discrete Discrete
Equations Event Time
time base real real isomorphic
T numbers numbers to integers
basic sets real vector arbitrary arbitrary
X,Y,Q spaces
input piecewise continuous discrete sequences
segments segments event segments
state and output continuous piecewise constant  sequences
trajectories segments segments

Figure 1 Constraints imposed by modelling formalisms

A formalism specifies a Dynamic System'*'® and it implies restrictions on the ele-

ments of the dynamic system description. Formalisms build subclasses of systems.
Figure 1 shows the constraints®”!! imposed on our modelling formalisms. Most im-
portant is that each of these formalisms is closed under couphng, 1.e., one can couple
systems together so that the resultant again specifies a system. Thus coupled sys-
tems can in turn be coupled together and hence the construction of modular, hier-
archical models is possible.

2.1. Differential Equation Specified Systems Formalism

An atomic differential equation specified system (DESS) is a structure®'?

DESS = (X, Y, Q,f, A)

where
X the set of inputs is a real vector space
Y the set of outputs is a real vector space
Q the set of states is a real vector space
f:OXX—>Q0 is the rate of change function
A:QO—>Y is the output function

The time base of DESS are the real numbers. The input segments for a DESS
have to be piecewise continuous segments. The output segment produced by DESS
as response are continuous segments over Y and the state segments are continuous

- segments over Q.

The output value y, produced by the DESS at any time ¢ where s, is the state at
time ¢ is given by the function y, := A(s)). A state trajectory straj over (Q R) of a
DESS for a given input segment w € (X, R) has to- satisfy at any point in time ¢ of
the domain of w the condition imposed by the differential equation d straj(s)/dt :=

f(straj (1), w(®).
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2.2. Discrete Time System Formalism

An atomic discrete time system (DTSS) is a structure®'?

DTSS = (X, Y, O, 0, A)

where
X is the set of inputs
Y is the set of outputs
S is the set of states.
0: Q0 XX—=Q0 is the state transition function
A is the output function

and A is a function either
A:Q—Y
in the case of Moore type components or
A QXX —> Y

in the case of Mealy type components. _

With atomic DTSS we associate the following dynamic behavior: As time base of
DTSS we take the integers I (= 1 * J) or a set ta * ¥ isomorphic to the integers
where ta is a constant time advance. When a DTSS is in state s, at time ¢ and the
Input at time ¢ is x,, then it gives out the value y, := A(s,) or A(s,,x,) in the case of
Moore and Mealy type components respectively and transits to state s,., := &(s,,
X.). S:1.q 18 the state at time ¢ + ta.

2.3. Discrete Event System Formalism

An atomic discrete event systems (DEVS) is a structure®’

DEVS = (X7 Ya S, aexn 6int7 )‘9 ta)

el

where
X ‘ is the set of external events
Y is the set of outputs
S is the set of sequential states
0oy 1O XX— S is the external transition function
O :S— S is the internal transition function
A:S—>Y is the output function

+ . . .
ta:S—> Ry U is the time advance function
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and
Q:={(s,¢)|sES,0<=e <= ra(s)} is the set of roral states.

Discrete event systems have a continuous time base but inputs and state transitions
occur at discrete time instances. So input segments are constrained to so-called DEVS
segments, i.e., for a finite number of points in time there are inputs and between
these times there is no input (or the so-called non-evenr). State and output trajectories
are piecewise constant segments. The set of inputs, outputs and states are arbitrary
sets. The state transition consists of two parts—the external transition function is
executed whenever an input arrives and the times of execution of the internal tran-
sition function are scheduled by the time advance function. '

If at time ¢ the DEVS has been in state s for ¢ < ta(s) time units, then the DEVS
is scheduled to undertake its internal transition at time tn = ¢ + (ta(s) — ). When
there will arrive no external event until time n, then the DEVS will stay in state s
until that time so that it has been in s exactly ta(s) time units and then will transit
from s to s’ := §,,(s) at time . Right before undertaking the internal transition,
the DEVS will put out the value A(s). After the internal transition, the DEVS is
scheduled for the next internal transition at time tn + ta(s').

Input values can arrive at arbitrary time instances at the input ports. If at time ¢
the DEVS has been in state s for time e =< fa(s) and there arrives an external input,
then the DEVS has to execute its external transition function and the DEVS will
transit from s to 5" := 6,,(s, e, x) where it will remain either to the next external
event or ta(s”) time units.

