
 

Title 
Integrating 

Safety Analysis Techniques, 
Supporting Identification of 

Common Cause Failures 

 

 

Giuseppe Mauri 

 

 

 

 

Thesis submitted for the degree of Doctor of Philosophy 

 

 

 

 

 

The University of York 

Department of Computer Science 

 

 

 

 

September 2000 



 

This page is intentionally left blank 



 

 

 

 

 

 

Dedicated to the memory of my dear father 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

This page is intentionally left blank 



 

Abstract 
 

When we apply safety analysis techniques on a new design, our primary objective is to 

anticipate potential scenarios of failure in the system under examination. If we assume 

that the system has a complex hierarchical structure, this task can be interpreted as one of 

identifying how failures originate at the low-levels of the design and how combinations 

or sequences of such low-level failures propagate to higher levels and give rise to system 

malfunctions. The ultimate aim is to identify weak areas of the design and stimulate 

design iterations that improve the safety of the system under examination. Unfortunately, 

the current industrial practise shows that this aim is seriously hindered by the lack of 

appropriate techniques for the analysis of complex hierarchical designs.  

Classical safety analysis techniques, such as Functional Failure Analysis, Hazard 

and Operability Studies, Failure Mode and Effects Analysis and Fault Tree Analysis, are 

performed at different stages of the design lifecycle on the basis of models that reflect 

different levels of abstraction in the design.  The selective and fragmented application of 

different methods, however, has a number of negative implications for the quality of the 

results gained from the assessment. Firstly, the results of the various safety studies are 

often inconsistent. Secondly, as hardware safety analysis and software hazard analysis 

typically form two separate parts of the assessment, the relationship between hardware 

and software failure often remains vague and unresolved. Finally there is an inherent 

difficulty in relating the results from low-level safety studies back to the high-level 

functional failure analysis.  

In the first part of this thesis we propose a new method for safety analysis that 

enables integrated safety assessment of complex hierarchical designs. It helps analysts to 

identify potential functional failures at the application level and then to systematically 

determine the causes of those failures in progressively lower levels of the design 

decomposition. The result of the assessment is a collection of safety analyses that 

provides a consistent and meaningful picture of how low-failures are stopped at 

intermediate levels of the design, or propagate and give rise to hazardous malfunctions. 

In the second part of this thesis we show how features of the new method support 

also effective common cause failure analysis. That is both the qualitative identification of 

components vulnerable to common cause failures and the quantitative estimation of the 

contribution of these events to critical failures of the system. 
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Chapter One 

1Introduction 
 

The success of many modern applications is highly dependent on the correct functioning 

of complex computer based systems.  In some cases, failures in these systems may bring 

serious consequences in terms of loss of human life [Hecht and Hecht, 1986].  Systems in 

which failure could endanger human life are termed safety-critical.  The application of 

these systems ranges from transport (aircraft, driverless and high speed trains, active 

safety in cars) through power production plant (nuclear power plants), medicine (life-

support, patient monitoring, pacemaker) to industrial processes (chemical and petro-

chemical industries). Significant effort is required to assess and certify these systems 

since software is extensively used.  Software behaves different from hardware upon 

which safety critical systems of the past were based.  Hence computer based safety 

critical systems, which are the topic of this thesis, have to be analysed with new analysis 

methods.  At the moment a number of safety analysis methods (most of them extension 

of methods used for the analysis of pure hardware artefacts) are used throughout the 

lifecycle of computer based safety critical systems to ensure that they meet the necessary 

standards. 

1.1 Life-cycle 
To develop safety critical systems a number of stakeholders’ requirements have to be 

considered, but safety is paramount.  According to recent guidelines [SAE-ARP 4754-

4761, 1996; IEC 61508, 1997] the safety analysis process should be conducted 

throughout the lifecycle of safety critical systems from the specification stage through 

implementation, integration, verification, operation, maintenance and decommissioning.  

This means also that safety engineers have to work together with system engineers to 

meet the safety requirements for the requested artefact.  In this thesis we will concentrate 

on the safety analysis performed during the part of the lifecycle represented in Figure 

1-1.  These are the safety analyses which support the “Decomposition and Design” and 

the “Integration and Verification” processes.  The purpose of these analyses is to check 

the developing system design against safety requirements, anticipate potential scenarios 
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of failure and, eventually, provide feedback to system engineers on whether the system 

they are constructing will behave safely.  This should avoid employing resources in 

developing systems that will not later be acceptable to regulatory authorities. 

 The safety lifecycle is often represented with a “V” shape.  The left branch 

represents the continuous assessment of the design as it progresses towards the 

development of more and more details (lower level components).  During this process a 

number of recommendations and safety related requirements are produced.  They add up 

to stakeholders safety requirements.  All these constraints are to be met by the system.  

The verification of those constraints takes places in the right branch of the safety 

lifecycle, which represents the assessment of the integration process.  The overall design 

of the system is accepted only if it is demonstrated that specifications, recommendations 

and safety related requirements issued during the decomposition and design stages are 

met i.e. the system is “not worse than” the one specified.  The process of verification 

starts from the lowest decomposition levels (i.e. component level) and proceeds towards 

top functional levels (that is the opposite of the process that happens during the 

decomposition and design).  If requirements and recommendations given for each peer 

decomposition level are not met, they can either be renegotiated with stakeholders or 

designs have to be changed, increasing the overall developing cost. 
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Figure 1-1: Safety life cycle 
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A safety critical system may also require a high level of reliability to be achieved. That is 

the case of systems that are requested to be fully (or partially) working to be safe, for 

example a flight control system in an aircraft or an emergency feed water system in a 

nuclear power plant. In these systems the high level of safety (as well as reliability) is 

traditionally achieved by using fault tolerance. 

1.2 Fault tolerance 
Fault tolerance is a particular technique that allows building systems that preserve the 

delivery of their expected (or a minimum) service despite the presence of errors caused 

by faults within the system itself [Avizienis, 1985].  To achieve this behaviour they 

employ redundancy.  Redundancies can be classified into four types: 1) hardware 

redundancy; 2) software redundancy; 3) time redundancy; and 4) information 

redundancy.  In the case of hardware redundancy the system is provided with more 

hardware components (e.g. channels) than it would need if the hardware were perfect.  

Upon failure of a hardware component (or channel) a spare one is switched in.  In the 

case of software redundancy the system may be provided with different versions of tasks.  

Different and independent teams of programmers write tasks so that when one fails under 

certain inputs another version can be used and there is a chance that the alternate will 

function safely.  In the case of time redundancies the scheduler has some slack so that 

some tasks can be rerun and still meet deadlines.  In the case of information redundancies 

data are coded in such a way that a certain number of bit errors can be detected and/or 

recovered.  

A fault tolerant system will only fail if multiple failure events happen.  The smallest 

combination of failure events happening together (i.e. linked by an “AND” gate) which 

causes a system to fail is called Minimal Cut Set (MCS).  A fault tolerant system usually 

has minimal cut sets that span various orders.  The order of a minimal cut set is the 

number of failure events that occurring simultaneously will verify it.  An order is defined 

also for a fault tolerant system.  The order of a fault tolerant system is the order of the 

smallest minimal cut set that causes a critical failure.  To be fault tolerant, a system 

cannot have minimal cut set of the first order. 

The introduction of redundancies makes the work of safety engineers more difficult, 

since redundancies bring with them a new class of events named common cause events. 
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1.3 Common Cause Events 
Common cause events affect safety analysis so that the measurable likelihood of a 

minimal cut set is bigger than the product of the likelihood of each single event in the 

minimal cut set considered alone.  Common cause events make useless increasing the 

number of redundant channels beyond a certain limit as shown in [Mauri, 1995] and 

[Cojazzi, et al, 1995].  If engineers were able to build redundant systems with 

independent redundant channels, there would not be the need of Common Cause Failure 

(CCF) analysis.  In addition, engineers would be able to reach the aimed level of safety 

(and reliability) by increasing the level of redundancy.  Unfortunately, it is practically 

impossible to build independent redundant channels and the contribution of common 

cause events have to be evaluated to assure that safety and reliability requirements are 

met in fault tolerant systems. 

The easiest way to consider common cause failures is to work on minimal cut sets. 

Events in a minimal cut set may represent the same failure mode in different components 

(i.e. common mode) or different failure modes.  They can be generated by the same cause 

(i.e. common cause) or by different causes.  However, the issue for the purpose of this 

thesis, is that, when all the events in a minimal cut set arise simultaneously by the same 

root cause, the fault tolerant system fails as if the events in the minimal cut set had arisen 

randomly.  The likelihood of a minimal cut set occurring because of a common cause 

failure is usually extremely small, however, it is always greater than the likelihood of the 

minimal cut set to happen randomly.  Purpose of common cause failure analysis is to 

evaluate this likelihood and to help improving the design.  Without considering common 

cause events, the likelihood of critical minimal cut sets for fault tolerant systems would 

be underestimated. 

A lot of confusion exists on an unequivocal definition of common cause events 

especially between the nuclear and the aerospace industry.  This thesis will be mostly 

based on the well founded definition given in [Mosleh, et al., 1988] which was based on 

the results of the benchmark exercise on common cause failure [Amendola, 1986; Poucet 

et al., 1987], organised by the European Commission. 

1.4 Motivation 
When we apply safety analysis techniques on a new design, the immediate objective is to 

anticipate potential scenarios of failure in the system under examination.  If we assume 

that the system has a complex hierarchical structure, this task can be interpreted as one of 
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identifying how failures originate at the low-levels of the design and how combinations 

or sequences of such low-level failures propagate to higher levels and give rise to system 

malfunctions.  The ultimate aim of this analysis is to identify weak areas of the design 

and stimulate design iterations, which eventually improve the failure detection and 

control mechanisms of the system under examination. Unfortunately, the current 

industrial practise shows that this aim is seriously hindered by the lack of appropriate 

techniques for the analysis of complex hierarchical designs.  

Classical safety analysis techniques (such as Functional Failure Analysis [SAE-ARP 

4754, 1996], Hazard and Operability Studies [Kletz, 1992], Failure Mode and Effects 

Analysis [Palady, 1995] and Fault Tree Analysis [Vesely, 1981]) are performed at 

different stages of the design lifecycle on the basis of models that reflect different levels 

of abstraction in the design. The selective and fragmented application of different 

methods, however, has a number of negative implications for the quality of the results 

gained from the assessment. Firstly, the results of the various safety studies are often 

inconsistent. Secondly, as hardware safety analysis and software hazard analysis 

typically form two separate parts of the assessment, the relationship between hardware 

and software failures often remains vague and unresolved. Finally there is an inherent 

difficulty in relating the results from low-level safety studies back to the high-level 

functional failure analysis. Although fault trees are built precisely for this purpose, the 

traditional process of constructing these fault trees relies exclusively on expert 

knowledge, and lacks a systematic or structured algorithm which the analyst can apply on 

a system model in order to derive the tree.  In the context of a complex system this 

process becomes tedious, time consuming and error prone, and the resultant fault trees 

are large but, more importantly, difficult to interpret and verify. In consequence, safety 

analyses are in practice not only voluminous but also fragmented and inconsistent. Such 

analyses are also difficult to interpret and do not always provide a useful resource in the 

design of the system. 

Common cause failure analysis has always been matter of concern for system 

developers and regulatory authorities.  This is mainly due to the difficulty and the 

uncertainty of the quantification of the likelihood of common cause events.  Nuclear 

industries have been pushed since the sixties to address this problem.  The reason was 

that regulatory authorities (in USA and Europe) were, already at that time, asking for 

nuclear power plants where the likelihood of any critical failure was well below 10-6 per 
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year1.  Aerospace and automotive industries are not yet asked for such a low frequency 

for critical failures.  At the moment it seems that they are pursuing frequencies for 

critical failure of 10-9 per hour [SAE-ARP 4761, 1996], which is 10 times bigger2 than 

the minimum allowed for nuclear power plants.  However the achieved failure rate for 

civil aircraft is around 10-6 critical accidents per hour3.  This higher “accepted” frequency 

for critical failures (about 104 time bigger than for nuclear) is perhaps one of the reasons4 

for which the aircraft industry is still allowed to “escape” the quantification of the 

likelihood of common cause failure events.  They perform only qualitative analysis on 

potential root causes of common cause events and their effect on the system [SAE-ARP 

4761, 1996].  They achieve this by conducting careful design and verifying that 

components and sub-systems are sufficiently “strong” to resist environmental hazards 

specified in a checklist (that is what they call Zonal Hazard Analysis). Then, they 

produce evidence that the system, as a whole (e.g. the aircraft), will resist particular risks 

specified on another checklist, for example the impact of a bird, fire, tyre burst (by 

performing what they call Particular Risks Analysis).  Finally, they verify that events in 

minimal cut sets are sufficiently uncoupled against possible causes of common failure 

specified into another checklist, this is achieved by performing what they call Common 

Mode Analysis [SAE-ARP 4761, 1996].  Checklists are provided by regulatory 

authorities, as well as being maintained by developers, and the aim of these analyses is to 

                                                      
1 This is partly achieved since in the nuclear history of about 2*104 civil reactor per year 

(i.e. 500 reactors running per 40 years) we have had only one critical accident: 
Chernobyl.  However Russian reactors were built with a critical failure rate of 10-3 per 
year. Hence Chernobyl should not be taken into account. Three Mile Island accident is 
not to be considered a critical accident, since the container worked properly and 
avoided the spreading of long life radioactivity into the environment.  

2 The frequency of 10-6 critical reactor failures per year is equivalent to 1.1*10-10 
reactor failures per hour (i.e. 10-6 critical reactor failures per year divided 8.76 *103 
hours per year).  This is almost 10 time smaller than the failure frequency of 1*10-9 
aimed for critical failures in civil aircrafts. 

3 The actual failure rate perceived by common people for critical failures in civil aircraft 
can be quantified as follows. If we suppose that there are 104 aircraft flying every day 
around the world, each flying 5*103 hours per year, losing 12 aircraft every year, this 
means that the actual critical failure rate is around 4*10-6 per hour (i.e. 104 aircraft 
around the world times 5*103 hours flown per year divided 12 aircraft lost in one 
year). http://www.ntsb.gov/Aviation/Table1.htm reports “0.012 critical accidents per 
105 flight hours” that is not far from our estimation.  [Boeing, 1996] also reports similar 
values.  

4 Another reason is the difficulty of estimating failure rates for some software 
components. 



25 

produce evidence that minimum requirements are met.  However, to the best of our 

knowledge, regulatory authorities do not ask for any quantitative evaluation of the impact 

of couplings that cannot be removed. 

One of the reasons that the quantitative estimation of common cause failure is 

“escaped when possible”, is that in the way it is performed by the nuclear industries it is 

expensive and largely based on the estimation of some parameters which may often have 

a large uncertainty.  In many cases values for these parameters are given by field experts 

(expert judgement), in other cases a conservative value is taken a priori.  While the first 

option can be impractical (lack of experts for specific fields) and expensive (in some 

cases there are very few experts all over the world), the second option penalises good 

systems. 

Hence, if we could mechanise the process of common cause failure analysis by 

supporting and facilitating expert judgement, we would also improve the chance of 

quantitative common cause failure analysis being more frequently used. 

1.5 Central Proposition and Objectives 
The central proposition of this thesis is the following:  

 

“It is possible to produce an integrated safety analysis framework 

which can be used to produce a complete and consistent safety 

analysis, including treatment of common cause failure and which can 

be used to drive “a design-for-safety” process.” 

 

The main objectives of this research work are: 

a) Study the current industrial practice for safety analysis of critical computer based 

systems and for common cause failure analysis; 

b) Provide a method and a notation usable throughout the lifecycle, that supports the 

design-for-safety of computer based safety critical systems; 

c) Provide a method that supports common cause failure analysis; 

d) Give specifications for a software tool that supports the proposed method. 
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1.6 Scope of Study and Methodology 
The foundation of this thesis is the techniques widely used by the automotive, 

aeronautical and nuclear industry for the analysis of critical computer based systems.  

Some of these techniques, i.e. FHA, HAZOP, FMEA, FTA have been used for almost 30 

years. 

This thesis addresses the part of the lifecycle that goes from the decomposition and 

design to integration and verification stages. It concentrates on linking existing 

techniques and in proposing a novel method for the qualitative and quantitative 

estimation of common cause failures.  Case studies have been done on a Fuel System and 

a Computer Assisted Braking system. 

1.7 Organisation of the Thesis 
The thesis is divided into seven chapters: chapters one and seven providing an 

introduction and a conclusion to the thesis, respectively.  The key contribution of the 

thesis is contained in chapters four and five.  The literature survey and the work that 

brought to the formulation of the main method presented in the thesis are in chapters two 

and three, respectively. 

 

Chapter Two  - Techniques for Safety Analysis 

In the second chapter we review the main safety analysis techniques used for the 

assessment of critical computer based systems by presenting principles that underlie 

individual techniques. Although those techniques are mostly used in the nuclear and 

aerospace industry, particular attention is reserved for what has been done for software in 

safety critical applications. Then we focus on techniques for the analysis of common 

cause failures. We explain the mechanisms of common cause failures and explore the 

various ways common cause failures are currently investigated. We close the chapter 

pointing out areas where further research is needed and setting out the questions that we 

aim to address in the thesis. 

 

Chapter Three – Preliminary Work 

The third chapter summarises the work that was done at the beginning of our research 

and that brought us (through many refinements) to the formulation of the method, known 

as Failure Logic Analysis for System Hierarchies (FLASH).  It highlights the process 

underneath the development of the technique and explores some alternative approaches. 
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Chapter Four – Failure Logic Analysis for System Hierarchies 

This chapter presents the basic FLASH method, as it would be used in an idealised top 

down process.  FLASH aims to support the lifecycle making possible Design-for-Safety.  

FLASH creates a framework, linking several continuous phases of the lifecycle, pointing 

out inconsistencies among designs representing different phases of the lifecycle, linking 

low level analyses to the FHA and supporting dependent failure analysis. FLASH is 

applied in two different stages of the lifecycle.  In the first stage it checks the evolving 

design against higher-level safety requirements and supports the establishment of derived 

safety requirements for each sub-system.  In the second stage it verifies whether the 

product as implemented and integrated meets its concept level and derived safety 

requirements. 

 

Chapter Five – Common Cause Failure 

This chapter extends the FLASH formalism presented in chapter four to treat common 

cause failures.  We show how the hierarchy of FLASH tables can be used to identify 

those minimal cut sets that need to be analysed for common cause failures. Additionally, 

we provide a novel method for quantitative estimation of the likelihood of minimal cut 

sets with coupled events that uses some of the information collected during FLASH 

analysis. 

 

Chapter Six – Case Studies 

This chapter outlines the application of the proposed method on two case studies.  We 

show different stages of the application of the method and highlight the most important 

features. Each case study is separately evaluated and compared with what could be 

achieved by using other analysis techniques.  The pragmatics of dealing with complex 

evolving designs is presented here. 

 

Chapter Seven – Conclusion 

This chapter provides a summary of our research work, draws the conclusions of the 

thesis and highlights potential areas for further development. 
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Chapter Two 

2Techniques for Safety Analysis 

2.1 Introduction 
In this chapter we review the main safety analysis techniques (as well as recently 

proposed variations of those techniques) used in the assessment of critical computer 

based systems. In the first part of the chapter we present the principles that underlie 

individual techniques and we use four criteria to compare and highlight similarities and 

differences among those techniques. In the second part of the chapter we focus on 

techniques for the analysis of common cause failures. We identify the mechanisms of 

common cause failures and explore the various ways common cause failures are 

investigated in current practice. Finally we point out areas where further research is 

needed and set out the questions that we aim to address in this thesis. 

The four criteria against which we will examine and categorise the main safety 

analysis techniques are as follows: 

 

1) Aim;  

2) How they explore the relationship between causes and effects;  

3) Position in the lifecycle;  

4) Presentation of results. 

 

The first criterion explores the primary “Aim” of the technique under examination. As 

Table 2-1 indicates there are techniques that primarily aim to produce a qualitative 

analysis, for example by generating a list of potential failures that affect a system, and 

techniques that produce a quantitative analysis for example predicting the frequency of 

some critical accidents. Besides those two classes of techniques, there is a third class 

formed by techniques that enable both qualitative and quantitative analysis. 
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Aims Example of possible outputs 

Qualitative Analysis Generating a list of potential failures that affect a system 

Quantitative Assessment Predicting the frequency of critical events  

Both Qualitative Analysis & 
Quantitative Assessment 

A graph resembling a tree with probabilities associated 
with each leaf, branch, ramification and root 

Table 2-1: Aims of Safety Analysis Techniques 

 

The second criterion in our categorisation considers the way safety analysis techniques 

proceed in their investigation i.e. “how they explore the relationship between causes and 

effects”. There are at least four different ways to proceed. There are deductive techniques 

that start from known effects to seek unknown causes, inductive techniques that start from 

known causes to forecast unknown effects, exploratory techniques that link unknown 

causes to unknown effects and descriptive techniques [Fenelon et al., 1994] that link 

known causes to known effects. The above categorisation scheme is illustrated in Table 

2-2. 

 

Effects  Known Unknown 
Known Descriptive techniques Inductive techniques 

C
au

se
s 

Unknown Deductive techniques Exploratory techniques 

Table 2-2: Four ways to investigate the causes-effects relationship 

 

The third criterion in our categorisation is “Position in the lifecycle”. Some techniques 

are used at different stages in the development process to provide feedback to the design 

and development process.  The techniques that are used at the beginning of the design 

process focus on the analysis of the abstract concept of the system. They identify 

potential failure modes to give advice for the development of the architecture of the 

system. We refer to these techniques as being used early in the life cycle. The group of 

techniques that follows, concentrates on the analysis of the architecture of the system. At 

this stage, the allocation of functions to sub-systems and components is known and the 

purpose is to identify hazards that may arise due to (abnormal) deviations of flows 

between components of the architecture. We refer to these techniques as being used in 

the intermediate phases of the lifecycle. Finally, there are techniques which are used 

after the full design process is completed. They mainly perform confirmatory analyses to 

determine whether or not the full design meets specifications and requirements. We refer 
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to these techniques as being used in later phases in the lifecycle. Beside these three 

groups of techniques, a further group is formed by techniques used across the design 

lifecycle. These techniques can usually provide continuous feedback to designers. This 

categorisation scheme is illustrated in Table 2-3. 