Well defined DEVS must have the property of legitimacy. This property prevents
the DEVS from getting into an infinite sequence of states in which the clock would
not advance beyond a certain point.” Formally we can define legitimacy in the fol-
lowing way: '

In every finite time interval (r,,), and for every initial state ¢ € Q and input segment w:(t,,,1) — X
there are only a finite number of state transitions. .

2.4. Memoryless Models—Functions

A memoryless model or function (Func) is a structure®'2

where
X . is the set of inputs
Y is the set of outputs
A X—>Y is the output function

Memoryless Models can be defined in connection with DTS and DESS. When the
memoryless model receives an input x, at time ¢ it simple responds instantaneously
with the output value y, := A(x,) at the same time ¢.
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2.5. Coupled Systems or Networks

When coupling systems of our above defined system types together, we derive cou-
pled systems or networks. The coupling of the components is exclusively done by
connecting input and output ports. The network also has its own input ports and
output ports. So we have to distinguish between three types of couplings:

— external input couplings—coupling of input ports of the network to input ports
of the components;

— external output coupling-—coupling of output ports of some components to
output ports of the network;

— internal couplings-—coupling of output ports of components to input ports of
components. :

To specify coupled systems, we use the following formalism:”*'>¢

Netw = (X, ¥, D, {M,},EIC, EOC, IC)

where
X is the set of inputs of the network
Y is 'the set of outputs of the network
D is the set of the component names
{M,| d € D} is the set of the component systems
EIC is the external input coupling
EOC is the external output coupling
IC is the internal coupling

As we distinguish three system types for atomic system specification, we also
derive three coupled system types—DTS networks, DESS networks, and DEVS net-
worlg_s——when coupling together components of the same type. -

2.5.1. DTS network Beside the spe01flcat10n of the components and the couplings,
the definition of a DTS netwerk requires the specification of the time base. For a
well defined DTS networks, the following constraints must hold:

— the components are DTS of type Mealy or Moore, Functions or DTS networks;
— every input port of:a-component must be influenced by exactly one port;

— every external network-eutput port must be influenced by exactly one port;

— the time base of the network and all its components have to be equal;

— in a feedback loop there has to be at least one component the output of which
can be computed without knowledge of its input.

The last constraint is especially important. It is an extension of the well known
rule® that in every feedback: Ioop there must be at least one Moore type component.
This extension is necessary in+hierarchical specified networks.

2.5.2. DESS networks For a-well defined DESS network the following constraints
must hold:
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— the components have to be of type DESS, Function or DESS network;
— every input port of a component must be influenced by exactly one port;
— every external network output port must be influenced by exactly one port;

— in a feedback loop there has to be at least one component the output of which
can be computed without knowledge of its input.

2.5.3. DEVS networks In DEVS the time base is implicitly given by the real num-
bers. DEVS networks require the addition of a tie breaking rule to the network def-
inition. This tie breaking rule Select selects one component to undertake its internal
transition function when more than one of the components are imminent to do so.
So Select is a function’

Select : subsets of D — D,

For well defined DEVS networks the following constraints must hold:

— The components have to be of type DEVS or DEVS network.

— No direct feedback loops are allowed, i.e., no output port of a component may
be connected to an input port of itself.

3. NEW SYSTEM FORMALISMS FOR COMBINED DISCRETE-
CONTINUOUS MODELLING

To support modelling of a large variety of combined systems, we introduce the fol-
lowing new system types:

— modular, hierarchical multi-formalism systems which are coupled systems whose
components are either of the DEVS, DTSS or DESS type; -

— atomic DEVS systems with some continuous inputs;

— atomic DESS & DEVS systems which are DESS systems with state and time
events causing discontinuities in the state and output trajectories;

— atomic DEVS & DESS systems are DEVS systems also employing some con-
-tinuous state variables.

In the following we introduce these formalisms and give prototypic modelling
examples. Doing sc, we will present the state transition and output functions of our
atomic model examples in a pseudo-code description similar to a computer program
implementation. In particular, we use several pseudo-code elements which should
be self-descriptive and we regard the argument s of the state transition functions as
an input-and output parameter. Hence setting of a state variable in the transition

functions means definition of a new state value.

3.1. Coupled Multi-Formalism Systems

This system specification formalism facilitates coupling of components which can
be either of the DEVS, DTSS or DESS type.'” It is possible to couple the components
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of different types simply by connecting their output and input ports in the same way
as we build the one-type coupled systems. Special simulation concepts for this new
coupled systems have been developed based on the DEVS abstract simulator’ and
will be outlined in section 4. The DEVS network formalism has proved to be just
the right formalism also to spec1fy multi-formalism models. As we will see in section
4, the event handling mechanism of the DEVS network simulation algorithm is used
to schedule the internal transitions of DEVS componerts as well as the state tran-
sition and the integration steps of DTSS and DESS components respectively. The
Select function of DEVS networks resolving conflicts when more than one com-
ponent is scheduled to undertake its internal transmon is used in mult1 formalism
networks for the equivalent purpose.

In the following we illustrate how we have to mterpret the couphng of systems
of different types: :

Coupling of DTSS to DEVS Every state transition of a DTSS results in an output
and hence in an input event in the DEVS model at regular time intervals.

Couplzng of DEVS to DTSS. The output of a DEVS which is‘the 1nput to a DTSS
model is interpreted to be piecewise constant. Whenever the DTSS is scheduled to
undertake its transition, it takes the value. originated from the last output event.

Couplmg of DEVS to DESS The output segments. of the DEVS. are 1nterpreted to
be piecewise constant segments which are a subclass of piecewise continuous seg-
ments and hence are valid input segments for DESS models ,

Coupling of DESS to DEVS. The output of a DESS is a continuous segment, i.e.,

for every point in time a value is defined. Such a segment cannot be interpreted as
an DEVS segment because it would mean an infinite number: of events-and.thus.: thie
outpit:-of a DESS cannot be used as -an input segment of ordinary DEVS. The new
system type continuous-input-DEVS defined: below allows to: spe01fy DEVS:models

w1th continuous input segments

Couplzng of DTSS to DESS “ In such a coupling structure the: qutput of.a DTSS is
interpreted in the same way-as-we interpreted the output of DEVS.in DEVS to DESS
couplings, namely as piecewise constant. The output at one ‘tfansition of the DTSS
specifies a constant input valié for the DESS-until the next transition. '

Coupling of DESS to DTSS ~The input of a: DTSS coming trom i ’E‘SSY one
transition of t1me t is defined: by the current.value of the-continuous: output segment
at time ¢.. . : RS e

L

Modellzng Example: Combined: Analog and Event-Based Motor Speed, '
System

A simple model of a motor the speed of which is first.controlled by a- conventlonal
analog controller wh1ch is then controlled and superv1sed by an intelligent event-
based control system’ will serve as an example of a combined: discrete- contmuous
multi- formallsm coupled model. This.model-and 51mulat10n results will be presented"
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in detail in section 5. Figure 6 in section 5 shows the modular, hierarchical structure
of the model. The analog part which consists of the model of the motor and the
model of the analog Pl-controller is modelled employing a modular, hierarchical
DESS network. The other part, the event-based control part, is modelled as a mod-
ular, hierarchical DEVS network. The overall network “eventBMotorContr2” is a
multi-formalism network.

3.2. Continuous—lﬁput—DEVS Systems

Input segments of DEVS systems are constrained to DEVS segments. This guar-
antees that only a finite number of input events will occur and hence only a finite
number of external transitions have to be executed. In a multi-formalismi coupled
system, when we couple an output of a DESS system to a DEVS system, the input
to this DEVS is a continuous segment which represents an infinite number of external
events and hence leads to an invalid system description. To overcome this problem,
we introduce a new type of atomic DEVS which allows continuous input segments.

An continuous-input-DEVS is a DEVS system with a continuous input segment
and hence an infinite number of external events subject to the following constraint:

For every continuous input segment w:{¢in,tf) — X only a finite number of values w(?) actually result
in a change of state through the external transition function. We call these events actual events and the
event times the actual external event times.

We call this property input legitimacy in the sense legitimacy is defined for internal
transitions of DEVS.® The property guarantees that from the infinite number of events,
we only have to care for the finite number of actual events.

Modelling Example: Model of an Intelligent Thresh-Hold Sensor

The following contmuous-mput -DEVS is a model of a smart thresh-hold sensor Wthh
is able to detect if the incoming input segment is stable around 0. Such a sensor can
be used to supervise an analog control process. The continuous input to the sensor
has to be the deviation of the actual control value from a nominal value. If the
absolute value of the deviation is lower than a specified value epsilon and stays lower
this value epsilon for a specified time interval, then the s1gna1 18 regarded to be
stable.