 

Position in the lifecycle Description 
Early Analysis of the abstract concept of the system 

Intermediate Analysis of the architecture of the system 

Late Assessment that the full design meets specifications and 
requirements 

Across Provide continuous feedback to designers 
Table 2-3: Position in the lifecycle 

 

The fourth and last criterion in our categorisation is based on the “presentation of 

results”. There are some techniques for safety analysis that provide results in a graphical 

format and others that provide them in tabular forms. A graphical format provides a 

more intuitive and perhaps easier to understand representation of the results from the 

assessment. It is also generally easier to relate the failure and recovery logic depicted in a 

graph back to the system design. However, as the graph grows, fragmentation becomes 

inevitable and the intuitive capacity is jeopardised, since the graph becomes difficult to 

read. Conversely, the tabular format can provide a quantity of detailed information which 

is easy to be read but less intuitive. There are only a few safety analysis techniques that 

provide both results in a graphical and tabular output for the same information. Those are 

among the techniques surveyed in the next section. Details of this criterion are 

summarised in Table 2-4. 

 

Presentation of results Features 

Graphical  
Intuitive, understandable, relate to the system 
representation of the logic or sequences of failures and 
recovery measures 

Tabular A lot of detailed information easy to be read 
Both tabular and 

graphical Intuitive and easy to read 

Table 2-4: Presentation of results 
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2.2 Safety Analysis 
Having explained the four criteria that will help us examine, relate and contrast different 

safety analysis techniques, we can now proceed to the review.  The presentation of each 

technique starts with a brief historical background and proceeds with a more detailed 

description of the technique which also identifies the position of the technique in the 

above classifications. 

2.2.1 Preliminary Hazard Analysis 

Preliminary Hazard Analysis (PHA) was introduced in the late sixties (1966) after the 

Department of Defense of the United States of America requested safety studies to be 

performed at all the stages of product development.  They issued guidelines that were 

applied from 1969 onward [MIL-STD-882, 1969] [MIL-STD-882d, 1999]. 

The Preliminary Hazard Analysis technique is used in the later stages of 

requirement analysis and in the early stages of the design process (early in the lifecycle). 

The purpose of Preliminary Hazard Analysis is to identify safety critical areas, to provide 

an initial assessment of hazards, and to define requisite hazard controls and subsequent 

actions. The technique is not well formalised.  It typically consists of brainstorming 

where the preliminary design is discussed on the basis of the experience of people 

involved in the brainstorming activity.  Check lists are commonly used to help in 

identifying hazards. Results are presented in a tabular format. Table 2-5 displays a piece 

of a Preliminary Hazard Analysis table as an example. It has been made out for two of 

the hazards that may arise with a computerised braking system in a car. The first column 

of the table reports hazards that have to be investigated, for instance the loss of the 

braking capabilities of a car and uneven braking. The second column describes the 

effects of the hazard, in our case the possible death and injury of people or directional 

instability. The third column reports the severity level for the hazard (e.g. catastrophic, 

critical, marginal or negligible).  The fourth column sets out the conditions in which the 

hazard produces the most serious effects. The fifth column reports the exposure to 

danger, that is a measure of the time spent within the area of danger. The sixth and last 

column gives information about the ability of the system or the driver to avoid danger.  

Hazards listed in the first column are usually taken from a Preliminary Hazard List [MIL-

STD-882c, 1993] that is compiled before the actual Preliminary Hazard Analysis.  

Often Preliminary Hazard Analysis tables have a few additional columns. They are 

domain specific, defined by the company or even by the customer. In our table Effects, 
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Criticality, Co-effectors, Exposure to danger and Avoidance to Danger are the output of 

the analysis, while the Hazard is the input. 

Preliminary Hazard Analysis is a qualitative technique.  It explores relationships 

among potential causes (i.e. the hazard) to give unknown effects the (accident) hence it is 

inductive.  It is applied only during the early stages of the developing process and 

produces a tabular output. 

 

Hazard Effect 
(accident) Severity Co-effectors Exposure to 

danger 
Avoidance 
of danger 

Loss of 
Braking 

Death or serious 
injury to 
occupants of the 
vehicle, other 
vehicles or 
pedestrians 

Critical 

High speed 
travel and 
requirement to 
slow down or 
stop 

Frequent =  
1e-2 [1/h] 

Unlikely to 
avoid 
danger 

Uneven 
Braking 

Directional 
instability.  
Death or serious 
injury to 
occupants of the 
vehicle, other 
vehicles or 
pedestrians 

Critical 
Heavy traffic, 
Hazardous 
road condition 

Frequent =  
1e-2 [1/h] 

Likely to 
avoid 
danger 

Table 2-5: Preliminary Hazard Analysis table 

 

2.2.2 Functional Hazard Assessment 

Functional Hazard Assessment (FHA) approaches the analysis of the top-level design 

from the functional viewpoint [SAE-ARP 4754/4761, 1996]. The aim of this technique is 

to identify which functions of the system contribute to hazards, and thus assigning them a 

criticality level. Functional Hazard Assessment was developed by the aerospace industry 

to bridge between hardware and software, since functions are generally identified 

without specific implementations. It requires domain specific knowledge to produce 

meaningful results from Functional Hazard Analysis.  The output is a set of tables which 

give for each function, for each failure condition, and for each phase, a description of 

effects, mitigation procedures, and often the type of analysis that has to be performed to 

have the system accepted by regulatory authorities. Table 2-6 shows a standard 

Functional Hazard Assessment output table as reported by the Aerospace Recommended 

Practice [SAE-ARP 4761, 1996]. The first column lists functions that have to be assessed 

(i.e. Decelerate Aircraft on the Ground). For that function, the second column lists the 
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failure conditions (i.e. Loss of Deceleration Capability, Partial Loss of Deceleration 

Capability) that may apply to each function. In our case each of the two failure 

conditions have four sub-cases (i.e. a-b-c-d). Identical failure conditions e.g. sub-cases a 

and c (or b and d) have different effects on the aircraft if they happen in different 

operational states e.g. taxying or landing of the aircraft.  

Function 
Failure Condition 
(Hazard 
Description) 

Phase 
Effects of failure 
Condition on 
Aircraft/Crew 

Classification 
Reference to 
Supporting 

Model 

Verifica-
tion 

Decelerate 
Aircraft on 
the Ground 

1.  Loss of 
Deceleration 
Capability  

Landing
/Run to 
take off/ 
Taxi 

See Below    

 
1.a. Unannuciated 
loss of deceleration 
capability 

Landing/
Run to 
take off 

Crew is unable to 
decelerate the aircraft, 
resulting in a high speed 
overrun 

Catastrophic  Aircraft 
Fault Tree 

 
1.b. Annuciated 
loss of deceleration 
capability 

Landing 

Crew selects more suitable 
airport, notifies emergency 
ground support, and 
prepares occupants for 
landing overrun 

Hazardous 

Emergency 
landing 
procedures in 
case of loss of 
stopping 
capability 

Aircraft 
Fault Tree 

 
1.c. Unannuciated 
loss of deceleration 
capability 

Taxi 

Crew is unable to stop the 
aircraft on the taxiway or 
gate resulting in low speed 
contact with terminal, 
aircraft, or vehicles 

Major   

 
1.d. Annunciated 
loss of deceleration 
capability 

Taxi 

Crew steers the aircraft 
clear form any obstacles 
and calls for a tug or 
portable stairs 

No Safety 
Effects   

 

1.e. Inadvertent 
Deceleration after 
the aircraft cannot 
be safely stopped in 
the ground 

Takeoff 

Crew is unable to take off 
due to the application of 
brakes at the same time as 
high thrust settings, 
resulting in a high speed 
overrun 

Catastrophic  Aircraft 
Fault Tree 

 
2.   Partial Loss of 
Decelerating 
Capability  

Landing
/Run to 
take off 

See Below     

 
2.a. Unannuciated 
loss of deceleration 
capability 

Landing
/Run to 
take off 

Crew is unable to 
completely decelerating 
the aircraft before the end 
of the runway resulting in 
a potential overrun 

Hazardous  Aircraft 
Fault Tree 

 
2.b. Annuciated 
loss of deceleration 
capability 

Landing 

Crew selects more suitable 
airport, notifies emergency 
ground support, and 
prepares occupants for 
landing overrun 

Major   

 
2.c. Unannuciated 
loss of deceleration 
capability 

Taxi 

Crew may not be able to 
adequately stop the 
aircraft before obstacle, 
resulting in low speed 
collision. 

Minor   

 
2.d. Annunciated 
loss of deceleration 
capability 

Taxi 

Crew steers the aircraft 
clear from any obstacles 
and calls for a tug or 
portable stairs 

No Safety 
Effects   

 …… …  …   
 Table 2-6: FHA table 
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The operational state is called Phase in our table and it is reported in the third column. 

During the landing phase the failure condition 1.a is classified as catastrophic. In case of 

taxiing, the same failure condition is classified as major. The classification of failure 

conditions is reported in the fifth column. Mitigation measures that can be taken to limit 

effects are reported in the sixth column. Analyses that have to be undertaken to verify 

that the system meets safety requirements go into the seventh and last column. 

Several other techniques have been proposed to achieve a Functional Hazard 

Analysis. One of these, the Functional Failure Analysis (FFA), is recommended in 

[Papadopoulos and McDermid, 1999a].  This technique considers three misbehaviours 

for each function.  They are 1) function not provided when requested; 2) function 

provided when not required; and 3) malfunction. The Functional Failure Analysis table 

differs slightly from the table described above, but it pursues the same objective. 

The aim of the Functional Hazard Analysis is to perform a qualitative analysis in the 

early stages of the design process to identify which functions of the system contribute to 

hazards, thus it is an deductive technique. The output is tabular. 

 

2.2.3 HAZOP and HAZOP based techniques 

HAZard and OPerability study (HAZOP) [CISHEC, 1977] [Kletz, 1992] [Adelard, 1994] 

was developed by Imperial Chemical Industries in the early 1970's [Lawley, 1974] 

[Lawley, 1976] and extended to software in the early 1990's [McDermid et al., 1995]. 

HAZOP is performed after an outline equipment design is proposed showing the main 

design components and the flows between them.  The results of the HAZOP may be 

either to accept the proposed architecture, subject to some safety-related derived 

requirements, or to ask for the design to be modified.  

HAZOP is a team process, aimed at achieving an "imaginative anticipation of 

hazards". At a mechanistic level it consists of completing a table according to some 

"guide words" (e.g. None, More of, Less of, Part of, More than, Other). A guideword 

describes a hypothetical deviation from the normally expected attributes of a flow. 

Driven by these guidewords, failure causes and their effects are listed.  The acceptability 

of the effects of the deviations is considered and measures proposed to decrease the 

likelihood of the failure cause, or to mitigate the effects.  Table 2-7 shows an example of 

a HAZOP table for a hydrocarbon flow feeding a chemical reactor. The first column 

reports two of the guidewords that drive the analysis, i.e. none and more. The team starts 
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from these guidewords to identify deviations to the expected behaviour of the flow that 

are placed in the second column (i.e. No Flow, More Flow, More Pressure, More 

Temperature, etc.). In the third column the team records potential causes of deviation in 

the flow (in our case the flow feeding the chemical reactor).  For instance, there may be 

no hydrocarbon available in the storage tank or a failure of the pump feeding the reactor. 

Consequences of each deviation are recorded into the fourth column.  In our case this 

give rise to the formation of polymers in the heat exchanger.  The last column reports 

actions that the team recommends for reducing the hazard. 

The aim of the HAZOP is to perform a qualitative analysis in the intermediate 

stages of the design process to anticipated hazards, thus it is an exploratory technique.  

The output is tabular. 

 
Guide 
Word Deviation Possible Causes Consequences Action Required 

NONE No flow No hydrocarbon available from 
storage 

Loss of feed to reactor. 
Polymer formed in 
heat exchanger 

1) Ensure good communication 
    with storage area 
2) Install low level alarm on 
    settling tank 

  
Transfer pump fails (motor 
fault, loss of power, impeller 
corroded etc.) 

As above     Covered by 2) 

MORE More flow 
Level control valve fails to 
open, or Level Control Valve 
bypassed in error 

Settling tank overfills 

3) Install high level alarm 
4) Check size of overflow 
5) Establish locking-off 

procedure for Level Control 
Valve bypass when not in use 

 More 
Pressure 

Isolation valve or Level Control 
Valve closed when pump 
running 

Line subjected to full 
pump pressure 6) Install kickback on pumps 

 More 
Temperature 

High intermediate storage 
temperature 

Higher pressure in 
transfer line and 
settling tank 

7) Install warning of high 
    temperature at intermediate 
    storage 

… … … …  
 

Table 2-7: HAZOP table 

 

HAZOP has been traditionally used for hazard identification at plant level. More recently 

though we have seen categorisations of abstract failure classes for software components 

[Ezhilchelvan and Shrivastava, 1986], [Bondavalli and Simoncini, 1990], and a number 

of HAZOP-inspired techniques for hazard analysis of software architectures [Burns and 

Pitblado, 1993].  The early extension of HAZOP to computers was called CHAZOP, for 

Computer HAZOP.  However CHAZOP was really an extended checklist, and did not 

really build on ideas of flows and guidewords.  Work in York produced the Software 

Hazard Analysis and Resolution in Design (SHARD) [McDermid and Pumfrey, 1994] 

which is much more HAZOP-like, but applied new guidewords i.e. Early, Late, 

Omission, Commission, and Value, rather then the classical guidewords.   Like HAZOP, 
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SHARD is used to analyse an outline design and can produce derived safety 

requirements. 

The aim of SHARD is to perform a qualitative analysis in the intermediate stages of 

the design process to anticipate hazards, thus it is an exploratory technique.  When 

hazards are known, SHARD may also be used in a deductive mode (i.e. for the analysis 

of embedded systems).  The output of SHARD is tabular. 

Another technique that originated from HAZOP is the Failure Propagation and 

Transformation Notation (FPTN) [Fenelon & McDermid, 1993] [Fenelon et al., 1994]. 

This is a hierarchical graphical notation that represents system failure behaviour.  It is 

linked to a design notation and, like HAZOP and SHARD, is both an inductive and 

deductive analysis. FPTN makes consistency checks and is designed to be used at all 

stages of the life cycle.   FPTN represents a system as a set of interconnected modules; 

these might represent anything from a complete system to a few lines of program code. 

The connections between these modules are failure modes, which propagate between 

them. Figure 2-1 displays a FPTN module. Each module has a set of input failures, to 

which it is susceptible (i.e. A:t, B:t, C:Vu, X:Vd at the left side of the module), and a set 

of output failures, which it propagates (i.e. D:o, E:c, F:o at the right side of the module). 

A module can also generate new failures (e.g. F:o) and handle existing ones (e.g. X:Vd). 

Equations inside the module show how the input and the internally generated failure 

modes contribute to the output failure modes (i.e. D:o = A:t & B:t; and E:c = B:t | C:v). 

Figure 2-1 displays also that an FPTN module may record the criticality of the module 

(in the right top corner), and whether the module is further decomposed into the other 

more simple modules (the shadow).  

FPTN is a qualitative technique that can be performed at any stages of the design 

process, thus across the lifecycle. Its role is to summarise analyses, thus it is a 

descriptive technique.  The output is graphical. 
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Output
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Figure 2-1: FPTN module 

 

2.2.4 FMEA 

Failure Modes and Effects Analysis (FMEA) has been developed since the sixties 

[Recht, 1966] for studying aircraft safety, then it was used for space applications 

[Bussolini, 1971], for chemical plants [King and Rudd, 1971] [Lees, 1980] and car 

manufacturing [Yamada, 1977]. FMEA was recommended for Nuclear installations after 

the accident at the Three Mile Island power station [NUREG 2300, 1983]. Many 

standards deal with FMEA. Guides were published by the US Department of the Navy 

[MIL-STD-1629a, 1980] and the Institute of Electric and Electronic Engineers [IEEE, 

1975]. 

FMEA is an inductive analysis technique used to study the effects of component 

failure modes on a system. FMEA starts from knowledge of component failure modes 

and considers the effects of each failure on subsystems and the system.  It involves the 

study of all the components in a system and is often applied also to higher level 

assemblies and systems.  It checks whether proposed components, with their known 

failure modes, fulfil system-level safety requirements.  The result of the FMEA may be 

to accept the proposed components or, perhaps, to issue recommendations for 

maintenance checks, or to ask for components to be substituted.  In light of the FMEA, 

analysts are able to ensure that all the conceivable failure modes and their effects on the 

system operability are taken into account, although this is clearly a very costly process 

and, for a complex system might not be practical.  It is also common to use FMEA to 

determine whether or not a design meets the general requirement that "no single point of 

failure" shall give rise to a hazard. 
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A classical FMEA output is shown in Table 2-8.  The first column lists basic 

components of the system, the second column lists failure modes that apply to each 

component. The third and fourth columns respectively list effects on the subsystem and 

system.  The fifth column classifies effects according to their severity, the sixth column 

gives the failure rate associated with the failure mode, and the last column is left for 

comments.  Thus Table 2-8 tells us that the speed sensor (first column) in a car may fail 

in various modes, one of these is delivering No Signal (second column).  This failure 

produces effects at subsystem level (third column).  The subsystem believes that the 

vehicle is not moving.  The system is indirectly affected by this failure since the speed 

indicator shows a null speed, the mileometer is not incremented and the electronic 

gearbox selects a wrong gear (fourth column). Obviously the hazard severity for the first 

and second failure modes is less severe than the third one which may cause loss of lives 

and the vehicle. 

FMEA is a qualitative and quantitative technique that proceeds from known causes 

to unknown effect thus it is inductive. FMEA needs the knowledge of the full system 

design so it is performed later in the lifecycle.  The output is tabular. 

Component Failure 
Mode 

Subsystem  
Effects Vehicle Effects Haz 

Failure 
rate 
[1/h] 

Comments 

Vehicle 
Speed 
Sensor 

No signal 

Vehicle speed 
will always be 
calculated as 
zero 

1. No speed indication 
2. Mileometer not 

incremented 
3. Electronic gearbox 

control may select too 
low gear, possibly 
resulting in wheel lockup 
or transmission damage 

Min 
Min 

 
Maj 

5E-5 

Effect 3) 
requires 
simultaneous 
failure of 
engine load 
calculation 
and 
mechanical 
interlocks on 
gearbox 

Vehicle 
Speed 
Sensor 

Noisy  
(too Many 

edges) 

Calculated 
vehicle speed 
will be too 
high. If edges 
arrive at 
higher rate 
than specified, 
they will be 
lost 

4. Indicated speed greater 
than actual 

5. Mileometer over-reads 
6. Electronic gearbox 

control may select too 
high gear, possible 
resulting in stall 

Min 
 

Min 
Min 

3E-5 

Effect 6) is 
hard to detect 
via engine 
load 
calculation, 
unless noise is 
extreme 

Vehicle 
Speed 
Sensor 

Intermit-
tent 

Calculated 
vehicle speed 
will be too 
low 

7. Speed indicated lower 
than actual 

8. Mileometer under-reads 
9. As 3) 

Min 
 

Min 
Maj 

4E-5 See above 

Table 2-8: Failure Mode and Effect Analysis table 
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A natural extension of FMEA is Failure Mode, Effects and Criticality Analysis 

(FMECA). It was introduced almost immediately after FMEA.  It is based on FMEA but 

in addition to this, it performs a criticality analysis verifying that failure modes with 

severe effects have sufficiently low occurrence probability.  An FMECA table has at 

least two more columns that record the probability-severity5 pair for each failure mode.  

If the likelihood is high or the consequences severe, the more critical is the failure mode 

and the need to take corrective measures. 

2.2.5 Fault tree and Event tree analyses 

Fault Tree 

Fault Tree Analysis has developed since the early sixties (1961) when Bell Laboratories 

introduced this concept as a method to assess the safety of the launch control system of 

the Minuteman missile [Henley and Kumamoto, 1981].  A few years later fault tree 

analysis was adopted and improved by engineers working for Boeing [Haasl, 1965] 

[Fussell, 1973].  But it was not until the eighties that the fault tree construction process 

was formalised under pressure from the United States Nuclear Regulatory Commission 

and a handbook was written [Vesely, 1981].  Since then various procedures and tools to 

support fault tree analysis have been proposed in [Taylor, 1982] [Poucet et al., 1993 b].  

In 1995 there were more than a hundred different tools [Sardella, 1995].  However, only 

recently has fault tree analysis extended to software [Leveson, 1983 and 1991]. 

The aim of fault tree analysis is to determine the possible combinations of causes 

that may give rise to some undesired events called top events. A fault tree consists of 

several levels of event connected in such a way that each event, at a given level, is a 

consequence of events at the level just below, through various logical operators (gates). 

Events may be equipment failures, human errors, software errors, etc. that are likely to 

cause an undesired outcome.  Figure 2-2 represents a simple fault tree. The Top Event D 

occurs when both the basic event A and the intermediate E get rise. However E occurs 

only when any of the basic events B or C get rise.   

 

                                                      
5 If we know the mission time for the system considered in Table 2-8, then we can 

calculate the likelihood of each component failure mode.  Hence we can say that Table 
2-8 contains sufficient information to be used also for an FMECA. 
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Figure 2-2: Fault Tree 

 

In a fault tree, basic events must be independent of one another. Fault tree analysis is 

extensively used, as its simple graphical style is readily applied and well understood by 

practising engineers. In the many years since its introduction, the fault tree technique has 

gone through many extensions. One of these is the addition of new gates to represent the 

dynamic behaviour in advanced fault tolerant digital-systems. This extension also made 

fault trees fully compatible with Markov chains (explained later in this chapter).  The 

fault tree handbook reports five gates AND, OR, XOR (exclusive OR), Priority-AND and 

INHIBIT [Vesely, 1981]. These gates capture the effects of failures that depend only 

upon the combination of causal events, but not those that depend on the sequence in 

which the events occur.  There are three sequences of events for which dedicated gates 

were introduced [Dugan et al., 1993].  Figure 2-3 displays these three new gates. The 

Functional dependency gate (a) represents the functional dependency of the events 

below the gate from the trigger event depicted on the left side of the gate. When the 

trigger event happens all the functionally dependent events (below the gate) will happen. 