StableSensor = (X, Y, S, 8., O, A, ta)
X = {deviation | deviation € R}
= 4sensorOut | sensorOut € {off, on}}
S = {(sigma, sensor) | sigma € Ry, sensor € {off, on}}
S..((sigma, sensor), e, deviation)
when-event sensor = off & |deviation| < epsilon then

sensor := on —wait timeInterval time units
sigma := tlrneInterval —to put.out the sensor value is ‘‘on”’

L




e

228 HERBERT PRAEHOFER

when-event sensor = on & |deviation| >= epsilon then
sensor := off
sigma := 0 —put out the sensor value is ‘‘off”’ immediately

A((sigma, sensor)) :=

sensor —output of the model is the state variable ‘‘sensor’’
Oim((sigma, sensor)) '

sigma (=
ta((sigma, sensor)) :=

51gma —the time advance is spec1ﬁed by. the state variable ‘‘sigma’”

Figure 2 shows an example simulation run with a test deviation signal (a damped
sinusoidal signal) as input. Whenever the signal gets into the epsﬂon band which:is

“from —0.2 to 0.2 in our example, the state variable sensor is set to “on” and 51gma

is set to 5. But as soon as the signal leaves thé epsilon band, the sensor value is sét
to “off” again. At time 13 the deviation enters the epsilon band and now stays within
the band for more than 5 time units. Only now the sensor reacts with an output at
tlme 18. .

3.3. Atomic DESS & DEVS Systems

Atomic DESS & DEVS systems are a combination of DESS and DEVS sysf
They employ a derivative function to specify the rate of change of the contmuo s
state variables. The external transition function is used to model state events, '
events which depend on conditions stated on the continuous state variables as
as on the continuous input segments.'*" The internal transition function toge
with the time advarnce function is tised to model time events, i.e., events w
of occurrence is specified in advance.'™' While the time advance function s
the time to the next event, the 1nterna1 transition, function specxﬁes how fo tre;
time event. Input segments as well s output are continuous or piecewise contmuo s
and hernce we regard the system to be continuouis.”
Formally an atomic DESS & DEVS system i§ a structure:

Atommic DESS & DEVS = (X, Y, O, f, 8us Bir 1, A)

where

X, Y, 0, f and A have the interpretétion as in DESS systems and
OextsOine and ta have the interpretation as in DEVS systems.

With an atomic DESS & DEVS system we: assomate the-following: dynanuc be-
havior: When there are no state-or. time events; then:the system behaves.in. the:same

way as a DESS system does. Input segments h ve to be piecewise continuous seg-
ments and state and nutpm traiectories are continusus seoments. The dvnasiic he

state and ectones are ousg segmenis. 1ac ujuauu\, e~

havior of the system is deflned by ‘the ‘derivative function I spemfymg the rate of ‘
change of the state trajectory at-every point in time. '
Additionally the DESS & DEVS system has<to’ 160k for events and’ handle'the-
events. Therefore it continuously-checks:if conditions in‘the external transition finc:
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Figure 2 Input segment and state and output trajectories of stable sensor model

tions imposed ‘on the continuous state and input variables and ‘causing state-events
become true and it checks if the elapsed time e giving the time since the last event
becomes equal the value of the time advance fa(s). In the first case, a state event is
detected, the external transition function is executed and the eldpsed time e is set to
0. In the second case, we have a time event, the internal transition function is-ex-
ecuted and again the clapsed time e becomes 0. The state and output’ trajectones of
siich a-system now arc piecewise continious segnierits.

As a well defined DEVS and a well’ defined continuous-input-DEVS have to be
legitimate and input-legitimate, we also. impose these properties ‘on well défined DESS
& DEVS systems. Input-legitimate here-means that only a f1n1te fitmber-of ‘state
events may occur in a finite time interval. :
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Modelling Example: Bouncing Ball

A table tennis ball dropped from a specified height is a typical example of a situation
best modelled by this type of system. The free fall is modeled by the DESS part
while the impact of the ball on the ground is modelled by a state event in the external
transition function.

Bouncing Ball = (X; Y, S, f, 8> Sits @, A)

{ os | pos € R}
={(pos, vel} | pos; vel € R}

o:~<><:

f((pos, vel))

d vel/dt := —g — resistance * vel ——gravitation — resistance
d pos/dt := vel

A((pos, vel)) :=
pos —output of the model is the position of the ball

Sex((pos, vel), e)
when-event pos <= 0 then

vel := —vel —invert the velocity E

ta((pos, vel)) 1= o —time advance = o, SO no time events

g

3.4. Atomic DEVS & DESS Systems H
Atomic DEVS & DESS systems are very similar to atomic DESS & DEVS systems
but now this type of systems primarily is a DEVS system which also employs some