The occurrence of any of the functional dependent events has no effect on the trigger 

event. The Cold spare gate (b) models components that are not powered up until they are 

needed for backup purpose. When the primary event arises (event 1 in Figure 2-3b), then 

a cold spare is powered up and operates until it fails (event 2 in Figure 2-3b) causing 

another cold spare to be powered up.  The gate is “true” when all the basic events have 

arisen, and hence all the spare components used up. The basic hypothesis behind this 

gate is that spare components are as good as new until they are powered up for the first 
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time. The Sequence enforcing gate (c) represents events happening in a particular order. 

This gate fires “true” if and only if all the events listed below the gate happen from left 

to right. For any other sequence of events the gate does not fire. 

 
 

 

 

 

 

FDEP

2 n

Trigger event

Non-dependent Output

CSP

Gate-Output

Primary active unit

1st alternate unit
2nt alternate unit

nth alternate unit

SEQ

1 n

Gate Output

2

a) Functional dependency gate. b) Cold spare gate. c) Sequence enforcing gate.

Figure 2-3: Dynamic fault tree gates 

 

Like FMEA and FMEA derived techniques, fault tree analysis can provide quantitative 

output, for any state of the system. In fact any fault tree can be reduced to sequences of 

events connected by only “AND”, “OR” gates and negation “NOT” [Contini, 1999b], 

and eventually be fully represented by a list of minimal cut sets that are the minimum 

combination of events which, when they happen simultaneously, can cause the top event. 

The probability of the top event is then estimated by adding up the probability of all the 

minimal cut sets of the tree. It is not intended in this section to detail how the 

quantitative evaluation of fault trees proceeds. For that we refer to the fault tree 

handbook [Vesely, 1981]. 

Although fault tree analysis is extremely powerful in supporting both qualitative and 

quantitative analysis, the fault trees technique is very much dependent on the analyst: 

different teams draw different fault trees for the same system [Amendola, 1986].  To 

avoid this dependence, several tools which draw fault trees automatically, from Plant and 

Instrument (P&I) diagrams, have been developed e.g. in [Carpignano & Poucet, 1994].  

At present, the weak points of those tools concern mainly the large size of generated fault 

tree diagrams when they are compared with hand-produced fault trees [Sardella, 1995]. 
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The fault tree technique aims both at a qualitative analysis and a quantitative 

assessment. However the quantitative assessment is not always possible. It needs 

knowledge of probabilities associated with basic events (leaf events).  In the case of 

software fault trees it is not possible to associate probabilities with some failure modes, 

hence fault tree analysis is used only qualitatively. 

In addition, fault tree analysis proceeds from known effects to unknown causes thus 

it is a deductive technique. 

The fault tree technique can be used at any stage of the design and development 

process. Fault tree leaf events may represent functional failures, system failure modes or 

component failure modes. Thus fault tree analysis can be used at any stage of the design 

process i.e. functional, architectural and component level, that is across the lifecycle.  

Finally, the output of the fault tree is a graph (resembling a tree) and, when it is 

possible, it also provides the likelihood of the top event.  However, since a fault tree can 

be represented by the list of its minimal cut sets, this list can also represent the output of 

the fault tree analysis, hence we can say that fault trees also have a textual6 output. 

 

Event Tree 

The event tree technique is an inductive method that develops the possible consequences 

of a generic initiating event, e.g. a failure.  The consequences of such an event can be 

mitigated, or made worse, by systems dealing with it immediately afterwards.  Figure 2-4 

shows the event tree that may originate from the initiating event High Pressure in the 

vessel of a chemical reactor.  Emergency systems are designed to deal with this event, 

however they may fail in various ways and, in some circumstances, the vessel may 

explode with severe consequence.  The event tree in the figure shows that when the 

safety sensor detects high pressure in the vessel, emergency systems are triggered.  If the 

system called into action works, the upper path of each branch (i.e. Y = Yes) is true, 

otherwise the lower path (N = No) is taken.  In this example, following always the upper 

branch, we can see that the initiating event is completely handled and safety is 

maintained (although the plant is now unavailable).  Following this path we see that the 

input flow is cut off (to avoid any further increase of reagent in the reactor), the output 

flow is increased to maximum (to facilitate the depressurisation) and the warning lamp lit 

(to communicate the abnormal state to the operator). If a system does not work we follow 

                                                      
6 They can be represented also in a tabular form. 
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the lower path.  The worst outcome happens when neither the input flow is cut off nor 

the output flow is increased to maximum and the safety valve does not open  (there are 

two paths like this that are highlighted in the picture).  Between these two extremes there 

is a “grey area” that represents the cases in which some of the safety systems work and 

some others fail.  Remaining paths represent these outcomes. 

 
 

 

Initiating
Event

Front Line
Sensor

detects the
pressure:

emergency
system is
activated

Safety valve
opens

Input flow in
the vessel is

cut off

Output flow is
increased to

maximum

Warning
lamp on

Possible
outcomes

Failure in the
control loop
causes high
pressure in
the vessel

Y

Y
Y

Y

Y

N

N

N

N

N

The system
handles fault.

Warning given.
No accident risk

Responses

Y

N

The system does
not handle the

high pressure in
the vessel. It may
explode. Risk of

accident

Y

N

Figure 2-4: Event tree 

 

When probabilities of mitigating events are known, it is possible to calculate the 

likelihood of each path.  It is not intended in this review to detail the quantitative 

evaluation of event tree paths. For that we refer to the [NUREG 2300, 1983].  Further, 

event tree mitigating events may represent functional failures, system failure modes or 

component failure modes. Thus event tree analysis can be used at any stage of the design 

process i.e. functional, architectural and component level, that is across the lifecycle.  

The event tree is a graph and, when it is possible, also the likelihood of each path can be 

given.  An event tree can be represented by the list of its paths, hence we can say that it 

has also a textual (or tabular) output. 
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Drawing some conclusions, the aim of event tree technique is to provide both a 

qualitative analysis and a quantitative assessment. Event trees proceed from known 

causes to investigate unknown effects hence they are inductive.  They can be used at any 

stage of the design development i.e. across the lifecycle. The output is both graphical and 

textual, although use of the graphical is more common. 
 

 

 

Large Fault Tree, Small Fault Tree 

Two different approaches can be used for a Probabilistic Safety Assessment of complex 

systems, i.e. Nuclear Power Plants, airliners, etc. First, the Large Event Tree – Small 

Fault Tree (LET/SFT) approach called also event tree with boundary conditions or, event 

tree linking or small fault tree. Second, the Small Event Tree – Large Fault Tree 

(SET/LFT) approach called also fault tree linking or large fault tree. Both approaches use 

Event trees and Fault Trees to perform the Probabilistic Risk Analysis. The difference 

between those approaches lies in the fact that in the LET/SFT support systems (e.g. 

power supplies, water supplies etc.), are modelled in event trees, whereas in SET/LFT 

support systems are modelled in fault trees. Although LET and SET analysis conducted 

with the same level of detail give the same numerical result [Rasmussen, 1992], so far, 

the SET approach has always been preferred to the LET.  This is because fault tree 

construction and analysis (being a deductive process) can be extensively automated while 

event tree construction and analysis (being an inductive process) cannot be automated 

except by using techniques like Monte Carlo simulation.  Hence it is preferable to deal 

with big fault trees rather than with big event trees.  Software that deals with large fault 

trees can be found in [Carpignano & Poucet, 1994; Sardella, 1995]. 

2.2.6 Markov chains 

Markov methods are useful for evaluating components with multiple states i.e. several 

good, degraded, and critical states  [Norris, 1998].  Let us consider the system in Figure 

2-5 with three possible states 0, 1, and 2.  In the Markovian model, each transition is 

characterised by a transition rate (i.e. failure rate = λ2−1, λ1−0, repair rate = µ1−2,  µ0−1).  If 

we define 

( )Pri t  = probability that the system is in state i at time t. 

( )ρ ij t  = the transition rate (either λ or µ) from state i to state j. 
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And if we assume that  ( )Pri t is differentiable it can be shown that: 

 

  ( ) ( ) ( ) ( )d t
dt

t t t ti
ij

j
i ji j

j

Pr ( ) Pr Pr= −








 • + •









∑ ∑ρ ρ  

 

If a differential equation is written for each state and the resulting set of differential 

equation is solved we obtain the time dependent probability of the system being in each 

state [Modarres, 1993].  Markov chains are mainly a quantitative technique though the 

state and transition diagram also gives qualitative information about the behaviour of the 

system. 

 

 

State 
2

State 
0

State 
1

λ2−1 λ1−0

µ0−1µ1−2
 

 

Figure 2-5: Markovian model for a system with three states 

 

2.2.7 Master Plant Logic Diagram 

The Master Plant Logic Diagram (MPLD) method was proposed in [Modarres, 1987] as 

an outgrowth of the Master Logic Diagram [NUREG 2300, 1983] to represent all the 

physical interrelationships among various plant systems and subsystems in a simple logic 

diagram.  It is used for probabilistic safety assessment to model and integrate the 

relationship between all plant functions and equipment, therefore it is suitable for several 

safety applications [Modarres, 1992] such as: 

 

• Understanding and propagating effects of equipment failures; 

• Generating and quantifying accident sequences; 
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• Determining important elements of plant safety and ranking of major contributors to 

unsafe situations; 

• Helping designers and analysts in the identification of risk-significant configurations; 

• Evaluating safety implications of an actual event occurrence. 

 

The aim of the MPLD method is to make the construction of a system safety model easy, 

and to make such a model easy to update. Although fault trees and event trees are well-

established methods, as a matter of fact, they become inscrutable and resource-intensive 

when they extend to multiple pages.  Their limitations are especially severe when they 

are updated following changes that have been made to the system i.e. operation, 

procedures, hardware, software, etc.  Finally, fault trees and event trees are not easily 

traceable and their independent review and quality control is very time consuming.  On 

the contrary, MPLD is a more intuitive representation of the system and it can be kept up 

to date more easily when there are changes in design or configuration of a plant.  It can 

also be used to update risk estimates. 

In success space, MPLD shows the manner in which various functions, sub-

functions, and hardware components interact to achieve the overall system task. 

Conversely, a MPLD in failure space displays events, i.e. functional failures and relevant 

hardware failures causing system failures, therefore MPLDs can easily map the 

propagation of plant hardware failures to the system level [Modarres, 1992]. 

The hierarchy of an MPLD is shown by a dependency matrix (see Figure 2-6) in 

which the dependency is established and shown explicitly by a “•”.  The same picture 

shows that the failure of each of the functions F1 and F2 causes the system failure. Each 

of those functions is supported by two sub-functions, each of which is enough to provide 

F1 and F2. 

The MPLD shows a clear Single Point of Failure (SPF) of the support system S3 that 

directly causes the failure of sub-function F2-1 and indirectly (causing the failure of 

support system S2) causes the failure of sub-function F2-2.  Moreover, the MPLD shows 

that support system S1 is provided by two functions (S1-1 and S1-2) that must fail 

simultaneously to cause S1 to fail.  Finally, the MPLD shows that the failure of the 

support system S2 is not critical because that failure can cause neither F1 nor F2 to fail.  

Fault trees would not have allowed the same failure mechanisms to be shown in such an 

intuitive and compact way.  
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Like the fault tree and event tree techniques MPLD supports both qualitative 

analysis and quantitative assessment [Modarres, 1992].  It can be performed at any stage 

of the design process, thus across the lifecycle. The output is both graphical and textual 

or tabular. Table 2-9 summarises the graph in Figure 2-6.  The likelihood of end state can 

be quantified. 

 

 

F1-1 F1-2 F2-1 F2-2

F1 F2

System 
Failure

S2

S1-2

S1-1

S1

S3

 
 

Figure 2-6: An example of MPLD in Failure space 
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Combinati-
on number 

Failed 
support 

function (or 
equipment) 

Support Function (or 
Equip.) Failed Because 

of dependencies 
Likelihood End State 

1 S1-1 --  F1-1, F2-1 

2 S1-2 --  F1-2, F2-2 

3 S2 --  F1-1, F2-2 

4 S3 S2  F1-1, F2 

5 S1-1, S1-2 --  F1, F2 

6 S1-1, S2 --  F1-1, F2 

7 S1-1, S3 S2  F1-1, F2 

8 S1-2, S2 --  F1, F2-2 

9 S1-2, S3 S2  F1, F2 

10 S2, S3 --  F1-1, F2 

11 S1-1, S1-2, S2 --  F1, F2 

12 S1-1, S1-2, S3 S2  F1, F2 

13 S1-1, S1-2, S3 --  F1-1, F2 

14 S1-1, S1-2, S3 --  F1, F2 

15 S1-1, S1-2, S2, S3 --  F1, F2 

16 No failure --  No failure 

Table 2-9: Combination of support function failure and end states 

 

2.2.8 Taxonomy of Techniques for safety analysis 

Techniques for safety analysis discussed so far provide feedback to the design process so 

that their output is used either to let the design proceed without modification or to 

recommend improvements. However, it is evident that the presented techniques for safety 

analysis achieve the feedback to the design in various ways, which the four criteria 

presented in the introduction of this chapter highlight to some extent.  Table 2-10 

summarises the discussion that has been undertaken so far by ranking the presented 

techniques against the four criteria.  
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  Classes Techniques 

Qualitative analysis Preliminary hazard analysis, Functional Hazard 
Analysis, Functional failure analysis, HAZOP 

Quantitative assessment Markov chains 

Ai
m

 

Both qualitative analysis 
& quantitative 
assessment 

Fault tree, event trees and FMEA 

Relationship among 
known causes and  
known effects 

Descriptive techniques 
FPTN, Master Plant Logic Diagram 

From known effect to 
unknown causes 

Inductive techniques 
Event tree 

Relationship among 
unknown causes to  
unknown effects 

Exploratory techniques 
FPTN, Preliminary Hazard Analysis, HAZOP, 
SHARD 

Re
la

tio
ns

hi
p 

Ca
us

es
-E

ff
ec

ts 

Relationship among 
known causes to  known 
effects 

Deductive techniques 
SHARD, HAZOP, Fault tree 

Early Preliminary hazard analysis, Functional hazard 
analysis, Functional failure analysis 

Intermediate HAZOP, SHARD, FPTN 
Late FMEA 

Po
sit

io
n 

in
 th

e 
lif

ec
yc

le
 

Across Fault tree, Event tree, Master plant logic 
diagram,  

Tabular 
Preliminary hazard analysis, Functional hazard 
analysis, Functional failure analysis, HAZOP, 
FMEA 

Graphical FPTN 

Cr
ite

rio
n 

Pr
es

en
ta

tio
n 

of
 

re
su

lts
 

Both tabular and 
graphical 

Event tree, Fault tree, Master Plant Logic 
Diagram 

Table 2-10: Techniques for safety analysis listed against the four criteria 

 

2.3 Common Cause Failure Analysis 
Common cause failure analysis has its own section in this review since it considers 

failure events that cannot be dealt with (explicitly) by techniques presented in the 

previous section.  These failure events are not usually considered as independent events 

occurring within a system, but as influences on the system from some source that are 

common to redundant components, resulting in some abnormal output states. 

The first problem in dealing with common cause failures is the definition of an 

unambiguous terminology.  This was perceived in the many meetings that we were 

involved in during our research.  Hence, we begin this section by presenting results of 

research into the terminology describing common cause failures by detailing the terms 

that we will be using in the development of the thesis. 
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The terminology on common cause failure has changed over the years.  In the beginning 

only common mode failures were considered [Edwards and Watson, 1979].  Later, the 

definition of common cause failure was introduced referring to a slightly wider group of 

failures [Bourne et. al., 1981] superseding common mode failures.  However, at that time 

the idea that common cause failure was synonymous with common mode failure was 

widespread. The issue regarding the difference between common cause and mode was 

clarified in 1985, when the term dependent failures was introduced to supersede and 

encompass common cause, common mode failures and “cascade failures”.  Table 2-11 

gives the definitions of dependent, common cause, common mode and cascade failures 

as given by the safety and reliability directorate of the United Kingdom Atomic Energy 

Authority in an official document [Humphreyes and Johnston, 1987].  Cascade includes 

all dependent failures that are not common cause failures [EPRI, 1985; Johnston and 

Crackett, 1985].  Figure 2-7 summarises what we have said so far.  Common mode 

failures are a subset of common cause failures, whilst dependent failures encompass both 

common cause and cascade failures. We agree with these definitions and we use them in 

the rest of the thesis. 

 

Dependent failure (DF) 
The likelihood of a set of events, the 
probability of which cannot be expressed as 
simple product of the unconditional failure 
probabilities of the individual events. 

 Common cause failure 
(CCF) 

This is a specific type of dependent failure 
that arises in redundant components where 
simultaneous (or near simultaneous) multiple 
failures result in different channels from a 
single shared cause. 

  Common mode failure 
(CMF) 

This term is reserved for common-cause 
failures in which multiple items fail in the 
same mode. 

 Cascade failure (CF) 
These are all those dependent failures that 
are not Common Cause, i.e. they do not 
affect redundant components.  

Further: 
The term “Dependent failure” as defined above is designed to cover all definitions of 
failures that are not independent.  From this definition of dependent failure it is clear 
that an independent failure is one where the failure of a set of events is expressible as 
simple product of individual event unconditional failure probabilities.  

Table 2-11: Definitions 
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Figure 2-7: Dependent failures   

 

2.3.1 Dependent failure events 

The theoretical definition of dependent events can be found in statistics and probability 

books.  In [McCord and Moroney, 1964; Peyton and Peebles, 1987] we can find that 

given two dependent events A and B, the probability that both events A and B happen, is 

not equal to the product of the two unconditional probabilities: 

 

P(A and B) = P(A) • P(B|A) = P(B) • P(A|B) ≠ P(A) • P(B) (2-1) 

 

More specifically, in this thesis, we are concerned with the situation in which the 

likelihood of two (or more) events is greater than the product of the likelihood of each 

single event: 

 

P(A and B) > P(A) • P(B) 

 

2.3.2 Common cause failure events 

The reference document for studying common cause failures is NUREG 4780 [Mosleh et 

al., 1993].  The author says that to understand the mechanisms leading to dependent 

events, and to model them, it is necessary to answer questions like: 
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• Why do components fail or why are they unavailable? 

• What is it that can lead to multiple failures? 

• Is there anything at a particular facility that could prevent such multiple failures 

occurring? 

 

The root cause, the coupling factor and the existence or lack of engineered or 

operational defences against unanticipated equipment failures are the answers to such 

questions. The root cause explains the mechanism underlying the transition from 

available to failed or functionally unavailable.  For example, if two components are 

located in the same room and they are susceptible to high humidity, a common cause 

failure could occur as a result of an event outside the room but causing high humidity in 

the room. In this case high humidity is the root cause of failure for the two components. 

Given the existence of the root cause, the coupling factor explains why a particular 

cause affects several components. It creates linking conditions to cause multiple 

components to fail in a correlated fashion. For example, location in the same room is a 

coupling factor for those components susceptible to high humidity.  Figure 2-8 shows the 

mechanism of failure of multiple components, that is whenever there is a coupling factor 

(e.g. same location) and a trigger event (e.g. failure of an air conditioning system) occurs, 

the root cause (e.g. high humidity) acts causing multiple components to fail. 
 

 

Root
Cause

Coupling 
Factor

Component
b

Component
a

Component
n

..........................................

 
Figure 2-8: The root cause through the coupling factor affects several components
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Engineered defences means all those mechanisms that could be adopted to prevent root 

causes and couplings from occurring.  It is possible to act in two different ways: 

preventing root causes and/or reducing coupling factors. 

In the first case the susceptibility of components to particular root causes (e.g. 

humidity) has to be reduced. In the second case we need to increase diversity. This is 

possible with techniques of design control and quality control that help in segregating 

equipment and in ensuring high quality construction. 

 

2.3.3 Common mode failure events 

Systems using redundancies, and fault tolerant systems in general, are able to continue 

operating despite the failure of a limited number of their hardware or software 

components.  This is so when the failures are of individual components independently, 

but these systems are vulnerable to common mode failures.  These failures may sometime 

endanger safety critical systems, hence they are of interest for safety analysts.  It is 

generally recognised that there are four different types of common mode failures 

[Edwards and Watson, 1979; Humphreyes and Johnston, 1987]: 

 

1) The coincidence of failures of two or more identical components in separate 

channels of a redundant system, due to a common cause (the failures will 

probably have common failure mode also). 

2) The coincidence of failures of two or more different components in separate 

channels of a redundant system due to a common cause (the failures will probably 

have common failure mode also). 

3) The failures of one or more components which result in the coincidence of 

failures of one or more other components not necessarily of the same type, as the 

consequence of some single initial cause (the primary and secondary failures 

might also be coincident, and any coincidental failures might have different 

failure modes but all will be in the same category). 

 

N.B. In any of the above cases, the failure can occur at the same instant or at 

different times, but at some time the failed states will be coincident.  
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4) The failure of some single component or service which is common to all channels 

in an otherwise redundant system (e.g. common maintenance, test).  This only 

includes component services which are an integral part of the system and on 

which system operation is dependent. 

 

On the basis of these types of failure, Edwards and Watson gave their definition of 

common mode failure:  

 

 

“A common-mode failure (CMF) is the result of an event(s) which 

because of dependencies, causes a coincidence of failure states of 

components in two or more separate channels of a redundancy system, 

leading to the defined system failing to perform its intended function”. 

 

 

Causes of common mode failures 

Causes of common mode failures can be depicted as in Figure 2-9 [Edwards and Watson, 

1979]. To study common mode failure the boundary of the system has to be explicitly 

defined, i.e. what is included and excluded in the system.  Hence what is included in the 

system has to be dealt with by safety analysis techniques presented in the previous 

section and what is excluded by the boundary of the system is the domain of common-

mode failure analysis. 

 

 

Common
Influences

(Failure cause)

Redundant
system
(Failed)

Input
Abnormal

Output
(Failure mode)

 
Figure 2-9: Causes of common-mode failure 
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The picture indicates the causes of common mode failure as Common Influences (i.e. 

Root Causes + Couplings).  In a fault tolerant system they may occur either in the period 

prior to operation or during its operating life.  In the first case the influences take place in 

activities such as specification, design, manufacture, installation and commissioning, in 

the second case they happen in maintenance or operation.  These include deficiencies of 

the system that are due to common influences that happen in the period prior to operation 

and become apparent while the system is running. For example, the system might not be 

able to perform completely its task or in particular circumstances; or it may be vulnerable 

to common influences during operation due to inadequate design, quality control or 

commissioning. 