R

BouncingBall: pos
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||||||||t||||||||||||||||||||||| T
@ 4 15

c

i Figure 3 Trajectory of position variable of bouncing ball
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continuous state variables. That means, the input and output behavior is like that of
a DEVS system or like a continuous-input-DEVS system but some of the interior
states behave like that of DESS systems. The external transition function of such a
system is used for several purposes. First it can be used in the sense of normal DEVS
systems, i.e., it defines the treatment of event inputs. Then it is used in the sense
of continuous-input-DEVS, events caused by continuous inputs are specified here.
And it is used to model state events caused by continuous state variables.
Formally an atomic DEVS & DESS system is a structure:

Atomic DEVS & DESS = (X, Y, S, 8., A, O 14, f)
where

X, Y, S, 8. 6w ta and A have the interpretation as in DEVS systems and f has
the interpretation as in DESS systems.

With an atomic DEVS & DESS system we associate the following dynamic be-
havior; When there are no external events, state events or actual events caused by
continuous inputs, then the system transits from one internal transition to the next.
As in DEVS, before every internal transition there is an output, An event input is
handled like in DEVS, it activates the external transition function. Between the event
times the continuous state variables’ trajectories are computed employing the deriv-
ative function f. Hence the conditions in the external transition function imposed on
these continuous states variables have to be continuously checked if they become
true. If so, a state event is detected and the external transition function is executed
to handle the state event.

Well-defined DEVS & DESS systems also have to be legitimate and input-legit-.
imate. Input-legitimate here means that only a finite number of state events and in
the case that also a continuous input has to be handled that only a finite number of

P |

actual events may occur during a finite time interval.

Modelling Example: Model of a Continuous Filling Process

In queueing network simulation models it is sometimes required to model a process
more detailed to get better information of the performance indices of the system
under study. This may necessitate to model a component at the continuous level and
use it in the discrete level. An example of such a component is the model of a
continuous filling process which is used in a network modelling a brewery.”

The inputs to this model are the arrivals of empty barrels at the. filling station. If
the filling station is empty, then the filling process starts otherwise the barrel is
queued before the station. Depending on the current content of the barrel, the filling
rate is increased from an initial filling rate of 1 to a full filling rate of 6. Then the.
filling rate stays constant until the barrel is full.- The current barrel is putted out
immediately and a signal is sent out indicating that the next barrel can be served.

The external transition function is used to handle the airivals of the barrels as well
as all state events. There are two state events—one to specify the event when the
filling process has to switch from the phiase where the filling rate is accelerated to
a full speed filling rate of 6 and the second to model the barrel-full event. In' the
derivative function f, the phase variable of the model is used to distinguish between
the different filling rates. Depending on the value of the phase variable, different
derivatives are defined for the continuous state variable content. Hences this' model
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also shows how the phase variable and state events can be employed to implement
multi-models as defined by Oren.?"*

FillingProcess = (X, Y, S, 8ex» A, O fa, f)

in | in € {20, 40, 60}}
(out, next) | out € {20, 40, 60}, next € {true, NIL}}
(sigma, phase, barrel, content) I sigma € Reopos

hase € EwaitForBarrel, acceleratedFilling, fullSpeedFilling, done},
arrel € {20, 40, 60}, content € Ry }}

X =
Y:
S =

S.((sigma, phase, barrel, content), e, in)
when-input-event-on-port
in: barrel := in
phase := acceleratedFilling
sigma := ®

when-event [(0.2 * content) + 1] >= 6 then
phase := fullSpeedFilling —full speed filling now
sigma := ®

when-event content >= barrel then
phase := done
sigma := 0 —activate the model to put out the full barrel

A((sigma, phase, barrel, content)) :=
(barrel, true) —send out barrel at port out and true at port next

8 ((sigma, phase, barrel, content))
barre] := 0
content := 0
phase := waitForBarrel
sigma := ®© —passivate in idle

ta((sigma, phase, barrel, content)) := sigma

f((sigma, phase, barrel, content))
model-in-phase
waitForBarrel, done: d content/dt := 0
acceleratedFilling: d content/dt := (0.2 * content) + 1
fullSpeedFilling: d content/d: := 6

Figure 4 shows the piecewise constant trajectory of the state variable phase and

the niecewise continuounus traiectory of the state variable content of an examnle sim-
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ulation run. Note the dependences of these two variables. A filling process always
starts with the phase waitForBarrel and a filling rate of 0. In the acceleratedFilling
phase the content increases with an ever increasing rate (see the curvature at the
beginning of the filling processes). After about 9 time units the system transits into
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Figure 4 Trajectories of phase and content variébles of filling process

the fullSpeedFilling phase and we observe a constant increase of the content variable.
Finally, in the done phase the content makes a discontinuous jump to O.

4. SIMULATION CONCEPTS FOR MODULAR, HIERARCHICAL MODELS

Zeigler’ introduced simulation concepts for modular, hierarchical discrete event sys-
tems. The abstract simulator for DEVS has a hierarchical structure reflecting. the
structure of the hierarchical DEVS. It handles all the simulation needs. Thus-a DEVS
model can be directly transformed into an executable simulation program using the
abstract simulator. Based on these ideas we developed similar simulation concepts
for DTSS and DESS."” We pursued an approach very similar to the DEVS abstract
simulator. The abstract simulator for DTSS and DESS also reflect the hierarchical
structure of the model. The same methodology and terminology is used. The reason
why we do this is mainly to be compatible to the DEVS simulator and to, make
preparations for the usage of them in the simulation of multi-formalism coupled models.
Each of the different types of abstract simulators consist of two types of object— .
the simulators and the coordinators. With every atomic model we. associate a sim-
ulator, with every coupled model we associate a coordinator of the appropriate type.
Simulation proceeds by messages passed among the simulators and coordinators.

4.1. DEVS Abstract Simulator

In the abstract simulator for DEVS,”'¢ four different types of messages are distin-
guished; namely *-, x-, y-, and done-messages. ‘A *-message indicates that an in-
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message is transmitted to. the subordinate representing the imminent component DEVS. -
If there are more than one imminent components, the tie breaker order Select is used
to select one of them. When a *-message is received by a devs-simulator, it.computes
the output and carries out the internal transition function of the associated DEVS.
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The output is sent back to the parent coordinator in a y-message. Finally, a done-
message to the coordinator indicates the completion of the state transition.

An x-message indicates the arrival of an external event. When a coordinator re-
ceives an x-message, it consults the external input coupling of the DEVS network
to generate the appropriate x-message for the subordinate influenced by the external
event. When an x-message is received by a simulator, it directly executes the external
transition of the atomic DEVS. A done-message reports the completion of the ex-
ternal transition.

"When a coordinator receives a y-message which carries the output information of
its imminent child, it consults the external output coupling of the DEVS network to
see if it should be transmitted to its parent coordinator and the internal couplings to
obtain the children and their respective input ports to which the message should be
sent. In the latter case the y-message is converted into an x-message indicating the
arrival of an external event. It is important to see that devs-simulators and devs-
coordinators are able to handle the same type of messages. This enables the simu-
lation of hierarchical specified DEVS.

4.2. DTSS Abstract Simulator

In the abstract simulator for DTSS,"” special dts-simulators and dts-coordinators ex-
change messages appropriate for discrete time simulation. As there is only one state
transition function, one message to schedule the transitions and compute the outputs
(dts-x-message) is sufficient. Another message is used to carry back the output value
to the parent coordinator (dts-y-message). When a simulator receives a dts-x-mes-
sage, it just computes the next state and output of the atomic DTSS and sends the
output back to the parent coordinator. When a dts-coordinator receives a dts-x-mes-
sage, it first stores the input values and then schedules the computations of the next
states and the output values of each of its components. The determination of a work-
ing sequence of the activations of the components is data driven, i.e., when all inputs
for one component are available, the component can go and a dts-x-message is sent
to it. In feedback loops, the output of components which can be computed without
the knowledge of the input (output of “Moore” type components) have to be com-
. puted prior to all other computations. To avoid such a two cycle simulation algo-
rithm, the output of all these components are computed just after the next state com-
putation and are stored for the next simulation step. For the flrst sunulatlon step
these outputs have to be generated in a special initialization phase."’

As DTSS models work with fixed time steps, the time scheduling of the DTSS
abstract simulator is trivial. The time of the next state transition is equal for all
components of a DTSS network and is determined by the current time plus the time
step.

4.3. DESS Abstract Simulator

The abstract simulator of modular, hierarchical DESS is very similar in structure and
operation to the DTSS abstract simulator. It employs dess-coordinators and dess-
simulators and dess-x- and dess-y- messages as well as the same data-driven sched-
uling scheme. The first difference is that the dess-simulator uses a numerical inte-
gration method to compute the next states of the atomic components. The second
difference is that, although only a fixed time step numerical integration method is
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implemented so far, the time step of the DESS abstract simulator is'not fixed but
additional simulation cycles can be inserted when state or time events or discontin-
uities in input segments have to be handled.