However, to define which causes of failure are common influences we have to start 

defining what is a system and what is its boundary. Edwards and Watson say that a 

system is an “interconnection of components that combine to form a specified functional 

relationship between inputs and outputs”.  Hence, we can understand that everything that 

is not needed by the system to provide the input-output relationship when it is 

functioning normally, is not part of the system and therefore it is a possible cause of 

common influences.  These influences can be a failure cause like fire, explosion, missile 

impact, contamination interference etc. Remote sources that can have a significant 

common influence on the system are also the weather, earthquakes, floods etc. 

Difficulties arise when there is the direct involvement of humans in the system as 

for operation, maintenance and test.  If the human influence is required for the system to 

fulfil the functional relationship between input and output then the human influence has 

to be considered inside the boundary otherwise it has to be considered as a common 

influence.  Thus, test and maintenance are to be considered as common influences, while 

operation may or may not according to the system or the application.  If operator action 

is required for the system to perform its functionality then the operator action has to be 

considered part of the system.  For instance, in a manually controlled system like an 

aircraft, pilots are an essential part of the functionality of the system since they control 

the aircraft from the information presented to them.  If pilots were only interacting now 

and then with the control system of the aircraft like making initial or occasional 

adjustments and then the aircraft was completely operated by the auto-pilot then pilots 

would not be part of the system.  Actually pilots contribute to most of the aircraft 

accidents especially with regard to navigation, therefore they have to be considered part 

of the system.  While in automatic protective systems like in nuclear reactors the operator 
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is only responsible for certain adjustment and supervision.  Hence operators have to be 

considered as common influence and possible cause of common-mode failure. 

We said already that common cause failures supersede common mode failures.  That 

is because common cause failures cause all the events in a minimal cut set to occur at the 

same time7.  Whilst common mode failures are a specific type of common cause failure 

in which events in the minimal cut set are failure modes of the same type. 

2.3.4 Defending against Root Cause 

Defending against root causes seems to be quite straightforward, but it is not always 

possible to do, and sometimes is not economically viable. There are two main steps to 

provide defences against root causes: 

 

• The identification of all possible root causes; 

• The definition of affordable improvements for reaching the required system 

robustness. 

 

Whereas the second point is purely a technological and economic matter, the first is quite 

a difficult issue, as the identification of all the possible root causes (that must be outside 

system boundaries to be considered by common cause failure analysis) may require 

expert judgement, and so depend on the expertise of the analyst. 

A number of different schemes for classifying root causes of dependent events have 

been proposed both in the Nuclear and Aerospace domain.  They have been developed to 

help analysts in identifying root causes. Each classification scheme is expected to be, 

ideally, exhaustive and its categories to be mutually exclusive. 

2.3.5 Defending against couplings 

Defending against couplings is subtler than identifying root causes.  It implies the 

assessment of a number of types of couplings deriving not only from the positioning of 

each item inside the system, but also from the item design and construction phases.  

Therefore all the development and maintenance life cycle of the components must be 

analysed. Looking at different types of couplings, the nuclear sector has defined three 

main categories of dependencies: functional, physical and human [NUREG 2815, 1985]. 

                                                      
7 Or in a short time interval. 
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They use the term functional dependencies when an item depends on shared 

functions that can be achieved either by shared hardware, or on a process coupling.  In 

the first case, multiple devices depend on the same equipment (e.g. a support system); in 

the second one, the function of one device depends on the function of another device 

(e.g. temporal dependence).  They use the term physical dependencies when two or more 

devices are coupled through the same environment, so that an event affecting the 

environment affects also all the components inside that particular area8.  They use the 

term human-interaction dependencies to address all those couplings caused by human 

actions.  They analyse both the cognitive behaviour (e.g. failure of diagnosis) and the 

procedural behaviour (e.g. multiple maintenance errors).  

A checklist helping in the identification of couplings is reported in the NUREG 

5801 [Mosleh et al., 1993].  According to this publication the analyst should focus 

mainly on the identification of those components of the system which share one or more 

of the followings: 
 

 

• Same design 
• Same hardware 
• Same function 
• Same installation, maintenance, or operation procedures staff 
• Same system/component interface 
• Same location 
• Same environment 

 
 

 

Therefore it could be useful to develop checklists of key attributes such as design, 

location, operation etc., where the analyst can find most or all of the possible couplings. 

An example of such a checklist that helps in the identification of redundant components 

in a system and in the identification of the most commonly observed couplings for a 

Motor Operated Valve9 is reported in Table 2-12.  

 

                                                      
8 With the word area we do not mean just the same zone (e.g. a room), but also multiple 

volumes linked by a common ventilation duct or inside the same electromagnetic field 
are considered as a single area. 

9 A checklist to address software components, that we have developed during this work, 
is reported in Table: 5.1. 
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Component Type 
• Component size  
• Material 
• Special features 

Component Use 

• System isolation 
• Flow modulation 
• Parameter sensing 
• Motive force 

Component Manufacturer • Brand 

Component internal 
conditions 

• Absolute or differential pressure range 
• Temperature range 
• Normal flow rate 
• Chemistry parameter range 
• Power requirements 

Component boundaries and 
system interfaces 

• Common discharge header 
• Interlocks 

Component location name 
and code  

• Room 
• Area 

Component external 
environment conditions 

• Temperature range 
• Humidity range 
• Barometric pressure range 
• Atmospheric particulate content and 

concentration 

Component initial conditions 
and characteristics 

• Normally closed, open 
• Energised 
• Normally running, standby 

Component testing 
procedure and characteristics 

• Test intervals 
• Test configuration 
• Effect of maintenance on system operation 

Component maintenance 
procedures and 
characteristics 

• Planned 
• Preventive maintenance frequency 
• Maintenance configuration 
• Effect of maintenance on system operation 

Table 2-12: Checklist for a Motor Operated Valve 

 

2.3.6 The aerospace industry 

Aerospace industries approach dependency analysis in a slightly different way. They do 

not talk explicitly about root causes and couplings, and they use the term common cause 

analysis to address what the nuclear industries call dependent failure analysis. In 

common cause analysis they identify three different issues which they address with zonal 

safety analysis, particular risks analysis and common mode analysis [SAE-ARP 4754 

and SAE-ARP 4761, 1996]. 

Zonal Safety Analysis addresses all those concerns regarding equipment 

installations, interference between systems, the robustness of the system against possible 

maintenance errors and the claimed independence of events in a fault tree.  They look for 

all the installation aspects of each system and the mutual influence between systems 
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installed in close proximity on the aircraft.  The whole aircraft is divided into several 

zones and for each of these zones a zonal safety analysis is performed.  The objective of 

the zonal safety analysis is to ensure that the system design meets the safety objective 

with respect to: 
 

 

• Basic installation; 

• Effect of failures on aircraft; 

• Implication of maintenance errors; 

• Verification that the design meets the FTA independence claims. 
 

 

Particular Risk Analysis addresses specific events listed by airworthiness regulations 

that potentially may cause a failure inside the system itself. For each risk the possible 

consequences for the whole aircraft should be evaluated; if one of the risks may affect 

safety, proper measures should be taken.  Table 2-13 lists particular risks set out in 

[SAE-ARP 4761, 1996]. 
 

 

 

 

 

 
• Fire  
• High energy devices (non-containment): 

- Engine 
- Auxiliary Power Unit 
- Fans 

• High pressure bottles 
• High pressure Air Duct Rupture 
• High temperature Air Duct Leakage 
• Leaking fluids:   

- Fuel 
- Hydraulic 
- Battery acid 
- Water 

• Hail, Ice, Snow 
• Birds strike 
• Tyre burst, flailing tread 
• Wheel rim release 
• Lighting strike 
• High Intensity Radiation Fields 
• Flailing Shafts 
• Bulkhead rupture 

 
 

Table 2-13: Subjects of Particular Risks Analysis 
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Common Mode Analysis addresses redundancies. According to ARP 4761, common 

mode analysis should be performed in the lifecycle after Functional Hazard Analysis and 

Preliminary System Safety Analysis.  Its aim is to verify that all the inputs to all AND 

gates (both explicit and implicit) in the failure logic analysis (Fault Tree Analysis, 

Dependence Diagram, Markov Analysis etc.) are independent.  Basically, components 

with the same hardware and software could be susceptible to common mode failures due 

to couplings arising from particular risks, or other causes.  Therefore the principal task of 

the analysis is to look for couplings and to evaluate to what extent ‘root causes’ could 

affect coupled components.  Identifying coupling is the major task and is very much 

dependent on the expertise of the analyst; several check lists have been tailored to help in 

discovering couplings.  Table 2-14 reports different common mode categories and Table 

2-15 reports a checklist useful for the qualitative assessment (so far no quantitative 

assessment of common mode failure has been done).  Both tables are taken from [SAE-

ARP 4761, 1996]. 

 
 

 
• Software design errors 
• Hardware design errors 
• Hardware failures 
• Production repair/flaw 
• Stress related events  
• Installation errors 
• Requirements errors 
• Environmental factors 
• Cascading faults 
• Common external source faults 

 
Table 2-14: Common Mode Fault categories to be analysed 

 

 

It is important to point out that whereas common cause failure analysis in the nuclear 

industry is both a qualitative and quantitative procedures, common cause failure analysis 

in the aerospace industry is purely a qualitative analysis. 
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COMMON 
MODE TYPE 

COMMON MODE 
SUB-TYPE 

EXAMPLES OF COMMON 
MODE SOURCES 

EXAMPLES OF COMMON 
MODE FAILURES/ERRORS 

Concept and 
Design 

DESIGN 
ARCHITECTURE Common discharge Header Common discharge failure 

 

  Common external sources 
(ventilation, electrical, power,..) Failure of common sources 

  Equipment Protections Designer failure to predict an 
event, ... 

  Operating characteristics 
(normally running, standby,..)  

  Others General design error, ... 
 TECHNOLOGICAL New/Sensible technology Hardware error, ... 
 MATERIALS Component type (size, material,..)  
 EQUIPMENT TYPE Common Software Software error... 
  Component Use ... 

  Internal Conditions (Temperature, 
ranges,..) 

usage out of operating ranges (T, 
P) 

  Initial conditions ... 
  Others ... 

 SPECIFICATIONS Specification Origin 
Origin error (human), lack of 
specific protection in equipment 
design, ... 

  Same Specification Defective specification, ... 
  Others ... 

Manufacturing MANUFACTURER Common Manufacturer 
Common error due to 
manufacturer, error due to 
inadequately trained personnel, ...

  Others ... 
 PROCEDURES Same procedure Incorrectness procedure, ... 
  Others  

 PROCESS Same process 
Incorrect process, Inadequate 
manufacturing control, inadequate 
inspection, inadequate testing, ... 

  Others ... 
Installation/ FITTER Common fitter Installation or error due to fitter, ...
Integration  Others ... 
and Test PROCEDURES Installation phase Common error due to phase, ... 
  Others  
 LOCATION Same zone Local failure or event, ... 
  Others  
 ROUTING Same routing Local event, ... 
  Others  

Operation STAFF Common Staff 
Error due to inadequately trained 
personnel, overstressed or 
disabled operator, ... 

  Others ... 

 PROCEDURES Same procedure 

Faulty operation procedures, 
misdiagnosis (following wrong 
procedure), Omission of action, 
incorrect or inadequate 
commission of action, ... 

  Others ... 

Maintenance STAFF Common Staff Error due to inadequately trained 
personnel, Incorrect action, ... 

  Others ... 

 PROCEDURES Same procedure 
Failure to follow repair procedures 
defective repair procedure. lack of 
repair procedure, ... 

  Others ... 

Test STAFF Common Staff 
Error due to inadequately trained 
personnel, Incorrect human 
action, ... 

  Others ... 
 PROCEDURES Same procedure Faulty test procedure, ... 
  Others ... 

The table continues on the next page. 
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COMMON 
MODE TYPE 

COMMON MODE 
SUB-TYPE 

EXAMPLES OF COMMON 
MODE SOURCES 

EXAMPLES OF COMMON 
MODE FAILURES/ERRORS 

Calibration STAFF Common Staff Error due to inadequately trained 
personnel, ... 

  Calibration Tools ... 
  Others ... 
 PROCEDURES Same procedure Inadequate tools adjustment, ... 
  Others ... 

Environmental MECHANICAL AND 
THERMAL Temperature 

Fire, lightning, welding etc., 
cooling system faults, electrical 
short circuits, ... 

  Grit 
Airborne dust, metal fragments 
generated by moving parts with 
inadequate tolerances, ... 

  Impact Pipe whip, water hammer, 
missiles, structural failure, ... 

  Vibration Machinery in motion, 
earthquake, ... 

  Pressure 
Explosion, out of tolerance 
system changes (pump 
overspeed, flow, blockage), ... 

  Humidity Steam pipe  breaks, ... 

  Moisture Compensation, pipe rupture, 
rainwater, ... 

  Stress 
Thermal stress at welds of 
dissimilar metals, thermal 
stresses, ... 

  Others ... 

 ELECTRICAL AND 
CORROSION Electromagnetic 

Welding equipment, rotating 
electrical machinery, lightning, 
interfaces power supplies, ... 

  Radiation Gamma radiation, charged 
particle radiation, ... 

  Conducting Medium Moisture, conductive gases, ... 

  Out-of-tolerance Power surge voltage, short 
circuit, power surge, current, ... 

  Others ... 

 CHEMICAL AND 
MISCELLANEOUS Corrosion (acid) 

Leak of acid used in 
maintenance for removing rust 
and cleaning, ... 

  Corrosion (oxidation) 

Failure leading to a water 
medium or around high 
temperature metals (ex 
filaments), ... 

  Other chemical reactions 
Galvanic corrosion, complex 
interactions of fuel cladding, 
water, oxide fuel, ... 

  Biological 
Poisonous gases, animate 
causes (mussels in heat 
exchanger), ... 

  Others ... 

Table 2-15: Checklist with Common Mode Types, Sources, and Failures/Errors  

 

2.3.7 Software domain 

So far we have surveyed common cause failure analysis in the nuclear and aerospace 

fields. Now we move to consider common cause failures in computer based systems. To 

our knowledge, no formalised methods exist to study dependencies amongst software 

components, even if there are efforts to build software “common mode failure free”.  The 

Airbus company built the first passenger aircraft with a computer-based flying control 
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system (A320) using several precautions to avoid any kind of coupling [Dorsett & 

Mellor, 1993].  They used: 

• Computer systems developed by separate companies using 80186 & M68000 
processors; 

• Separate teams (only the requirements specifications were available for 
communication); 

• For each computer: the control channel was written in Pascal, and the monitor in 
C; or the control channel in assembler and the monitor in Pascal; 

• Particular care has been taken to ensure independence in command and monitoring 
development teams; 

• Each team used different compilers; 

• The voting logic was different in each computer. 
 

Even if this is indeed a starting point, we cannot say to what extent such efforts are 

appropriate for the task they are asked to deal with, whether designers have been “more” 

or “less” effective than might reasonably be expected in avoiding couplings.  

Additionally, this comment does not reflect on the A320 per se, it simply indicates a lack 

of understanding of root causes and couplings affecting software. 

 

2.3.8 Defences against common cause failures 

The policy to prevent common cause failures starts early in the lifecycle. It involves 

engineers being aware of sources of common cause failures and possible defences 

against them.  It is by eliminating sources of common cause failures from early in the 

design phase that saves expensive remedies later. However when it is not feasible to 

reduce causes of common cause failures, ad hoc defences against them based on specific 

features of each plant can usually be set up. Defences against common cause failures are 

careful project administration, planning, functional diversity, equipment diversity, 

protection and segregation of equipment, barriers, equipment derating and simplicity, 

quality control, preventive maintenance, monitoring etc. To check whether plant 

defences have been considered for each potential cause of common cause failure, some 

techniques have been conceived.  The development of one such technique that lists plant 

defences against potential causes of common cause failures has been sponsored by the 

US Nuclear Regulatory Commission and presented under the name of “Cause Defense 

Matrix” in [Paula and Parry, 1990; Mosleh et al., 1993].  
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Table 2-16 displays an example of a cause defence matrix focused on environmental 

factors. A cause-defence matrix is a formal way to make sure that in a plant some 

defences have been considered for each potential cause of common cause failure. The 

first column from the left of the table lists causes of common cause failures, i.e. groups 

of failure causes. The remaining columns list the measures that are taken in the plant 

against each failure cause mechanism, that is the root cause (i.e. trigger event + 

conditioning event) and the coupling factor.   

 

Defence Against 
Root Cause  Coupling 

Failure Cause 

Group 
Conditioning Event Trigger Event Factor 

Internal 
environmental effect 
(corrosion, 
biofouling, etc.) 

Ensure internal 
environment is “pure” 
Preventative maintenance 

Surveillance 
testing/condition 
monitoring (slowly 
developing only) 

Functional diversity 
Equipment diversity 
Barrier between inputs 
to redundant trains 
Staggered maintenance 

External 
environmental 
effects Shock (fast 
acting) 

Barriers at the component 
(equipment hardening) 
Equipment qualification 

Barrier between source 
of shock and component 
Inspection of potential 
sources of shocks 

External barriers 
between redundant 
trains 

Slow acting Barriers at the component 
(equipment hardening) 

Barrier between source 
of shock and component 

Functional diversity 
Equipment diversity 

 Equipment qualification 

Surveillance testing/ 
condition monitoring for 
cumulative effects of 
environments 

External barriers 
between redundant 
trains 

Table 2-16: Cause-Defence matrix for environmental-related causes 
 

 

 

 

2.3.9 Common cause failures quantitative assessment 

The contribution of common cause failures to the likelihood of critical events is 

estimated by using parametric models.  These models were introduced in the late 1960’s 

[Marshall, 1967] when the need to evaluate common cause failures arose.  The most 

widely used parametric models are named from the parameters they use.  The Beta factor 

model [Marshall and Olkin, 1967; Fleming, 1975] names the parameter it uses with the 

second letter of the Greek alphabet. While the Multiple Greek Letter model [Fleming and 

Kalinowski, 1983] uses many parameters (the order of redundancy minus one) called 

β, γ, δ, etc. In the case of two redundant components the multiple Greek letter model 

reduces to the Beta Factor model. Parameters can be thought of as representing the 

strength of the coupling among redundant components, but also as conditional 

probabilities as will be shown later.  They range between 0 and 1.  The lower bound 

represents complete lack of coupling whereas the upper bound represents complete 

coupling.  In many cases it is difficult to estimate common cause failure parameters due 
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to lack of statistical data, therefore analysts use conservative values.  Experience has 

shown that a conservative value for beta is 0.110 [Mosleh, et al., 1988].  Additionally, if 

some care is taken to ward off common cause failure, the beta for a redundant system can 

easily be reduced by one or two orders. 

Parametric models take into account the contribution of common cause failures by 

modifying the value for the likelihood of events.  They split this up into two or more 

contributions of which one is the likelihood of the independent occurrence of the event, 

the other(s) are probabilities of the common cause failures.  Hence if we wish to 

represent common cause failures in a fault tree we have to add some events.  To see how 

a fault tree is modified to consider common cause failures we produced a simple example 

based on a system the function of which is to arise oil from one tank to another.  The 

system architecture consists of three redundant pumps.  However only two of them are 

required to run at any one time to assure the system functionality.  Figure 2-10 displays 

the architecture of the system. The system fails when any two pumps fail. The fault tree 

for the system is in Figure 2-11. If failures of the three pumps were completely 

independent, the fault tree would consist of only one level that is represented by the 

darker part. Since failures of pumps are not considered independent, the failure 

probability of each pump is divided into four contributions representing the random 

occurrence (i.e. AI, BI and CI), the occurrence because of a shared cause with one other 

pump only (i.e. CAB, CAC and CBC) or because of a shared cause with both other pumps 

(CABC). Parametric models assign probabilities to all the contributors to the pump failure 

probability both independent events (i.e. AI, BI, CI) and dependent events (i.e. CAB, CAC, 

CBC, CABC). 

 

                                                      
10 Up to 0.18 for diesel generator sets. 
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Tank

2/3

A B C

Sump
 

Figure 2-10: Triple redundant system raising oil from the sump to the tank 

 

All the existing parametric models are based on the Symmetry Hypothesis [Mosleh, et al., 

1988].  This hypothesis relies on the common practice in safety and reliability analysis to 

assume that the probabilities of similar events involving similar types of components are 

the same.  Hence if there are three events, i.e. A, B, and C, the symmetry hypothesis 

assumes that the probability of any one of them occurring independently is the same and 

is equal to a value called “Q1”.  Further it assumes that the probability of any two events 

occurring simultaneously is identical and equal to “Q2”.  Additionally it assumes that the 

probability that all the three events occurring simultaneously is equal to “Q3”.  This is 

represented by the following equation 2-2. 

 

      
 Q=)P(C

Q=)P(C=)P(C=)P(C
Q = )P(C =  )P(B =  )P(A

3ABC

2BCACAB

1III








   (2-2) 

 

The symmetry hypothesis certainly holds in the many cases in which identical 

components are used in redundancies, but that cannot be taken for granted when fault 

tolerance is achieved by any mixture of software, hardware, or information and timing 

redundancy, e.g. for computer based fault tolerant systems.  However before discussing 

this issue, we continue presenting the different features of the Beta factor and the 

Multiple Greek letter parametric models. 
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The Beta-factor model is the simplest of the parametric models.  It considers the 

independent likelihood of each event in the MCS and the likelihood of all the events 

happening simultaneously because of a common cause failure.  This is achieved by 

assuming the likelihood of common cause failures not affecting all the components to be 

zero, see equation 2-3 and 2-4. 

 

    P(Cab) =  P(Cac) =  P(Cbc) = Q2 = 0   (2-3) 

 

  P(Cabc) =  β * P(AI) = Q3    (2-4) 

 

The Beta factor model is normally used with low orders of redundancy (maximum three 

channels) since it becomes conservative as the order of the redundancy increases. In 

these situations the Multiple Greek Letter method comes into place. 
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Figure 2-11: Tree for the system in Figure 2-10 

 

The Multiple Greek Letter model [Fleming and Kalinowski, 1983] is an outgrowth of the 

Beta factor model that can consider systems with any degree of redundancy. Values for 

probabilities are assigned according to equations in 2-5.  It is out of the scope of this 

thesis to explain how that equation is obtained, the explanation can be found in [Mosleh, 

et al., 1988].  We only say that m represents the number of redundant components in the 

system, k represents the order of the generic subset of components that can be created 

inside the common mode failure component group. It ranges between 1 and m. Qk 
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represents the failure probability of a generic subset of events of the minimal cut set. 

Finally, ρi represents these generic parameters (i.e. ρ1=β;  ρ2=γ;  ρ3=δ;  ρ4=φ;  etc. ). 
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If we consider the system in Figure 2-10, i  ranges between 1 and 3.  Thus: 

 

    m = 3 

    ρ1 = 1 

    ρ2 = β 

    ρ3 = γ 

    ρ4 = δ 

 Where: 

β = Conditional probability that the cause of a component failure will be shared by one 

or more additional components, given that a specific component has failed.  

γ = Conditional probability that the cause of a component failure that is shared by one or 

more components will be shared by two or more additional components, given that 

two specific components have failed. 

δ = Conditional probability that the cause of a component failure that is shared by two or 

more components will be shared by three or more additional components, given that 

three specific components have failed.   

 

For the system in Figure 2-10, equations (2-5) becomes:  
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After a Boolean simplification of the tree in Figure 2-11, MCS are obtained, and the 

system failure probability Qs is evaluated by using equation 2-7. 

 

  3
3

3
2

3
1 2 QQQQS ++≡      (2-7) 

 

Giving values to parameters 

 
Methods have been developed to estimate values for parameters used by parametric 

models.  These methods are partly based on statistics on common cause failure events 

recorded in databases, and partly on empirical considerations [Mosleh, et al., 1988]. 

Most of the time they estimate boundaries, i.e. max. and min. for each parameter. For 

instance, if a set of parameters for a plant is known, and a similar plant is reckoned more 

robust to common cause failures (but for which no statistics are available as it is a new 

plant), it will be assigned a set of parameters of slightly smaller values. An example of 

such an empirical method is given in [Humphreys, 1987]. This method is very field 

specific and concerns programmable electronic systems.  It basically allows the 

estimation of the parameter β used in the Beta factor model by giving a weight to eight 

sub-factors as Table 2-17 shows. 

 

FACTOR SUB-FACTOR WEIGHT 

DESIGN Separation 8 

 Similarity 6 

 Complexity 6 

 Analysis 6 

OPERATION Procedures 10 

 Training 5 

ENVIRONMENT Controls 6 

 Tests 4 

Table 2-17: Factor, sub-factor and sub-factor weight 

 

Different sets of these sub-factor weights can also be assigned to account for different 

degrees of couplings in different plants.  In Table 2-18, column ‘a’ and ‘e’ represent 

respectively the highest and the lowest possible sub-factor weight, thus the highest and 

the lowest possible coupling.  One column need not be a multiple of another since the 
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sub-factor might not grow linearly with the strength of the coupling.  Since the beta is a 

probability and it ranges between 0 and 1 it is obtained by a proper normalisation.    

 

SUB-FACTOR a b c d e 

Separation 2400 580 140 35 8 

Similarity 1750 425 100 25 6 

Complexity 1750 425 100 25 6 

Analysis 1750 425 100 25 6 

Procedures 3000 720 175 40 10 

Training 1500 360 90 20 5 

Controls 1750 425 100 25 6 

Tests 1200 290 70 15 4 

Table 2-18: Possible sub-factor weights 

 

2.4 Discussion 
In this chapter we saw that a number of different techniques are used for safety analysis 

as the design evolves in the course of the lifecycle.  Furthermore we saw that those 

techniques are not formally linked to each other and as a consequence the consistency of 

the analysis cannot be assured throughout the design development process.  In a complex 

design it is, therefore, often difficult to trace (using the results of the safety assessment) 

the causes of critical malfunctions of the system in the hierarchy of subsystems and 

components that compose the design.  We have also noted the trade-off between 

techniques providing a graphical and tabular representation of results. 

The second part of the chapter focused on common cause failures. We discussed the 

mechanisms leading to common cause failures, and based on this discussion we showed 

that there are two possible ways to avoid common cause failures, either by eliminating 

root causes or removing coupling factors. We saw that there are methods that help to 

consider defences for each potential cause of common cause failure in a plant. However 

there are no methods that measure (or at least map) couplings among redundant 

components in a system. We also noticed problems related to the estimation of 

parameters for the quantitative evaluation of common cause failures. To address the 

limitations and shortcomings of classical techniques that we have highlighted here, this 

thesis will attempt to answer the following questions:  
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a) Is it possible to develop a technique that encompasses the different safety analyses 

typically performed across the lifecycle? 

b) Can the application of this technique result in a meaningful and easy way to perform 

a collection of safety analyses which can assist the design of the system? 

c) Can we ensure the consistency of the results within the assessment? 

d) Can those results be represented both graphically and in tables, so that we can 

combine the benefits of both representations? 

e) Finally, is it possible to use this technique to systematise the identification of 

common cause failures? 
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Chapter Three 

3Preliminary work 
In Chapter 2 we surveyed techniques for safety analysis. We saw that there are many 

techniques for tackling specific needs, however little has been done to integrate those 

techniques that are typically used in cascade across the lifecycle.  That causes several 

problems that were highlighted. In addition, we found a lack of formalised methods to 

consider common cause failures in computer based safety critical systems.  Causes of 

common failures have to be sought across the lifecycle so if a method has to be built to 

relate techniques typically used across the lifecycle the issue of common cause failures 

must be considered. 

 In this chapter we present the work that was done at the beginning of our research 

and that brought about (through many refinements) the formulation of the technique, 

known as Failure Logic Analysis for System Hierarchies (FLASH), that is presented in 

chapters 4 and 5. We think this preliminary work is important because it explores some 

original approaches and shows the reasons for developing FLASH. 

3.1 Template based approach 
The research started looking for a notation capable of showing how hardware and 

software elements are dependent and support each other in safety critical computer 

based systems.  It was thought that this notation was needed to support top-down study of 

a system: the functional level first, then the architectural level and finally the component 

level. Therefore the functional representation of the system was addressed first. 

Functional failures were studied independently from the implementation of the function 

(i.e. hardware, software components or both).  Malfunctions were represented as top 

events in fault trees whose basic events were either software or hardware failures.  We 

perceived the importance of having formalised trees so we tried to systematise their 

construction by proposing mini-trees to represent failures of sub-systems and sub-

functions.  Figure 3-1 displays an example of a fault tree built using mini-trees for the 

system in Figure 3-2.  These, which are very similar to the ones in [Leveson, 1983], 

represent the most common causes of failure.  Additionally, they have undeveloped 
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events for considering faulty inputs and failures from other functions, sub-systems or 

components.  The idea was that, once fault trees were built for system malfunctions, they 

could be assessed for repeated branches, which clearly are sources of dependent failures.  

These repeated branches were shared by both software and hardware components, hence 

they were identifying software-hardware dependencies.   
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Figure 3-1: Fault tree built using mini-trees 
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Figure 3-2: Fragment of a functional block diagram of a Computer Braking System 
 

 

However, this notation was only deductive and it was not suitable for representing 

recovery actions taking place in fault tolerant systems. So it was thought desirable to 

represent recovery by using some of the gates used in cause consequence analysis. An 

example of such a representation is shown in Figure 3-3.  In this notation a function, a 

component or a task (e.g. the sub-function OUT in the graph) is represented as a box with 

inputs, entering from the bottom, and outputs departing from the top.  The ones leaving 

from the top left corner of the box are intended outcomes, whilst outputs leaving from the 

top right half are fault outcomes. Whilst a component can have only one correct 

functional mode11, it can have many failure modes.  Hence, it was thought useful to 

represent failure modes by using an event tree style graph placed near the top right 

                                                      
11 It is recognised that, in principle, there can be many functional modes.  However, for 
safety analysis, we can group them together.  
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corner of the gate and connected to its failure outcome.  Then, each path through the 

“event tree” would represent a failure outcome of the function/component/task in the 

box.  However, this notation posed additional problems: for instance it was not clear 

where to put the many fault trees representing failure modes of the component 

represented by the box.  We decided to put them underneath the event tree so we ended 

up with the Event Tree Output notation that is presented next. 
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Figure 3-3: Cause and consequence analysis style notation 

3.2 Event Tree Output Notation 
Fault trees representing causes of system malfunctions were gathered below a sort of 

event tree providing a different path for each failure mode or combination of failures.  

Figure 3-4 shows an example of such a representation.  The upper part of the graph 
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shows the outputs provided by the box, either good (i.e. YES) or faulty (i.e. NO).  

However, whilst at any time there can be only one good output (i.e. path on the top of the 

event tree), there can be many non-straight paths representing the presence of faults (i.e. 

when mitigation or recovery took place) or failures (i.e. where mitigation or recovery 

failed).  Out of these outputs, some may compromise the safety of the system, hence be 

critical, whereas others may produce less serious consequences.  Fault trees showing 

causes of each functional failure are represented below the event tree.  Repeated 

branches in fault-trees identified couplings among functions. 
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Figure 3-4: Fault trees are shown below an event tree 

 

This notation provides a graphical representation of dependencies between software and 

hardware components, however it has some limitations.  First of all it provides a huge 

number of outputs for each component.  Hence a sort of filtering mechanism on the 

output to avoid propagating non-critical outputs should have been developed, but that 

would have complicated further the method. Additionally shared fault tree branches and 

shared components are represented in different places in fault trees and, in some cases, it 

is not easy to identify repeated branches.  At this point it was thought practical to try to 

improve the representation by exploiting a variant of another notation: the Master Plant 

Logic Diagram. 
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3.3 Master Plant Logic Diagram approach 
The next attempt to provide a notation able to merge the analysis of software and 

hardware components, considering common cause failures in complex computer based 

safety critical systems, was an extension of the Master Plant Logic Diagram notation in 

[Modarres, 1992]. As we said in the second chapter, the MPLD notation effectively 

represents the interrelationships amongst various components, and can model 

relationships between functions and systems, so it already has some of the characteristics 

that we were aiming for in our method.  But MPLD as it is defined in [Modarres, 1992] 

does not allow the mapping of couplings which originate common cause failures.  

Consequently we extended this notation to include this additional category of couplings.  

The extended notation was called MPLD*. 

MPLD* is a logic diagram that shows how functional, equipment and component 

failures combine to cause a system malfunction.  An MPLD* diagram is constructed for 

each failure mode of the system that is represented as top event in the MPLD* graph.  

Combinations of function, sub-system and component failures, which cause the top 

event, are represented in a fault-tree-like structure.  However, an MPLD* graph differs 

from a fault tree since basic events are not represented as leaf events in the tree, but they 

are listed in the lower left part of the graph and connected to gates through a sort of 

matrix.  Lines that originate at basic events and those that end at each gate make this 

matrix.  Small blobs mark active intersections of those lines.  Therefore AND or OR 

gates can be connected to a number of primary events through a vertical line that 

intersects horizontal lines originating from events.  Figure 3-5 shows the MPLD* for a 

functional failure (i.e. complete lack of braking) in the computerised braking system 

described in 6.2 and represented in Figures 6-9 and 6-10.  It is possible to see that this 

failure (top event in the MPLD*) is caused by failures of both actuators (i.e. output 

modules 1 and 2).  The failure of any of these components can be caused either by an 

internal failure (hardware failure) that is represented in the list at the bottom left, or by 

failures in both the redundant busses i.e. Bus 1 and Bus 2 (see the AND gate on the left 

immediately below the OR gate).  Similarly, the failure of anyone of the busses is caused 

either by internal failures (i.e. hardware wear out or software implementation) or by the 

simultaneous failure of all of the three output tasks (i.e. output 1, output 2 and output 3).  

Failure of these tasks can be caused by other functional or hardware failures (e.g. 

Modifier addition, Bus Watcher, Modifier Selection, Basic, In, etc.) and ultimately, by 

wrong inputs from sensors (i.e. fault data from sensors) or supports (e.g. processors). 
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Figure 3-5: MPLD* for complete lack of braking in a braking system 
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However, what we have described so far is, actually, nothing other then the failure logic 

underneath a functional failure in a different format than a fault tree or an MPLD. We 

now show how, additionally, the MPLD* notation represents couplings among different 

sub-functions, sub-systems and components that may give rise to common cause failures. 

For this purpose the MPLD* notation reserves the common cause events area 

immediately below the input and support area. This area lists common cause events 

affecting two or more sub-functions, sub-systems, tasks or components. As for basic 

events, common cause events are graphical linked to intermediate events that are arisen 

by them and represented into the upper part of the graph. The dependency matrix at the 

right side of the list of common cause events identifies couplings. 

It has to be noticed that in the MPLD* graph there is not a clear distinction between 

the functional, architectural, and component level, and there are sub-function failures as 

well as subsystem and component failures. This is because the analysis is not 

hierarchically represented, but flat.  It is performed deductively moving backward from 

unwanted effects to causes.  In addition, the MPLD* has two other limitations. It does 

not clearly represent the mapping of software to hardware (or vice versa) and does not 

allow recording of detailed information for basic components, for example component 

failure rates, mean time to failure, mission time, etc. Hence we had to define two other 

notations to apply at higher and lower levels of detail. 

At the higher level of detail, we proposed a sort of block diagram notation 

displaying the mapping of functions to hardware and software components. An example 

is in Figure 3-6a that shows a cascade of two functions (i.e. boxes A and B) that are 

mapped onto three processors (i.e. boxes P1, P2 and P3).  Figure 3-7a displays the 

breakdown of function A and its redundant architecture. Function A is actually achieved 

by three sub-functions (A1, A2 and A3) each mapped to a different processor. A 

breakdown of sub-function A1 is displayed in Figure 3-8a. It shows that this sub-function 

is achieved by three tasks called A1.1, A1.2 and A1.3 all running on processor P1.  

Master plant logic diagrams associated with these architectures are represented in Figure 

3-6b, Figure 3-7b and Figure 3-8b. 
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Figure 3-6b shows how functions A and B are supported by processors P1, P2 and P3 and 

that function B has one only input that is from function A. At this representation level 

nothing is shown about their failure modes. Figure 3-7b shows the relationship among 

the three tasks, A1, A2 and A3 constituting function A and similarly for function B.  The 

two functions are apparently independent, since they run on different processors and 

have different failure modes (i.e. A1.x, A2.x and A3.x) but they all share the same 

software. The coupling matrix shows that the three tasks are not coupled except for the 

software that is common to all of them. 

A1

A2

A3

B1

B2

B3

INPUT  

A Element 
Boundary

P1

P3

P2

 

 

a)Mapping of functions upon hardware

A1

A2

A3

A S|W

External Couplings

P1

P2

P3

Internal Couplings

Element A Boundary

A2.1

Locally generated FM

A1.1

A1.2

A2.2

A2.n

A3.1

A3.2

A3.n

A1.n

Handled

B1

B2

B3

INPUT

b) MPLD* representation 

Figure 3-7: Medium functional level 



82 

 

 

 

A1.3

A1.2

A1.1

Element A1 Boundary

B1
INPUT

Processor 1

 

a) Mapping of functions upon hardware 

 

A1.3

A1.2

A1.1

Element A1 Boundary

B1
INPUT

Processor 1

External Couplings
P1

Locally generated FM
A1.1

A1.2

A1.3

Handled
INPUT

b) MPLD* representation 

Figure 3-8: Detailed functional level 
 

 

At lower levels of detail we defined a table-based notation placed along side the 

graphical ones. The tables record the information needed for a probabilistic analysis. 

This notation requires association of a table with each component in the design, contour 

information describing internal and external failures influencing the component’s output, 

whether correct or faulty. In these tables there are various areas describing, for example, 

locally generated failure modes and couplings, externally generated failure modes and 

couplings, and the mechanism underneath the transformation and propagation of failures. 

Figure 3-9 shows the table that is associated with component A1 represented in Figure 

3-7. The table is divided into five areas (i.e. Laws, Handled Couplings, Internal 

Couplings, Locally Generated Failure Modes and External Couplings); the Laws area is 

further divided into sub-areas. Failures that arise inside the component may appear either 

in the internal coupling or in the locally generated failure mode area. That depends on 

whether they are shared by one or more elements at the component level architecture. In 

a similar way, failures that happen outside the component boundary may appear either in 

the external coupling area or in the input area. This depends on whether they come from 

support systems shared by one or more other components or they are actually the input of 

the component i.e. data (or analog variables) that have to be processed by the function.  

The Laws area shows the failure logic describing how failure modes and couplings, 

listed in the previously mentioned areas, combine to provide either faulty or good 

outputs. This area is further divided into three headings that are Failure Conditions 

describing faulty outputs; Normal Output describing the (results of the) process that 

recovers recoverable failures and the Conservative/Default outputs describing when the 
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system handles failures and goes into a safe state.  These are the cases in which full 

recovery is not possible, but the system can still deliver a safe output. A similar table can 

be written for the MPLD* in Figure 3-8b. It can be seen that the laws area in a table 

contains the information needed to draw part of the MPLD* diagram for the system. 

The information in the laws area of the table is also the causes-effect relationships 

explaining the deviation of output flows (propagated by the component) from their 

expected values. This information is also the same that is needed to conduct a fault tree 

analysis.  Hence, it can be used to draw the upper part of the MPLD* that is actually 

nothing else than a fault tree, as we have already said. Further, the information about 

couplings and support systems in the table is used to visually connect intermediate events 

representing component failures in MPLD* graph.  Hence it can be used to draw the 

lower part of the MPLD*.  Joining together the information in tables for all the 

component of the system it is possible to construct MPLD*s for each system failure 

modes.  Ultimately, block diagrams mapping the software upon the hardware can be 

drawn with the information about software-hardware dependencies that can also be 

stored in the tables.  

Drawing some conclusions, the MPLD* notation with the associated tables and 

Block Diagram notations are intended to fill the gap existing in the analysis of safety 

critical computer based system to account for the interactions of software and hardware 

components.  They can be used in place of fault tree analysis but they do not substitute 

for Preliminary Hazard Analysis, HAZOP and FMEA.   Table 3-1 compares the analysis 

of a safety critical computer based system from three different viewpoints: the hardware, 

the software and the integrated software-hardware viewpoints.   The table shows that the 

MPLD* notation can be used at functional as well as at architectural and component 

level during the decomposition and design of safety critical computer based systems.  
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LAWS (TO THE OUTPUT POOL) 
 
FAILURE CONDITION  (END EFFECTS) 
Value (2/3 Channels)        :== A1.1 (V) AND A2.1 (V) OR A1.1 (V) AND A3.1 (V) OR A2.1 (V) AND A3.1 (V) 
OR O_Input OR V_Input 
Omission (2/3 Channels) :== A1.2 (Late) AND A2.2 (Late) OR A1.2 (Late) AND A3.2 (Late) OR A2.2 (Late) 
AND A3.2 (Late) 
 
NORMAL OUTPUT (GOOD INPUT TO NEXT DOWNSTREAM COMPONENT(S) ) 
A1 & A2 AND INPUT OR A1 & A3 AND INPUT OR A2 & A3 AND INPUT 
 
CONSERVATIVE DEFAULT OUTPUT (NEXT HIGHER LEVEL EFFECT) 
(Not in this example) 
 
INPUTS 
 
Input            Description 
O_Input:== Input (Pool) gives Omission failure then A1 & A2 & A3 read the previous value 
V_Input:== Input (Pool)  gives Value failure then A1 & A2 & A3 read a wrong value 
 
INTERNAL COUPLINGS 
 
Internal S|W A is shared by A1 & A2 & A3 => Need Expert Justification 
Note: Expert may say that in this circumstances S|W does not constitute a coupling to be further analysed 
 
LOCALLY GENERATED FAILURE MODES 
 
A1.1 = Value;  
A1.2 = Late (Scheduler failure in A1)  
A2.1 = Value; 
A2.2 = Late (Scheduler failure in A2) 
A3.1 = Value;  
A3.2 = Late (Scheduler failure in A3) 
 
EXTERNAL COUPLINGS 
 
Processor P1 support  A1 
Processor P2 support  A2 
Processor P3 support  A3 
 
Note: Although A1, A2, A3 are not coupled by the same hardware, they might share the same life cycle (i.e. 
same type, same manufacturer, etc.) => Need further analysis 

Figure 3-9: Table associated with component A1 represented in Figure 3-7 

 

 

 Viewpoint 

  Hardware Software Hardware-Software  

Functional 
PHA or FFA + 

FTA 

PHA or FFA +  

FTA 
PHA or FFA + MPLD* 

Architectural HAZOP + FTA 
SHARD +  

software FTA 
SHARD + MPLD*  

Le
ve

ls 

Component FMEA + FTA 
FMEA +  

software FTA 
FMEA + MPLD* ⇐⇐ ⇐⇐

 In
cr

ea
sin

g 
de

ta
ils

 

Table 3-1: Overview of the Safety analysis used to assess critical systems 
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3.4 Discussion 
Our aim was to address some shortcomings and limitations of classical safety analysis 

techniques for the study of complex computer based safety critical systems. After 

endeavouring to use some existing template based notations and what we called “Event 

tree output notation” we came out proposing a variant of another technique, the Master 

Plant Logic Diagram. This notation was able to solve some inefficiencies of the classical 

techniques like the visual representation of dependencies between hardware and 

software, but it also left us with some unresolved problems. For instance, it was not 

possible to represent clearly the mapping of software to hardware and it was not feasible 

to store in an MPLD* graph all the information that is needed to calculate the likelihood 

of its top event.  Hence we proposed a graphical notation to represent the mapping of 

software to hardware and a table based notation to store the detailed information that 

could not be stored into an MPLD*.  Further the table notation was enriched to contain 

information to encompass both MPLD* and the representation of the mapping of 

hardware upon software (i.e. the table and block diagram notations). 

However these techniques alone were not enough to achieve the targets we were 

aiming for in the thesis.  In fact, though they were applicable at any stage of the 

development phase, they were not integrated with other analyses (i.e. FHA, HAZOP and 

FMEA) that are performed in parallel.  Additionally, they did not solve the problem of 

ensuring the consistency of results of analyses performed during the lifecycle by 

common safety analysis techniques, hence we decided to take a new approach in the rest 

of our research. 