The DESS abstract simulator first undertakes a normal integration steps to compute
the next state value. Then it tests if a state or time event is to be to occur between
the current time and the next time. If so, the next integration step will not be sched-
uled in integration interval time units but an additional simulation cycle wilk be
scheduled at the exact time of the event to handle it. The dess-coordinator now
schedules its time of the next simulation cycle by the minimum of the next simulation
times of its components. In distinction to the devs-ceordinator, the actual time of
the next simulation step for all the components is the next simulation time computed
in the overall DESS network. Also discontinuities in input segments which aré com-
mon when the DESS is a component in a multi-formalism network are handled at
the exact time of the dlscontmulty An additional simulation cycle is 1nserted when—
ever an 1nput segment makes a jump from one value to the next.

To be in the position to manage the above simulation scheme a further ‘exténsion
has been made in the DESS abstract simulator. Instead of working with dlscrete state,
input and output values, the trajectories between two consecutive 51mu1at10n steps
are approximated by straight lines. Straight lines now are transmitted as output and
input values between components and stored as state values. These lines are used to
compute the exact times of state events much better (see below) and they provide
much better approximations of the state input and output values at: the time of state
time and external events. »

4.4. Abstract Simulator for Multi-Formalism Coupled Models

When components of different system types are coupled,-a’ discrete event nétwork
is used to form the multi-formalism network ‘and hence the coordinator for- DEVS-
simulation takes care of-the mixed-mode simulation.'” A *-message. trlgg‘rsvthe
scheduled executions of the transitions of the DTSS and DESS components at their
state transition times. X-messages deliver the output of influencers: When a DTSS
component receives an mput it just saves this input for the next simulation‘cycle.
When a DESS component in a multi-formalism network receives an input-from a
DTSS or DEVS component, the input segment makes a _]ump from the old- value to
the new one and sticks to this new value. A simulation cycle is inserted: at the exact
time ¢ of the input. As input, state and output trajactories are approximated by lines,
quite accurate state, input and output values can be computed for event time ..

A coupling of a DESS component to a DEVS component results.in‘a continuous
input segment—approximated by a straight line—to the DEVS ‘model: The contin-
uous segment finally has to terminate at an: atomic¢ continious- 1nput—DEVS which: is

able to handle it. When a simulator of a continuous-input-DEVS receives ‘a“straight -

line input at time ¢, it interprets this line as the 1nput at:the current time t-and-the
development of the input value until the next line is received: It then searches.for
all the actual event times caused by this line segment and executes. the external tran-
sition function at these times. The property of 1nput-leg1t1macy—-—whlch cvery con-.
tinuous-input-DEVS must hold—guarantees that only a finite nuifiber of actual events
will occur. As the resulting state values are not valid yet, they are saved-ina special
list. As soon as an internal transition is scheduled or an new external input is received
at time ¢, all the precomputed states resulted from the ‘actual external events’ unt11
event time ¢ < t' become valid and have to be actualized: ary
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when-event z<=0 then ...

]
S poaem
successive intervals ~ i+

Figure 5 . Binary search for event times

4.5. Computation of Event Times of DESS & DEVS, DEVS & DESS and
Continuous-Input-DEVS

To compute the actual times of the state events of DESS & DEVS and DEVS &
DESS as well as the actual external event times of continuous-input-DEVS we em-
ploy the following method® (Figure 5): First we analyze the external transition func-
tion to see if any condition specifying an event changes its value during the beginning
and the end of the current lines approximating the input and state segments. If so,
an iterative process is started to search for a sufficient accurate time of the event.
As a starting interval the whole interval from the beginning to the end of the lines
is taken. Then we compute the state values and input values in the middle of the
interval. Using the line approximations it is possible to dgmpute quite accurate values
_for them. Then we check if the event is in the first-half or the second half of the
whole interval. If it is in the first half, we take the first haIf as new interval, otherwise
we take the second. With the new interval we continue’ the approximation process.
~ This bmary search process stops when the time mterval is sufficient small. ’

5. SIMULATION OF AN EVENT-BASED MOTOR SPEED CONTROL
' SYSTEM

An example of a motor speed control system” shall demonstrate the expresswe power
of our system- theoretic modelling formalisms and simulation concepts for multi-
formalism coupled: systems. ‘The.model has been implemented and evaluated using

_the STIMS modelling and simulation environment—:the implementation of our mod-
elling and simulation concepts in Interlisp-D/LOOPS.