Out of these techniques, the table-based notation was the one that solved most of the 

problems we wanted to address. Such an approach allows information to be stored in a 

format which is easy to access. Hence we tried to extend further this notation to 

encompass other classical safety analysis techniques such as HAZOP, Functional Hazard 

Analysis and FMEA.  We found that that was feasible.  The starting point was the fact 

that flows and flow deviations propagated by a component to another contain 

information about the hypothetical deviations of flows from their expected value that are 

used to drive HAZOP.   Hence we thought about a possible way to modify the table used 

to record specific information in the MPLD* notation to encompass also HAZOP 

analysis. This was the starting point that brought us additional further enhancements and 

finally to formalise the Failure Logic Analysis for System Hierarchies that is presented in 

the next chapter. 
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Chapter Four 

4Failure Logic Analysis for System 
Hierarchies 

This chapter presents the FLASH method, which enables the integrated assessment of 

complex hierarchical designs by helping analysts to identify potential functional failures 

of the system at the application level and then to systematically determine the causes of 

those failures in progressively lower levels of the design. The result of the assessment is 

a consistent collection of safety analyses which provides a meaningful picture of how 

low-level failures are stopped at intermediate levels of the design, or propagate and give 

rise to hazardous malfunctions. 

FLASH is applied at two different stages of the lifecycle: a) system decomposition 

& design and b) integration & verification.  In the first stage it checks the evolving 

design against higher-level safety requirements and supports the establishment of derived 

safety requirements for each sub-system and component.  In the second stage it verifies 

whether the product as implemented and integrated meets its concept level and derived 

safety requirements. 

The chapter begins giving a broad overview of the FLASH method, continues 

describing details of FLASH tables that are the core of the method, the process of 

conducting a FLASH analysis by compiling FLASH tables, presents the software tool 

that was developed to aid the analysis and finishes discussing some limitations. 

4.1 FLASH Overview 
FLASH enables the assessment of a hierarchically described system from the functional 

level down to the low levels of its hardware and software implementation. To ensure 

consistency of results, in FLASH, all safety analysis are performed on the same 

consistent hierarchical model of the system. The method places constraints on the 

notations used, and introduces some additional notation for describing levels of design. 

The notation allows complex systems to be modelled as system hierarchies (see Figure 

4-1, left side). At each level of the hierarchy, flow diagrams are used to describe the 

architecture of subsystems or components. At plant level these flow diagrams can be, for 

example, piping and instrumentation diagrams. At lower levels they can be derived from 
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any form of structured design notation used for the architectural design of software or 

hardware components, for example Data-flow diagrams [Yourdon and Constantine, 

1985] or MASCOT diagrams [Budgen, 1985].  

 

 

S
Design Hierarchy Hierarchy of Safety

Analyses ( FLASH tables)
S 1

C 1

S 2
C 2

 
Figure 4-1: The design hierarchy and the hierarchy of safety analyses 

 

The system hierarchy is created during the decomposition and design phase. The process 

involves the decomposition of the system into modules, and then further decomposition 

of each module into several more basic modules.   

In the course of safety analysis, each module of the architecture (i.e. sub-system or 

basic component) is systematically examined for potential failure modes. One of the 

aims, here, is to identify the failure modes that the module propagates to other modules 

and the causes of those failures in lower levels of the design. The specific failure modes 

of each module are identified as the outputs of the module (functions, material flows, 

energy flows, data) are systematically examined for potential deviations from the 

expected normal behaviour.  At the highest level of the design, failure modes represent 

functional failures. At lower levels they represent failures of subsystems as these can be 

observed at the outputs of those subsystems. Finally at the lowest level, they represent 

root failures of the basic components of the architecture.  
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The results from the analysis of each module are recorded in a separate table, and 

the analysis is completed when we have created a table for each module in the design 

hierarchy. At the end of the assessment process, the results from the analysis of the 

system and its constituent parts form a hierarchy of FLASH tables (see Figure 4-1, right 

side).  Table 4-1 illustrates a fragment from an example FLASH table for sub-system S1 

in the architectural decomposition depicted in Figure 4-1. The table records the analysis 

for one of the output failure modes of sub-system S1 (Output_Deviation_of_S1).  It can 

be seen that the analysis of a module is presented in six columns. 

 

Sub-system S1 

Failure 
events Description Causes Contribut-

ing factors
Criticality, Handling 
Recommendations 

Summary of 
FMEA Results 

Output_ 
Deviation
_ of_S1 

The output of 
sub-system S1 
deviates from 
the design 
intention. 
No effect on 
the system S  

Failure_Mo
de_of_C1 
AND  
Failure_Mo
de_of_C2 

Excessively 
high 
temperature 
(T>max)  

Criticality: Critical 
Handling: The failure is 
handled. The system detects 
the failure event and 
replaces the  malfunctioning 
S1 with S2 
Recommendations:  
a) Ensure that the failure 
detection mechanism is 
reliable 
b) The acceptable failure 
rate for this effect should be 
λ<1e-4  (f/h) 
Action required:  
Analyse the error detection 
mechanism for potential 
failure modes  

The failure 
detection 
mechanism is 
reliable (pointer to 
the relevant 
analysis) 
 
The failure rate for 
this effect  was 
calculated to be 
λ=1e-5 (i.e. within 
the acceptable limit) 
 
Thus, the 
architecture of 
sub-system S1 is 
accepted 

Table 4-1: A fragment of an example FLASH table for sub-system S1 

 

The first column (Failure events) lists the failure events generated by the module and 

propagated to other modules of the architecture. For each such output failure event, the 

second column (Description) provides in natural language a description of the event and 

its effect on the system. The third column (Causes) records a logical combination of 

lower level failure events that occur in the subordinate level of the architectural 

decomposition and cause the output failure event under examination. Table 4-1, for 

example, shows that the event Output_Deviation_of_S1 can be caused by a simultaneous 

failure of components C1 and C2.  

The next column (Contributing factors) contains a set of qualifying conditions that 

are necessary for the given output failure event to occur. Such conditions typically 

represent adverse environmental conditions (temperature > max, for example) or 

particular states that the system is in. The fifth column (Criticality-Handling-
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Recommendations) contains qualitative results from the analysis of the given event. 

Those results include the criticality of the event, information on whether it is handled or 

not, and requirements for ensuring that the event occurs with an acceptable frequency as 

well as that the system responds well to the occurrence of the event. During the 

development of the design this information can be used for a preliminary assessment of 

the architecture against qualitative safety requirements.  Once the decomposition process 

has reached the lower possible level and we know the precise implementation of the 

system, we can use the reliability data contained in the FMEAs of basic (non-

decomposed) components to calculate the frequency of each output failure event in the 

hierarchy. This information is recorded in the Summary FMEA results column and can be 

used to take a final decision on the suitability of the proposed architecture for the system 

or its constituent parts. 

It is beyond the scope of this introduction to explain the precise role of the FLASH 

table in the development lifecycle.  Here, we will just focus on the two most significant 

columns of the table, that listing the output failure events propagated by the module and 

that listing the causes of those failure events.  Our aim is to illustrate how it is possible to 

achieve consistent linking of safety analyses within the framework of the proposed 

method. Figure 4-2 illustrates fragments of the analyses for our hypothetical system S at 

three successive levels of its architectural decomposition. It can be noticed that the 

causes considered at a certain level of the analysis become the failure events considered 

in subsequent levels. We can notice, for instance, that the output deviation of sub-system 

S1 (Output_ Deviation_of_S1) appears as a cause of a functional failure at the highest 

level of the analysis.  At the same time, this event also appears in the intermediate level 

of the analysis where it becomes the failure event under investigation. That consistent 

linking between the causes and effects of failure which occurs in the vertical axis of the 

hierarchy is a significant property of the proposed method.  This property allows: 

 

a) The implementation of automated checks that can verify the consistency of the 

analyses;  

b) The implementation of hyperlinks between tables which would allow navigation 

from functional failure modes down to basic events; 

c) The mechanical construction of fault trees from FLASH tables. 
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Failure modes Causes

Functional_Failure_of_S Output_Deviation_of_S1 AND
Output_Deviation_of_S2 …

Failure modes Causes

Output_Deviation_of_S1 Failure_Mode_of_C1 AND
Failure_Mode_of_C2 …

Failure modes Failure rate (λ[1/h])

Failure_Mode_of_C1 6.3e-7

S

Design Hierarchy Hierarchy of Safety
Analyses ( FLASH tables)

S 1
C 1

S 2
C 2

Figure 4-2: Relationship between design hierarchy and hierarchy of FLASH tables 
 

 

Figure 4-3 illustrates the fault tree that can be constructed for the high level functional 

failure of S from the information contained in the FLASH tables of Figure 4-2. It is 

apparent that this fault tree can be mechanically generated by simply traversing the 

FLASH tables and by progressively substituting the causes of failure at one level of the 

design with the corresponding failure modes at lower levels. To enable the automatic 

construction of fault trees in the framework of FLASH, we currently extend an existing 

algorithm for the mechanical synthesis of fault trees [Papadopoulos and McDermid, 

1999b] which already operates on structural models of the system and tabular 

representations of failure behaviour. This algorithm is at the moment implemented in an 

experimental tool that supports hierarchical modelling of systems and the synthesis of 

fault trees for those systems. Figure 4-4 provides a distant view of an example fault tree 

that has been mechanically synthesised using this tool.  
 

Output_
Deviation_of_S1

AND

Functional_
failure_of_S

AND

Failure_Mode_
of_C2

Output_
Deviation_of_S2

Failure_Mode_
of_C1

 
Figure 4-3: The top-level fault tree for the event “Functional_failure_of_S” 
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Figure 4-4: An example of a mechanically generated fault tree 
 

It is important to point out that the synthesis algorithm would not be able to generate 

such fault trees if there are any inconsistencies among the safety analyses. In that case, 

the algorithm would simply point out the inconsistencies. The resultant fault trees, 

therefore, effectively link in a consistent manner the results from the various analyses to 

each other and back to the high level FLASH table for the overall system, and hence 

guarantee the consistency of results. At the end of the assessment process, those results 

(FLASH tables and synthesised fault trees) form an integrated collection of safety 

analyses which provides a consistent and meaningful representation of anticipated 

scenarios of the propagation or mitigation of failure in the system. 

4.2 FLASH method: tables 
FLASH analysis follows the decomposition and design of the system and produces a 

hierarchy of tables alongside the hierarchy of modules (see Figure 4-5).  These tables 

contain the assessments of peer modules (i.e. functions, systems or components) in the 

system hierarchy.  Whilst modules propagate flows, tables propagate events which may 

represent different entities according to whether the module bears the analysis of a 

function, a system or a component.  Before we reach the lowest level of decomposition, 

events are failures as they appear at the output of the module propagating them, that is 

flow deviations on outgoing flows.  At the lowest level of decomposition they represent 

internal malfunctions of basic components in the design. 

 The table for a function focuses on functional failure modes (i.e. loss of function, 

provision of function when not required, incorrect operation), associates with them a 

criticality level, lists their causes and where risk reduction is required.  On the basis of 

the risk reduction needed, recommendations and derived safety requirements for the 
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architecture that achieves the function are given. Figure 4-6 a) summarises fields in a 

FLASH table used to assess a function. 

The table for a system focuses on system failure modes.  For each failure mode that 

can potentially be propagated by the system, it identifies causes and where risk reduction 

is required.  On the basis of this risk reduction, derived safety requirements for each 

component are recorded.  Figure 4-6 b) summarises fields in a FLASH table used to 

assess a system. 

The table for a component focuses on component failure modes propagated to other 

components or systems.  Causes are identified and for those that are failure modes of that 

component, reliability data (i.e. failure rates, repair rates, failure probability on demand 

etc.) and information about the lifecycle to be used for common cause failures analysis 

are recorded.  For the causes that are external events, i.e. input or primary events, the 

module originating them is identified in the last part of the name of the failure mode 

itself, the tag. Figure 4-6 c) summarises fields in a FLASH table used to assess a 

component. 
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Figure 4-5: Hierarchy12 of modules and tables 

                                                      
12 This is a very generic decomposition. We do not mean this decomposition to 

accommodate any sort of systems 
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A single generic table template is proposed for these three analyses.  The information 

recorded inside the table identifies whether it refers to a function, a system or a 

component. 

 

 

Functional
Failure Modes

Inputs and
Secondary events
(functional failures)

Fu
nc

tio
n

a) 

 

Fields used for the analysis of a function 
1) Effects (i.e. Functional failure modes) 

2) Causes 

3) Criticality 

4) Description 

5) Justification, design recommendation and 

derived safety requirements 

6) FMEA results 

System
Failure Modes

Inputs and
Secondary events

(System or
Component failures) Sys

tem

b) 

 

Fields used for the analysis of a system 
1) Effects (i.e. Failure modes propagated) 

2) Causes 

3) Description 

4) Justification, design recommendation and 

derived safety requirements 

5) FMEA results 

 

Com
po

ne
nt   Component

Failure Modes
Inputs and

Secondary events
(System or

Component failures)

c) 

 

Fields used for the analysis of a 

component 
1) Effects (i.e. Failure modes propagated) 

2) Causes 

3) Description 

4) Justification, design recommendation and 

derived safety requirements 

5) Component’s failure modes & reliability 

data (given by the manufacturer) 

Figure 4-6: Fields in a FLASH table for a function, a system and a component 

 

4.2.1 Events 

The term event is used to designate a generic failure mode (or a success mode) that is 

propagated by a module (i.e. function, system or component) to another and any of its 

causes, either internal or external.  Events are unique entities inside a FLASH analysis, 

consequently two failure modes of the same type propagated by two identical modules 



 

 95

are actually two different events. Events may represent malfunctions, module failure 

modes, the intended flow delivered by the module, its deviations from the correct value 

or tell whether data are delivered on time (i.e. early or late), not delivered at all or 

delivered when they were not supposed to be delivered.  Events are used to link tables 

across the hierarchy.  At the functional level events propagated by a table are functional 

failure modes.  At the architectural level events propagated by a table are system failure 

modes.  At the component level events propagated by a table are component failure 

modes.  Events have their own syntax illustrated in Figure 4-7.  

 

Event syntax 

Events are identified by two pieces of information: an entity and a tag.  The syntax is: 

 

<Event>:= < Entity>.<Tag>  

 

The tag identifies the module propagating the event (e.g. the name of the component or 

an acronym).  The entity characterises the event.  The entity may assume various 

meanings.  In the FHA, it represents functional failure modes:  

 

< Entity>:= <Functional failure Mode> (e.g.: OMISSION OF FUNCTION X) 

 

In HAZOP, an entity consists of two pieces of information: a flow and a deviation that 

can be associated with that flow. 

 

<Entity>:= <Deviation>.<Flow>    (e.g.: LESS.OUTPUT PRESSURE) 

 

In FMEA, an entity represents a component failure mode. 

 

<Entity>:= <Component failure mode>  (e.g.: SENSOR SHORT TO GROUND) 

Figure 4-7: Syntax for events 

 

Whether events represent functional, system, component failure modes or the intended 

value at the right time, they can be ranked using the taxonomy in Figure 4-8.  Events are 

classified into three classes: events that are propagated by modules i.e. Outgoing Events 
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and are also called Effects; the ones that enter the component, i.e. Incoming Events; and 

the ones that are generated inside a module, i.e. Generated Events.  

Outgoing events can be propagated either towards modules at the same hierarchical 

level, (i.e. to the same level) or to modules at a higher hierarchical level, (i.e. enclosing 

level). 

Incoming events can either be input or secondary events.  Input events are 

differentiated from secondary events since they represent deviations of the variables (e.g. 

flows, data etc.) that are processed by the module which the table refers to (i.e. the 

module was designed to process those variables).  Secondary events represent deviations 

of flows supporting the function the module has to achieve.  They provide what the 

module needs to carry out its task, e.g. power supply.  Both input and secondary events 

may come from tables of the same hierarchical level, i.e. from same level13, or from 

tables belonging to the higher hierarchical level, i.e. enclosing level.  

 

Events

Input

Primary
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Effects

from the same level

from the enclosing level

from the enclosing level

from the same level

basic

further developed

to the same level

to the enclosing level
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Figure 4-8: Taxonomy of events 

                                                      
13 We found that the distinction between Input (and Secondary) events from the same 

level and from the enclosing level helps when parsing tables for the construction of 
fault trees.  The algorithm may either follow, at first, links that come from the same 
level and then from the enclosing (or the other way round). 
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Events generated inside a module boundary are called Primary events.  When the module 

represent a basic component (i.e. not further decomposed) they are called Basic events.  

For a basic event it is generally possible to give reliability data.  When the module 

represents a system that is further decomposed into sub-modules or components they are 

called Primary event further developed.  Causes of primary events further developed are 

investigated by analysing enclosed modules.  Figure 4-9 summarises how effects, 

primary, secondary and input events relate each other.  They refer to the highlighted 

module. 

 
 
 
 
 
 
 

Effects to the same Level

Incoming Events:
Outgoing Events:

Generated Events:

Input & Secondary events
from the enclosing Level

Input & Secondary events
from the same Level

Effects to the enclosing level

Primary Events further
developed

Basic Events

 
 
 
 
 
 

Figure 4-9: Incoming, Outgoing and Generated 
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4.2.2 Areas inside a table 

FLASH tables are divided into three main areas that are used: to analyse outgoing events, 

to list incoming events and generated events (see Figure 4-10).  The Outgoing event area 

is for the analysis of events propagated towards modules of the same or the enclosing 

level.  The Incoming event area lists input and secondary events.  The Generated event 

area lists primary events and records information about basic events.  

 

Outgoing event area

Incoming event area

Generated event area

Table header

 
Figure 4-10: Main areas of a FLASH table  

 

4.2.3 Outgoing event area: Effects 

When referring to a module, events leaving the boundary are called Effects.  A module 

transforms primary, secondary and input events into other events that are propagated.  

This may happen, for instance, when a timing error enters from an input and a value error 

is delivered by the output, or when a value error enters a module, but it is detected by a 

voting logic mechanism that allows the module to deliver a “good” event.  The relation 

that models the transformation of events inside a module is written into the Causes 

Column of the FLASH table and (if it is made by only AND and OR gates) obeys the 

syntax in Figure 4-11.  In the case additional gates are required to model the 
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transformation (e.g. XOR, N out of M or dynamic fault tree gates), more composition 

rules have to be added to the ones listed here. When an event leaves a module, it inherits 

the tag that identifies the father.  The tag can be either the full name of the module or an 

acronym. 

 
 

<expression>    :: =  <term>  |  <composition> 

<composition>  :: =  <conjunction>  |  <disjunction> 

<conjunction>   :: =  <term> "AND"  <expression> 

<disjunction>    :: =  <term>  "OR"    <expression> 

<term>              :: =  <event>  |  "(" <expression> ")" 

<event>            :: =  see Figure 4-7 

 

Figure 4-11: Syntax of the Causes column of a FLASH table  

 

For the construction of the hierarchy of tables, we found it useful to divide effects into 

two tables. Effects that are propagated directly towards the boundary of the enclosing 

module (i.e. to the higher hierarchical level) that are analysed in the table in which the 

first column is Event to a higher level; and effects that are propagated towards other 

enclosed modules, which appear in the table in which the first column is Event to the 

same level.  Both these tables have six columns (see Table 4-2). 

 From left to right, the Effects column lists events propagated that have to be 

analysed.   The Causes column records the logical combination of events (i.e. incoming 

and generated events) which cause the Effect.  The Description column gives details of 

consequences of the event propagated.  The Criticality column contains the criticality of 

the Effects, however it is used only at the functional level.  The 5th column 

(Justifications, recommendations, derived safety requirements …etc) contains the result 

of the safety assessment of the proposed model of the module (i.e. against safety 

requirements).  If the design satisfies such constraints, then the system decomposition 

proceeds, i.e. each sub-module is further decomposed.  If the design is not satisfactory, a 

decision is taken on whether to modify the model of this module or the model of the 

enclosing module.  In addition the table contains recommendations and derived safety 

requirements to develop enclosed modules.  The FMEA results column is used in the 

integration and verification phase, that is when the decomposition process has reached 
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the lower possible level and rates becomes available for most of the basic events.  At this 

stage, fault trees can be constructed for events propagated by parsing causes columns in 

FLASH tables. Summarised results from the probabilistic calculations of these fault trees 

are recorded in the FMEA results column.  This information is then used to take a final 

decision on the suitability of the proposed model for the module. 

 
 

Effects 
Events to the same 
level 

Causes Description Criti-
cality 

5th column 
Justification, 
Recommendations 
Derived Safety 
Requirements 

Verifica-
tion 
(FMEA 
results) 

Event_10 

Event_1 AND/OR 
Event_2 
AND/OR Event_5 
AND (Event_6 OR 
Event_7) {AND/OR 
…} 

Description 
of the  
Event_10 and  
its 
consequences 

 

Analysis of the 
Event_10 and 
derived safety 
requirements for 
the modules 
causing this event  

Event_10 
likelihood, 
as calculated 
from 
comp.’s data 
sheets  

Event_20 

Event_1 AND/OR 
Event_3 AND 
(Event_6 OR 
Event_7 OR 
Event_11) AND 
(Event_6 OR 
Event_7 AND 
Event_11) {AND/OR 
...} 

Description 
of the  
Event_20 and  
its 
consequences 

 

Analysis of the 
Event_20 and 
derived safety 
requirements for 
the modules 
causing this event  

Event_20 
likelihood, 
as calculated 
from 
comp.’s data 
sheets  

…      
 

 

Effects  
Events to the 
enclosing  level 

Causes Description Criti-
cality 

5th column 
Justification, 
Design 
Recommendations 
Derived Safety 
Requirements 

Verifica-
tion 
(FMEA 
results) 

Event_30 

Event_2 AND/OR 
Event_4 OR 
Event_6 OR 
Event_7 AND/OR 
Event_11 AND/OR 
Event_14 {AND/OR 
…} 

Description 
of the  
Event_30 and  
its 
consequences 

 

Analysis of the 
Event_30 and 
derived safety 
requirements for 
the modules 
causing this event  

Event_30 
likelihood, 
as calculated 
from 
comp.’s data 
sheets  

Event_40 

Event_6 AND/OR 
Event_7 AND/OR 
(Event_6 OR 
Event_7AND 
Event_11) AND/OR 
Event_12 AND/OR 
Event_15 {AND/OR 
…} 

Description 
of the  
Event_40 and  
its 
consequences 

 

Analysis of the 
Event_40 and 
derived safety 
requirements for 
the modules 
causing this event  

Event_40 
likelihood, 
as calculated 
from 
comp.’s data 
sheets  

…      
Table 4-2: Effects to the same and enclosing level 
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Table for groups of events 

Sometimes the expression in the Causes column of a FLASH table is quite complicated.  

To simplify it we found it useful to take out of that column those groups of events that 

repeat in different rows (or that may have particular meanings).  See, for example, groups 

of events that are highlighted in bold italic characters in Table 4-2: they can be taken out.  

The group of events “Event_6 OR Event_7” appears in rows for events: Event_10, 

Event_20 and Event_30.  In similar cases to make the table more neat and tidy, we 

suggest the substitution of repeated groups of events with one single event in this case it 

is called GOE_1.  This new event and its causes are described into another table that is 

called Group of events table.  Table 4-3 is an example, it has an identical structure to the 

effects table.  A similar thing is done for the other group of events in Table 4-2 i.e. 

“Event_6 OR Event_7 AND Event_11”, which is called GOE_2.  After substituting 

groups of events that we have identified, Table 4-2 appears as in Table 4-4.  

 
 

Group of events Causes Description Critica
lity 

5th column, 
Justification, Design 
Recommendations, 
Derived Safety 
Requirements 

FMEA 

GOE_1 Event_6 OR 
Event_7 

Description of the  
GOE_1  and  its 
consequences 

 

Analysis of the 
GOE_1 and derived 
safety requirements 
for the modules 
causing this event  

 

GOE_2 
Event_6 OR 
Event_7AND 
Event_11 

Description of the  
GOE_2 and  its 
consequences 

 

Analysis of the 
GOE_2 and derived 
safety requirements 
for the modules 
causing this event  

 

…      
Table 4-3: Groups of events written for Table 4-2 

 

4.2.4 Incoming event area: Input and Secondary events 

Input and Secondary events are the only events that enter the module boundary.  Each of 

them represents a flow with one of its deviations.  Input events are differentiated from 

secondary events.  Whilst Input events are processed by the module, Secondary events 

provide the module with what it needs to process input events.  For example, take an 

Electronic Controller that receives signals from sensors, sends signals to actuators and 

needs a power supply to operate.  Signals coming from sensors with any of the deviations 

that applies to them (i.e. omission, commission, early late, etc.) represent Input Events, 
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whilst the power supply with deviations from its expected value is a secondary event.  

Input and Secondary events are listed into two tables differentiating whether they come 

from modules on the same or the enclosing level. 
 

Effects Causes Description Criti-
cality 

5th column, 
Justification, Design 
Recommendations, 
Derived Safety 
Requirements 

Verifica-
tion 

(FMEA 
results)

Event_10 
Event_1 AND/OR 
Event_2 
AND/OR Event_5 AND 
GOE_1) {AND/OR …} 

Description 
of the  
Event_10 and  
its 
consequences

Analysis of the 
Event_10 and derived 
safety requirements 
for the modules 
causing this event  

Event_10 
likelihood, 
as 
calculated 
from 
comp.’s 
data sheets 

Event_20 

Event_1 AND/OR 
Event_3 AND (GOE_1 
OR Event_11) AND 
GOE_2 {AND/OR ...} 

Description 
of the  
Event_20 and  
its 
consequences

Analysis of the 
Event_20 and derived 
safety requirements 
for the modules 
causing this event  

Event_20 
likelihood, 
as 
calculated 
from 
comp.’s 
data sheets 

…      
 

Effects Causes Description Criti-
cality 

5th column, 
Justification, Design 
Recommendations, 
Derived Safety 
Requirements 

FMEA 

Event_30 

Event_2 AND/OR 
Event_4 AND/OR 
GOE_1 AND/OR 
Event_11 AND/OR 
Event_14 {AND/OR …} 

Description 
of the  
Event_30 and  
its 
consequences

 

Analysis of the 
Event_30 and derived 
safety requirements 
for the modules 
causing this event  

Event_30 
likelihood, 
as 
calculated 
from 
comp.’s 
data sheets 

Event_40 

Event_6 AND/OR 
Event_7 AND/OR 
GOE_2 AND/OR 
Event_12 AND/OR 
Event_15 {AND/OR …} 

Description 
of the  
Event_40 and  
its 
consequences

 

Analysis of the 
Event_40 and derived 
safety requirements 
for the modules 
causing this event  

Event_40 
likelihood, 
as 
calculated 
from 
comp.’s 
data sheets 

…      
Table 4-4: Effects written using Groups of Event, defined in Table 4-3 

 

4.2.5 Generated Events area: Primary events 

Events generated inside the module boundary are called Primary events.  There are two 

types of primary events: Basic events which are not developed any further, and Primary 

events further developed which are propagated by enclosed modules.  When the module 

is a basic component, it is often possible to provide failure rates for its basic events. 
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When the module is further decomposed into other modules, its failure modes are the 

results of failures in its enclosed sub-modules or components, hence the analysis has to 

go further, investigating lower levels. 

Basic Events 

Basic events are component failure modes for which causes are not investigated any 

further.  Often it is possible to collect reliability data for these events from the 

manufacturer of the component, but in some other cases (e.g. some software) it is not 

possible.  The table for basic events is divided into two sub-areas.  The upper part is used 

to collect Reliability data, the lower part to collect Lifecycle information, see Table 4-5.  

Reliability data (i.e. failure and repair rates, mean time to failure, failure probability on 

demand etc.) are calculated from manufacturer’s data sheets and adapted to the 

environment where the component operates (i.e. temperature, vibrations, magnetic fields, 

humidity etc.).  Lifecycle information is additional data regarding the component 

generating the event.  It records information about the whole life of the component, going 

from the design, through the production, installation, testing, maintenance, and the 

environment where the component operates.  It is collected from various sources 

including manufacturer, designers, experienced people working in maintenance and 

testing of similar installations and weighted using a multiple criteria decision analysis 

methods such as that in [Prasad, 1998].  Lifecycle information is actually a list of defects 

or errors that may occur during the component lifecycle that are likely to cause the 

component to fail in one of its failure modes.  Defects can occur in the manufacturing 

process, in the materials employed or in the assembly line; errors can be in 

specifications, architecture, design, choice of materials, installation, test, operation, 

maintenance, etc.  The list of defects and errors is supposed to be exhaustive14, span the 

whole lifecycle and divide it into mutually independent categories called Lifecycle 

Categories.  Lists in Table 2-12, Table 4-5 (taken from [SAE-ARP 4754, 1996]) and 

Table 5-1 obey such constraints.  Lifecycle information is used to identify couplings 

among events and to estimate common cause failure probabilities15.  For each ith 

Category of the lifecycle two data are given: the Percentage %i and the Coupling Code. 

The Percentage “%i” represents the contribution of the ith lifecycle Category to the 

likelihood of the basic event X.  For example, take a generic component, manufacturer’s 

                                                      
14 In practice it can never be exhaustive, but it should be as extensive as practical.  
15 The issue of Common Cause Failure analysis is dealt in details in Chapter 5. 
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data show that the likelihood of one of its failure mode to be due to errors during 

maintenance is low e.g. below 1%.  They justify this by saying that there is a very simple 

procedure that operators rarely get wrong.  However the environment where the 

maintenance take place is quite harsh, according to experienced people working in 

maintenance of similar equipment and they say that this increases the likelihood of errors 

if compared with normal situations.  Similar considerations are made for all other 

lifecycle categories.  The safety analyst after hearing all the different viewpoints 

associates numbers to each of the lifecycle categories.  Obviously the sum of all the 

Percentage “%i” has to be 100.  It is not our intention to explain any formal method to 

arrive to those numbers, we just say that there are methods for the evaluation and 

consideration of the expert judgement that can be employed for this task [Prasad, 1998]. 

 The Coupling Code specifies the actual source of the coupling.  For example, take a 

group of valves of the same type.  Several lifecycle categories may be responsible for 

failure modes in these valves, maintenance procedures is one of these.  If it is known 

(i.e. from specifications) that the same maintenance procedure is used for the 

maintenance of all these valves, then failure modes of these valves will have the same 

coupling code for the Lifecycle Category “Maintenance Procedures”.  That coupling code 

is the identifier of that specific maintenance procedure. 

 Chapter 5 explains in details how FLASH uses coupling codes and lifecycle 

categories for common cause failure analysis. 

Primary events further developed 

Primary events further developed are generated by components or sub-modules of the 

module under examination, i.e. this module is decomposed into more units which 

generate these events.  Reliability data for these events become available only when the 

system hierarchy has been decomposed into sufficient detail that there are sufficient data 

to build and evaluate fault trees with these events at the top. 

4.2.6 Table template 

In the FLASH method the same table template is used for the analysis of any module at 

any level in the system hierarchy.  The template we propose for such analysis is 

presented in Table 4-6.  The header identifies the module’s instance, type, periodicity (in 

case it represents a real time software function), and the acronym that is used to identify 

the module in the hierarchy (i.e. tag).  Areas for Outgoing events, Incoming events and 

Primary events follow below the header.  However not all the fields of the table are 
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always used.  The criticality column, in the outgoing event area, is considered only when 

the module represents a high level function, and incoming and generated events areas 

may not be used for some components.   

Having said that, we add that the layout of a FLASH table is not strict, it can be 

modified to suit needs that may arise in the analysis of some systems.  For instance, an 

additional column in the area for outgoing events may be necessary when causes of an 

event, which is propagated by the module, are function of a state (or mode) of the 

system.  The additional column will made it possible to distinguish among different 

failure mechanisms that propagate the same failure mode but in different states of the 

system.  If we do not have an additional column, which identifies the state in which the 

failure mechanism applies, the state has to be considered somewhere else, for instance in 

the causes column e.g. by using conditional or dynamic gates, however complicating the 

expressions. 
 

Basic Events 

   Event_1  Event_2  Event_3  … 
Failure Rate λ[1/h]  10-4  -   -   …  
Repair Rate µ[1/h]  -   -   -   …  

Mean Time to Failure MTTF [h]  -   -   -   …  
Failure Probability on demand   -   10-3   10-4   …  R

el
ia

bi
lit

y 
 D

at
a 

Mission time for the system [h]  50   50          50   …  
 

  Coupl. 
Code 

%  Coupl.
Code 

%  Coupl.
Code 

% Coupl. 
Code 

% 

 Design Architecture  DCA1 2  DCA1 8  DCA2 4 … … 

Concept and 
Design 

Technological 
Materials Equipment 
Type 

 DTM1 3  DTM1 7  DTM2 2 … … 

 Specifications  DS1 1  DS1 6  DS2 7 … … 
 Manufacturer  MM1 3  MM2 5  MM2 3 … … 

Manufacturing Procedures  MPD 1 5  MPD 2 4  MPD 2 6 … … 
 Process  MPP 1 1  MPP 2 8  MPP 2 4 … … 

Installation/ Fitter  IIF1 3  IIF1 5  IIF1 7 … … 
Integration Procedures  IIP1 6  IIP2 4  IIP3 6 … … 
And Test Location  IIL1 2  IIL2 6  IIL3 5 … … 

 Routing  IIR1 5  IIR2 7  IIR3 4 … … 
Operation Staff  OS1 4  OS1 8  OS2 7 … … 

 Procedures  OP1 6  OP1 6  OP2 4 … … 
Maintenance Staff  MS1 7  MS1 2  MS2 2 … … 

 Procedures  MP1 8  MP1 3  MP2 6 … … 
Test Staff  TS1 6  TS2 1  TS3 5 … … 

 Procedures  TP1 8  TP2 3  TP3 4 … … 
Calibration Staff  CS1 7  CS2 5  CS3 5 … … 

 Procedures  CP1 6  CP2 1  CP3 5 … … 
 Mechanical and 

Thermal 
 EMT1 5  EMT2 3  EMT3 4 … … 

Environmental Electrical and 
Corrosion 

 EEC1 4  EEC2 6  EEC3 5 … … 

Li
fe

cy
cl

e 
C

at
eg

or
ie

s 

 Chemical and 
miscellaneous 

 ECM1 8  ECM2 2  ECM3 5 … … 

Table 4-5: Basic Events in a FLASH table 
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4.2.7 Programmable electronic modules 

TABLE HEADER 
Instance = <Name> Component Type = <Name> Periodicity = <Periodicity> Tag = <Name> 

OUTGOING EVENTS 
EFFECTS 

Same level Causes Description Criticality
5th Column 

Justification, Design 
Recommendations, Derived 

Safety Requirements 

Verification 
(FMEA results) 

NA |  <Event> NA | <expression> NA | <description> NA | <description> NA | <description> 
{ <Event>} {<expression>} {<description>} {<description>} {<description>} 

Enclosing Level Causes  Consequences Criticality
5th Column 

Justification, Design 
Recommendations, Derived 

Safety Requirements 

Verification 
(FMEA results) 

NA |  <Event> NA | <expression> NA | <description> NA | <description> NA | <description> 
{ <Event>} {<expression>} {<description>} {<description>} {<description>} 

GROUPS of Events 

Group of Events Causes Consequences Criticality
5th Column 

Justification, Design 
Recommendations, Derived 

Safety Requirements 

Verification 
(FMEA results) 

NA |  <Event> NA | <expression> NA | <description>  NA | <description> NA | <description> 
{ <Event>} {<expression>} {<description>}  {<description>} {<description>} 

INCOMING EVENTS 
INPUTS  
Same level Enclosing  level 
NA |  <Event> 
{ < Event>} 

NA |  <Event> 
{ < Event>} 

SECONDARY EVENTS  
From the Enclosing Level From Modules of the same level  
NA |  <Event> NA |  <Event> 
{ < Event>} { < Event>} 

GENERATED EVENTS 
PRIMARY EVENTS 
Primary Events Further developed 
NA |  <Event> 
{ <Event>} 
Basic Events 

 Reliability data <Event>  <Event>  <Event>  { <Event>} 
 Failure Rate λ[1/h] -   -   -    
 Repair Rate µ[1/h] -   -   -    
 Mean Time to Failure MTTF 

[h] 
-   -   -    

 Mission time [h] -   -   -    
 

Lifecycle  
Category 

Coupl.
Code 

%  Coupl. 
Code 

%  Coupl.
Code 

%  Coupl. 
Code 

% 

 Design Architecture  … …  … …  … …  … … 
Concept and Design Technological Materials 

Equipment Type 
 … …  … …  … …  … … 

 Specifications  … …  … …  … …  … … 
 Manufacturer  … …  … …  … …  … … 

Manufacturing Procedures  … …  … …  … …  … … 
 Process  … …  … …  … …  … … 
 Fitter  … …  … …  … …  … … 

Installation/ Integration Procedures  … …  … …  … …  … … 
And Test Location  … …  … …  … …  … … 

 Routing  … …  … …  … …  … … 
Operation Staff  … …  … …  … …  … … 

 Procedures  … …  … …  … …  … … 
Maintenance Staff  … …  … …  … …  … … 

 Procedures  … …  … …  … …  … … 
Test Staff  … …  … …  … …  … … 

 Procedures  … …  … …  … …  … … 
Calibration Staff  … …  … …  … …  … … 

 Procedures  … …  … …  … …  … … 
 Mechanical and Thermal  … …  … …  … …  … … 

Environmental Electrical and Corrosion  … …  … …  … …  … … 
 Chemical and 

miscellaneous 
 … …  … …  … …  … … 

Table 4-6: Template for a FLASH table of a generic module 
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Programmable electronic modules are those modules that contain software.  They may 

represent control units (made up of processors, memories, input and output circuits), 

Programmable Logic Controllers (PLC), smart sensors and smart actuators.  In addition 

to hardware failures, these modules can suffer from software failures.  Software failures 

are caused either by failure of the hardware upon which the software runs (e.g. memory 

and processor errors) or by flaws in software. The problem with the analysis of 

programmable electronic modules is due to the complexity of the hardware and the 

difficulty of mapping the software onto the hardware.  The mapping depends on many 

factors, amongst these the compiler used to create the binary executable file and the 

chipset on which the binary file runs.  In some cases the software dynamically allocates 

processes and variables to various hardware resources e.g. often variables are 

dynamically allocated in memories.  Hence, a detailed mapping of the software onto 

hardware can be very complex. 

 The study of a system with both software and hardware components is usually 

performed considering all interdependencies. The analysis of programmable electronic 

modules in the FLASH method has a similar approach.  A system is hierarchically 

decomposed regardless of the fact that functions are achieved by software, hardware, or 

by a mix of both of them.  The decomposition proceeds until failure events propagated by 

a component are modelled as a combination of hardware and software basic events.  

Figure 4-12 shows the model of a programmable electronic module of such a kind.  It 

encloses several sub-modules: input, output, processor, and the software. Input includes 

primary events that describe the failure and success of input circuits and registers.   

Output includes primary events that describe the failure and success of output circuits 

and registers.  Processor contains primary events that describe the failure and success of 

processors and memories. Software contains primary events that account for 

requirements, specifications and implementation flaws of the executable file.  Arrows 

that connect input, output and processor to the software module in Figure 4-12, represent 

success and failure events that can be transformed inside the programmable electronic 

module by the software.  For example, the failure of one out of n redundant processors 

can be recovered by suitable software voting logic.  Arrows that connect the software 

module to the output module represent success and failure events that can be transformed 

inside the output module by a suitable hardware. For instance the output module may 

have implemented hardware voting logic able to recover from some software failures.  

Arrows that connect input, output, software and processor straight to effects, represent 
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success and failure events that cannot be transformed any further inside the 

programmable logic module, e.g. undetectable software flaws, some requirements and 

specification errors, or register failures in the output module.  They result in the 

propagation of failure events.  All the events and combination of events that cause the 

same effect are linked by “OR” gates in the cause column of the relevant FLASH table.  

A full understanding of the system and how it works is necessary to build the model of 

the module and the corresponding FLASH table. 

 

 

Input

(Input
Circuits and
registers)

Output
module

(Output
Circuits and
registers)

Processor

(Processors and
Memories)

Software

(Requirements,
Specifications
and Software)

Detectable or
Recoverable

events

Undetectable and
Unrecoverable events

Input
events Effects

Secondary events
(Power Supply)

 

Figure 4-12: Propagation of events in a programmable electronic component 

 

4.3 FLASH method: process 
The previous section explained the statics of the FLASH method, that is the system 

hierarchy, the hierarchy of the safety analysis, and the FLASH table with all its entries.  

This section explains the dynamics of the FLASH method, that is the process of 

conducting a FLASH analysis by completing FLASH tables.  First of all we explain how 

FLASH supports and drives the development of the system design.  Then, we consider 

the ways in which FLASH supports the integration of different analysis and makes 
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possible overall system verification.  A simple case study is used to show the process in 

practice. 

4.3.1 Decomposition and Design 

The FLASH process in the decomposition and design stage of the lifecycle is split into 

two phases, the first comes before the design of the internal model of the module takes 

place, the second comes after the design stage.  During the first phase (see Figure 4-13), 

the analyst identifies events that are propagated by the module and consequences of such 

events on the whole system and environment.  This information is stored in the Effects 

and the Description columns of the FLASH table.  This preliminary part of the process 

makes safety analysts to focus on the severity of events propagated so that they can issue 

safety-related recommendations to designers for the development of the internal 

architecture of the model.  These recommendations are written into the upper part of the 

5th column.  Once designers have produced the design of the module, safety analysts 

assess it by checking whether it meets the recommendations they gave before.  For such 

analysis they consider hypothetical failure modes that may be propagated by components 

and sub-modules and write the mechanism underneath the propagation of failures in the 

causes column, in terms of generated, inputs, primary events and logical operators.  The 

equation in the causes column is similar to the ones in FPTN [Fenelon et al., 1994], but 

in addition to the FPTN notation, in FLASH, the equation is later analysed and results 

recorded into the 5th column.  Such analysis may bring safety analysts to accept the 

design proposal or to refuse it, giving some justifications.  To help analysts in their 

decision making, the 5th column has been divided into sub headings: Detection, 

Recovery, Maximum accepted likelihood for critical events in the causes column, and 

Recommendations.  Basically, the 5th column reports information on whether it is 

possible to detect or recover from the event propagated, the maximum accepted 

likelihood for critical events in the causes column and recommendations, either for 

choosing suitable components to place inside the module or for developing sub-modules.  

Table 4-7 shows how the 5th column is partitioned. 

 One of the concerns with FLASH is about the amount of information stored in the 

5th column.  Such information could be spread on multiple columns simply by changing 

the layout of the table.  However, we prefer to keep this arrangement since during the 

integration and verification stage it is easier to compare recommendations and derived 
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safety requirements with what is actually achieved in the real system and recorded into 

the FMEA results column that is the 6th column. 
 

Events propagated
(Effects) and  description

columns are written

Incoming and Generated
Events for the module

are written

The model for the module is
proposed

The Causes column of
the FLASH table for the

module is written

The 5th column is
completed

(i.e. Justification,
Reccomandation,

Derived safety
requirements)

Recommendations for the
model of the module
are written in the 5th

column of the FLASH table

Before the
design of

the internal
model of the

module

After the
design of

the internal
model
of the

module

 
Figure 4-13: Process of creating a FLASH table 

 
 

Effects … 5th Column (Justifications, Recommendations, 
derived safety requirements,) 

Verification 
(FMEA 
results) 

Event 
propagated … 

Before design  
Recommendations 
… 
Effect max accepted likelihood 
…  
After design 
Detection 
… 
Recovery 
… 
Recommendation 
… 
Max accepted likelihood for critical causes. 
… 

 

… … … … 
Table 4-7: The 5th column is divided into many areas  
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The causes column 

The expression modelling the transformation of events that goes into the Causes column 

of a FLASH table is constructed from the knowledge of the internal design of the 

module, of flows exchanged among its components and sub-modules, and their failure 

modes.  Two approaches exist to write that equation. In the first approach, the fault tree 

for each effect is first constructed, then reduced to a logical expression, and finally this 

expression is written in the Causes column.  The knowledge of the layout of the module, 

its components and sub-modules is used to draw the fault tree as suggested in [Vesely, 

1981].  This approach is suitable for any modules of the system hierarchy. In the second 

approach, the correlation among causes and effects is written without the previous 

construction of the fault tree.  This requires more effort from analysts since they have to 

make the effort to do all the steps for the construction of the fault tree before writing the 

actual expression.  However this second approach can be much faster for experienced 

analysts than the first, and we recommend it for simple modules.  These two approaches 

are shown for the system in Figure 4-14, which is made by four components and a 

control unit.  These four components are divided into two groups.  Components A1 and 

B1 make Line 1, components A2 and B2 make Line 2. Only one line is needed for the 

system to work.  The task of the system is to regulate a flow going from left to right. 