A motor wh/lch drives a machine has to be brought to different speeds and different
work loads are exerted to fulfill a predefined sequence of tasks. An event-based
controller is used to define this sequence of tasks in:pursuit of a. glven goal. It issues
the required nominal speeds as well as the work:loads and supervises -the process
runs. To drive the motor to the normnal speeds a convenuonal analog controller is
used.

Figure .6 shows the structure of thls control system The analog part which is
modelled by a DESS coupled system, consists of the component modelling the motor
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Figure 6 Model of an analog and event-based motor speed control system

as well as the model of the analog controller: The motor is modelled at the behavioral
level by a simple atomic DESS and should be considered as a.motor driven-by.a
force input together with-a tachometer which provides the current speed. The input
“load” provides the current work load which functions like a resistance. The con-
ventional controller is a.combination of an integral and proportional controller the
outputs of which are added: The adder also amplifies the control signal to provide
an appropriate force to drive the motor. A second output from the analog control
part supplies the deviation of the current speed from the nominal speed. '
The event-based control system is modelled by a DEVS network and consists of
three parts. There are two threshold sensors and the event-based controller itself,
The threshold sensors receive the deviation from the analog controller in form of a
continuous signal. They are modelled by continuous-input-DEVS. For the model
stableSensor a model as specified in the example of section 3.2 is used. The model
validSensor is very similar with the only difference that the sensor immediately reacts
whenever the input is recognized to be lower than epsilon. i
The event-based controller now knows of a sequence of tasks. Each task consists
of a nominal speed, a work load and a working time. First it exerts the nominal ~
speed. This-makes the analog controller to react and drive the motor to- the new
speed. In the event-based controller, a time window” is used to supervise the analog
control process. In the case it takes to long to drive the motor to the new speed, a
failure in the analog controller is detected and the process is stopped. -
~ When the threshold sensor stableSensor reacts, the speed is at the right value and
is stable, the real working process can begin, and the work load is exerted. The
working load now causes a loss of speed. which, if the work load is not too high,
can be compensated by the analog controller. But if the work load is too high, the
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controller is not able to compensate the loss fast enough, the threshold sensor
validSensor reacts and the load is withdrawn to allow a restabilization of the speed.
This procedure is continued until the absolute stabilization time exceeds the working
time. After that, the event-based controller prints an error message and continues
with the next task.

Figure 7 shows a screen of the simulation of this control system using the STIMS
environment. The four trajectories show nominal speeds and work loads issued by
the event-based controller, the control output of the analog controller and the speed
of the motor. The first task with nominal speed 4 and work load 2 is processed
correctly. After some time the speed is stable and the work load is exerted. The loss
in speed through the load can be compensated fast enough and the work is finished
without any interrupt. In the second task which is characterized by nominal speed
7 and work load 5, the work load is too high resulting in a big and fast loss of speed,
a reaction of the valid sensor, and hence in a withdrawal of the load. After some
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Figure 7 Simulation of the event-based motor speed control system:
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other trials the event-based controller prints an error message and continues with the
next task.

6. SUMMARY AND OUTLOOK

System theoretic concepts have been employed to set up a theoretical basis for com-
bined discrete-continuous system modelling and simulation. Therefore, several new
system theoretical formalism have been introduced; by these new formalisms it is
possible to model differential equation specified systems with discontinuities, dis-
crete event systems which also employ some continuous state variables and multi-
formalism coupled models, i.e., multi-component systems whose components are of
different system type. Slrnulatlon algorithms are based on the abstract 51mu1ator con-
cept for discrete event simulation.

Solutions of differential equation specified systems have been restricted to nu-
merical, stepwise integration and no analytical methods - have been employed so far.
However, it is intended to extend the modelling and simulation schemes in that di-
rection. The method follows the approach of Zeéigler and Cellier to DEVS modelling
of continuous systems”** and looks the following: we assume that we like to model
a system by a DEVS which also incorporates some continuous state variables-for
which we know an analytical solution. Furthermore we assume that we'also know
all the values of the continuous state variables which may lead to state events. Then,
we are in the posmon to do without a stepwise integration and “jump fromi one event
to the next” just like in ordinary discrete event simulation. At every event-—external,
state or time event—we use the analytical solution to compute the values of the
continuous state variables just before the event. Then we execute the external or
internal transition function and thereafter we can compute the time of the next state
event using the state’ equations and a numerical root-finding method. »
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