 In the first approach the tree with the effect No.Flow.Module as top event is defined 

first, see Figure 4-15.  Then it is reduced to a logical expression made up of events, 

logical operators  (e.g. “AND”, “OR”) and parentheses, finally it is written into the 

Causes column like in Table 4-8 and Table 4-9.  

In the second approach, causes of the critical effect “No.Flow.Module” are written 

as combinations of four incoming events (i.e. No.Flow.Tank, C_.Stop_Signal.Stop, 

O_.Start_Signal.Start, No.Power.Busbar) and two Groups of Events (GOE) 

(No.Flow_Line_1.GOE and No.Flow_Line_2.GOE) see Table 4-8.  Incoming events 

describe the lack of incoming flow from the tank i.e. No.Flow.Tank, the omission or 

commission of start and stop signals i.e. O_.Start_Signal.Start, C_.Stop_Signal.Stop and 

the lack of power from the bus bar i.e. No.Power.Busbar.  Groups of events describe the 

failure of line one (i.e. valves A1 and B1) and line two (i.e. valves A2 and B2).  Table 

4-9 shows that Causes of No.Flow_Line_1.GOE are component B1 generated events i.e. 

No.Flow.B1, or input events from the controller i.e. No.Signal_B1.Ctr.  Similarly, 

component A1 may fail because of its generated events i.e. No.Flow.A1 or because of the 
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lack of the signal from the controller i.e. No.Signal_A1.Ctr.  In conclusion causes of 

No.Flow_Line_1.GOE can be written as:  

 

(No.Flow.B1 OR No.Signal_B1.Ctr) OR (No.Flow.A1 OR No.Signal_A1.Ctr) 

 

With similar reasoning it is possible to write causes for the second group of event, 

No.Flow_Line_2.GOE: 

(No.Flow.B2 OR No.Signal_B2.Ctr) OR (No.Flow.A2 OR No.Signal_A2.Ctr) 

 

These expressions are then written into the Causes column of the Group of Events table, 

see Table 4-9. 

Redundancy of information 

The hierarchy of FLASH tables may contain redundant information.  For instance, 

incoming events for a module may appear both as causes in the table of that module and 

as causes in the table for the enclosing module.  Once the hierarchy of tables is parsed for 

the fault tree construction these events are likely to originate two identical branches in 

the same fault tree.  However, this is not a problem since cut set analysis will eliminate 

the duplication, additionally the algorithm for fault tree construction can be made 

sophisticated enough to draw fault trees avoiding repeating branches. 
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Figure 4-14: Model of fault tolerant flow controller 



 

 113

OUTGOING EVENTS 
Effects 
Events to 
the same 
level 

Causes Description Critica-
lity 

5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements 

Verifica-
tion 
(FMEA) 

No.Flow.M
odule 

No.Flow.Ta
nk  
OR 
O_.Start_S
ignal.Start 
OR  
C_.Stop_Si
gnal.Stop 
OR   
No.Power.
Busbar  
OR  
No.Flow_Li
ne_1.GOE  
AND  
No.Flow_Li
ne_2.GOE 

No flow of 
fuel from 
the flow 
controller 
to the 
engine. 
The engine 
cannot 
start. No 
electric 
power is 
provided 
 
It can be 
caused by 
an 
omission of 
the start 
signal, a 
commissio
n of the 
stop signal, 
lack of fuel 
from the 
tank or 
because 
there is no 
flow in the 
two 
possible 
paths that 
can be 
activated 
by the 
Controller 

Cat. 

 
Before design  
 
Recommendations 
The failure of the module cannot be 
handled. A fault tolerant architecture 
is needed to prevent that single 
failures in any of the valves cause a 
system failure 
The module has to be built with 
redundant components.  
 
Effect max accepted likelihood 
10-4 on demand 
 
After design 
 
Detection 
A flow sensor after and external the 
module  
 
Recovery 
Possible for failure of one line  
 
Recommendation 
The second flow line has to be 
uncoupled with the first.   
CCF analysis is required. 
 
Max accepted likelihood for 
critical events in the Causes 
column. 
λ (No.Flow.Tank)            < 10-7 h-1  
P(No.Signal.Sensor)        < 10-5 
demand 
P(O_.Start_Signal.Start) < 10-5 
demand 
P(C_.Stop_Signal.Start)  < 10-5 
demand 
λ (No.Power.Busbar)      < 10-7 h–1 

It will 
be 
used 
during 
the 
verifica
-tion 
stage 

Table 4-8: Causes of the critical effects No.Flow.Module 
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Group of events Causes Description Critica-lity 
5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements 

Verifica-
tion 
(FMEA) 

No.Flow_Line
_1.GOE 

(No.flow.B1 
 OR  
No.Signal_B1 
.Ctr) 
OR  
(No.flow.A1  
OR 
No.Signal_A1 
.Ctr) 

Line 1 is out 
of work, but 
flow may go 
through line 2.  
 
Action is 
needed to 
operate line 2 

N/A 

 
Before design 
Recommendations 
The failure can be handled. The system 
detects the failure event and replaces Line1 
with Line 2 
Ensure that the failure detection mechanism is 
reliable 
 
Effect max accepted likelihood 
The acceptable failure rate for this effect 
should be λ<10-3  (1/h)  
 
After design 
Detection 
A flow sensor after and external the module  
 
Recovery 
Line 2 is activated upon failure of line 1 
 
Recommendation 
The second flow line has to be uncoupled with 
the first. 
CCF analysis is required. 
 
Max accepted likelihood for critical events 
in the Causes column. 
P(No.Signal_A1.Ctr) < 10-5 on demand 
P(No.Signal_B1.Ctr) < 10-5 on demand 
P(No.flow.A1)           < 10-5   on demand  
P(No.flow.B1)           < 10-5   on demand 

It will be 
used 
during 
the 
verifica-
tion 
stage 

No.Flow_Line
_2.GOE 

(No.flow.B2 
OR 
No.Signal_B2 
.Ctr)  
OR  
(No.flow.A2  
OR  
No.Signal_A2 
.Ctr) 

Line 2 is out 
of work.  
Since line 2 is 
operated 
upon failure of 
line 1, which 
is already 
lost, then the 
whole system 
is lost. 

N/A 

Before design  
The failure cannot be handled. Line1 has 
already failed. Failure of line 2 causes the top 
event 
 
Recommendations 
Ensure that the failure detection mechanism is 
reliable 
 
Effect max accepted likelihood 
5*10-5 on demand 
 
After design 
Detection 
Not possible 
 
Recovery 
Not possible 
 
Recommendation 
Minimise couplings with line 1, perform a 
common cause failure analysis 
 
Max accepted likelihood for critical events 
in the Causes column. 
P(No.Signal_A2.Ctr)   < 10-5  on demand 
P(No.Signal_B2.Ctr)   < 10-5  on demand 
P(No.flow.A2)             < 10-5   on demand  
P(No.flow.B2)             < 10-5   on demand 

It will be 
used 
during 
the 
verifica-
tion 
stage 

Table 4-9: Group of Events for table in Table 4-8 
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No Flow from Line
1 and 2

No.Flow_
Line_2.GOE

AND

No.Power.Busbar

O_.Start_Signal.
Start

No.Flow.Tank

No.Flow.B1

No.Signal_B1.Ctr

No.Flow.A2No.Flow.A1

No.Signal_A1.Ctr No.Signal_B2.CtrNo.Signal_A2.Ctr

No.Flow.B2

C_.Stop_Signal.
Stop

No.Flow.module

OR

OR

No.Flow_
Line1.GOE

OR

 

Figure 4-15: Tree for the event No.Flow.Module for the module in Figure 4-14 

 

 

Analysis of basic components 

Basic components are modules that are not further decomposed in the system hierarchy.  

They may represent hardware equipment, software functions or tasks.  Causes of their 

failure modes can only be incoming events or basic events. The writing of relationships 

in the Causes column of FLASH tables for basic components proceeds in a similar way 

as for other modules.  Figure 4-16 shows the failure model propagating the event 

No.Flow.A1 (i.e. out of component A1) for the system in Figure 4-14.  The corresponding 

FLASH table is Table 4-10.  Causes of No.Flow.A1 can be two primary events (i.e. Fail 

to Open, Plugged) and two incoming events (i.e. No.Signal_A1.ctr and No.Flow.Tank).  
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The tree built for the top event No.Flow.A1 is in Figure 4-17.  Given the simplicity of the 

failure model the tree comprises only one OR gate.  As already said, the tree and the table 

are equivalent and the construction of the tree is not necessary for the construction of the 

table.  Figure 4-18 shows the full model for component B1, which actually is a different 

instance of component A1.  It has two incoming flows (i.e. Flow.A1 and Signal_B1.Ctr) 

and one outgoing flow (i.e. Flow.B1).  The outgoing event area in Table 4-11 considers 

all the events that can potentially be propagated by the module and their relations with 

Incoming and Generated events.  Reliability data for generated events (taken from 

[OREDA, 1984]) are recorded into the Basic Events area.  GOE are not used for the 

analysis of this component since relations between effects and causes do not need to be 

further simplified. 

 

 
 

A1

No.Flow.A1No.Flow.Tank

Fail to close

Fail to open Plugged

Significant internal
leackage

No.Signal_A1.Ctr

Partially plugged

 
Figure 4-16: Failure model for component “A1”16 

                                                      
16  For the completeness of the drawing all basic events of the component A are shown.  

However  Fail to Close, Significant Internal Leakage and Partially Plugged are not 
causes of the effect No.Flow.A1,  they contribute to other effects propagated by the 
module that are not analysed here. 
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OUTGOING EVENTS 
Effects 
Events to 
the same 
level 

Causes Description Critica-
lity 

5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements 

Verification
(FMEA 
results) 

No. 
Flow.A1 

No.Flow.Ta
nk  
OR  
No.Signal_
A1.Ctr  
OR  
Fail to 
Open.A1  
OR  
Plugged.A1 

The output of 
component 
A1 deviates 
from the 
design 
intention. 
There are no 
effects on the 
system if the 
failure is 
detected and 
recovered 
 
Line 1 is out 
of work, but 
flow can go 
through line 
2. 
 
Action is 
needed to 
open line2 

N/A 

Before design  
Recommendations 
The failure have to be handled by 
detecting the failure event and activating 
Line 2  
Effect max accepted likelihood 
10-4 on demand 
After design 
Detection 
A flow sensor after and external the 
module  
Recovery 
Possible switching to line 2 
Recommendation 
The line2 has to be uncoupled with the 
line 1  
Ensure that the failure detection 
mechanism is reliable 
Analyse the error detection mechanism 
for potential failure modes 
Max accepted likelihood for critical 
events in the Causes column. 
Failure rate for Fail to Open.A1 should 
be < 10-3 h-1 
Failure rate for Plugged.A1 should be        
< 10-3 h-1 

It will be 
used during 
the 
verification 
stage 

Table 4-10: FLASH table for the model in Figure 4-16 
 

Plugged.A1 Fail to open.A1No.Signal_A1.Ctr No.FLow.Tank

No.Flow.A1

OR

 
Figure 4-17: This tree for the effect No.Flow.A1 in Figure 4-11 
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B1

Flow.B1Flow.A1

Fail to close

Fail to open Plugged

Significant internal
leackage

Signal_B1.Ctr

Partially plugged

 

Figure 4-18: Model for Component B1 

 

Analysis of sub-modules 

The analysis of sub-modules proceeds in a similar way as the analysis of modules. Here 

we will see the analysis of the programmable electronic module Control in Figure 4-14. 

This sub-module has both software and hardware components.  Events propagated can be 

caused either by incoming events, generated events that are further developed into lower 

level modules (i.e. Input, Output, Hardware and Software modules) and combinations of 

those. In fact this module has fault tolerant capabilities, hence the ability to recover 

from some single hardware or software failures.  However, the recovery action may fail, 

either because of random failures or couplings, and cause failure events still to be 

propagated.  The simultaneous occurrence of failure events with the redundant failure of 

the recovery action is represented by AND gates in the Causes column of the FLASH 

table. Figure 4-20 and Table 4-12 report the tree and the table for the effect 

No.Signal_B1.Ctr that is propagated by the Controller in Figure 4-19, the failure of any 

recovery function is represented by AND gates. 
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OUTGOING EVENTS 
Effects 
Events to the same 
level 

Causes 
Effects & 
Consequences 
description 

Criticality 
5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements 

Verification 
(FMEA 
results) 

No.Flow.B1 

No.Flow.A1 
OR  
No.Signal_B1.Ctr  
OR  
Fail to Open.B1  
OR  
Plugged.B1 

The output of component 
B1 deviates from the 
expected behaviour. 
There are no effects on the 
system if the failure is 
detected and recovered 
 
Line 1 is out of work, but 
flow can go through line 2. 
 
Action is needed to open 
line2 

N/A 

Before design  
Recommendations 
The failure have to be handled by detecting 
the failure event and activating Line 2  
Effect max accepted likelihood 
10-4 on demand 
After design 
Detection 
A flow sensor after and external the module  
Recovery 
Possible switching to line 2 
Recommendation 
Line2 has to be uncoupled with line 1, CCF 
analysis is needed.  
Max accepted likelihood for critical 
events in the Causes column. 
λ (Fail to Open.B1)< 10-4 h-1 
λ (Plugged.B1)       < 10-4 h-1 

It will be used 
during the 
verification 
stage 

More.Flow.B1 

More.Flow.A1  
AND 
(C_.Signal_B1.Ctr  
OR  
Fail to Close.B1 
OR 
Significant Internal 
Leakage.B1) 

The output of component 
B1 deviates from the 
design intention. 
There are no effects on the 
system if the failure is 
detected and recovered 
 
Too much flow is delivered 
by the B1. A1 has already 
failed.   
 
The system is lost   

N/A 

Before design 
Recommendations 
The failure cannot be handled since A1 has 
already failed 
Effect max accepted likelihood 
10-4 on demand 
After design 
Detection 
A flow sensor after B1  
Recovery 
Not possible 
Recommendation 
Valve A1 has to be uncoupled with Valve 
B1, CCF analysis is needed. 
Max accepted likelihood for critical 
events in the Causes column. 
λ (Significant Internal Leakage.B1)<10-3h-1 
λ (Fail to Close.B1)                        <10-3h-1 

It will be used 
during the 
verification 
stage 

Less.Flow.B1 
Less.Flow.A1 
OR 
Partially Plugged.B1 

The output of component 
B1 deviates from the 
design intention. 
There are no effects on the 
system if the failure is 
detected and recovered 
 
Less flow than required is 
delivered by the 
component. Line 2 is likely 
to compensate.  
 
Action is needed to 
operate line2 

N/A 

Before design 
Recommendations 
The failure have to be handled by detecting 
the failure event, closing line 1 and activating 
Line 2  
Effect max accepted likelihood 
10-4 on demand 
After design 
Detection 
A flow sensor after and external valve B1  
Recovery 
Possible switching to line 2 
Recommendation 
Line2 has to be uncoupled with the line 1, 
CCF analysis is needed. 
Max accepted likelihood for critical 
events in the Causes column. 
λ (Partially_Plugged.B1) < 10-4 h-1 

It will be used 
during the 
verification 
stage 

Normal.Flow.B1 
Normal.Flow.A1  
AND 
Normal.Signal_B1.Ctr 

Line 1 is working fine N/A Reliability must be > 0.999998 

It will be used 
during the 
verification 
stage 

Tagged.Flow.B1 
Normal.Flow.A1  
AND 
Tagged.Signal_B1.Ctr 

A recovery action took 
place in the controller.  
 
The module is still 
working, however the 
system will be lost for any 
additional failure 

N/A 

Before design 
Recommendations 
The system has fault tolerant capabilities, 
hence it is likely it is working though some 
failures has occurred 
Effect max accepted likelihood 
λ (Partially_Plugged.B1) < 10-3 h-1 
After design 
Detection 
Already detected  
Recovery 
Already done 
Recommendation 
Correct the problem as soon as possible and 
not later than two hours after detection. 
Max accepted likelihood for critical 
events in the Causes column. 
N/A 

It will be used 
during the 
verification 
stage 

Basic Events 

Reliability data Fail to Open.B1 Plugged.B1  Significant Internal 
Leakage.B1  Fail to Close.B1  Partially 

Plugged.B1 
Failure Rate λ[1/h] 1e-5 1e-5   1e-6  1e-5   1e-5 
Repair Rate µ[1/h] .25 .25   .25  .25  .25 

Mean Time to Failure MTTF [h] … …   …  …  … 
Mission time (of the system)[h] 8740 8740   8740  8740  8740 

Table 4-11: FLASH table for B1 
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Input
module

(Input
Circuits and
registers)

Output
module

(Output
Circuits and
registers)

Processor module

(Processors and
Memories)

Software module

(Requirements,
Specifications
and Software)

No.Signal.Sensor No.Signal_B1.Ctr

No.Power.BusBar

Software Module Failure

Hardware Module Failure

Input Module Failure

Output
Module
Failure

Controller
Input failures
recoverable
by Software

Hardware failures
recoverable
by Software

Output failures
recoverable
by Software

Software failures
recoverable by the

Output module

Hardawe failures
recoverable by the

Output module
 

Figure 4-19: Controller with included modules 

 

 
 

No.Signal_B1.Ctr

OR

No.Signal.Sensor No.Power.BusBar L_.Value.InputO_.Value.InputL_.Value.Output

No.Value.Output
Processor failure
recoverable by

software

The software fails to
recover a recoverable

hardware failure
propagates no signal

Hardware failure
and software

recovery function
failure

AND

Input failure
recoverable by

processor

The processor fails to
recover a input failure

and propagates no
signal

Input failure and
hardware recovery

function failure

AND

Input failure
recoverable by

software

The software fails to
recover a input failure

and propagates no
signal

Input failure and
software recovery

function failure

AND

Software failure
recoverable by the

output

Output fails to
recover a software
failure propagating

no signal

Software failure
and output

recovery function
failure

AND

Processor failure
recoverable by

output

Output fails to recover
a recoverable

hardware failure and
propagates no signal

Hardware failure
and output

recovery function
failure

AND

No.Value.Input

O_.Value.Output

 

 

Figure 4-20: Tree for the event No.Signal_B1.Ctr for the Controller in Figure 4-19
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OUTGOING EVENTS 
Events to the same 
level (Effects) Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived Safety 

Requirements  
Verification 

(FMEA results) 

No.Signal_B1.Ctr 

L.Value.Output OR 
No.Signal.Sensor  
OR O.Value.Output OR 
No.Power.Busbar  
OR No.Value.Input OR 
No.Value.Output 
OR O.Value.Input OR 
L.Value.Input OR  
Hardware_failure_and_Softw
are_rec_funct_failure.GOE  
OR  
Software_failure_and_Hardw
are_rec_funct_failure.GOE  
OR 
Input_failure_and_Software_
rec_funct_failure.GOE OR 
Input_failure_and_Software_
rec_funct_failure.GOE OR 
Hardware_Failure_and_Outp
ut_rec_funct_failure.GOE 

Line 1 is out of 
work, but flow 
can go through 
line 2. 
 
The control 
should activate 
line2 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-5 on demand 

After design 
Some fault tolerance has been achieved, however some single failures of 
the Output and Input module cannot be recovered. 
Detection 
Not possible 
Recovery 
Not possible  
Recommendation 
Software must be developed to comply with safety integrity level four  
Max accepted likelihood for critical events in the Causes column. 
λ (L.Value.Output)      < 10-6 h-1 
λ (No.Signal.Sensor)  < 10-6 h-1 
λ (O.Value.Output)     < 10-6 h-1 
λ (No.Power.Bus bar) < 10-6 h-1 
λ (No.Value.Input)       < 10-6 h-1 
λ (No.Value.Input)       < 10-6 h-1 
λ (No.Value.Output)    < 10-6 h-1 
λ (L.Value.Input)          < 10-6 h-1 

It will be used 
during the 
verification stage 

Group of events Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived Safety 
Requirements  

Verification 
(FMEA results) 

Hardware_failure_an
d_Software_rec_func
t_failure.GOE 

Processor failure recoverable 
by software 
AND 
Software fails to recover a 
recoverable Hardware failure 
and propagates no signal 

Software fails to 
recover a 
recoverable 
hardware failure 
and propagates 
no signal 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-7 on demand 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Ensure that evens in the causes column are uncoupled.  Make a Common 
Cause failure analysis 
Max accepted likelihood for critical events in the Causes column. 
10-4 on demand for each of them 

It will be used 
during the 
verification stage 

Software_failure_and
_Output_rec_funct_f
ailure.GOE 

Software failure recoverable 
by the output 
AND  
Output fails to recover a 
recoverable software failure 
and propagates no signal 

Output fails to 
recover a 
recoverable 
software failure 
and propagates 
no signal 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-7 on demand 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Ensure that evens in the causes column are uncoupled.  Make a Common 
Cause failure analysis. Software must be developed to comply with safety 
integrity level four.  
Max accepted likelihood for critical events in the Causes column. 
10-4 on demand for each of them 

It will be used 
during the 
verification stage 

Input_failure_and_So
ftware_rec_funct_fail
ure.GOE 

Input failure recoverable by 
software 
AND  
Software fails to recover a 
recoverable input failure and 
propagates no signal 

Software fails to 
recover a 
recoverable 
hardware failure 
and propagates 
no signal 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-7 on demand 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Ensure that evens in the causes column are uncoupled.  Make a Common 
Cause failure analysis. Software must be developed to comply with safety 
integrity level four. 
Max accepted likelihood for critical events in the Causes column. 
10-4 on demand for each of them 

It will be used 
during the 
verification stage 

Input_failure_and_Ha
rdware_rec_funct_fai
lure.GOE 

Input failure recoverable by 
processor 
AND  
The processor fails to 
recover a input failure and 
propagates no signal 

The processor 
fails to recover a 
input failure and 
propagates no 
signal 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-7 on demand 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Ensure that evens in the causes column are uncoupled.  Make a Common 
Cause failure analysis. Software must be developed to comply with safety 
integrity level four. 
Max accepted likelihood for critical events in the Causes column. 
10-4 on demand for each of them 

It will be used 
during the 
verification stage 

Hardware_Failure_a
nd_Output_rec_funct
_failure.GOE 

Processor failure recoverable 
by output 
AND  
Output fails to recover a 
processor failure and 
propagates no signal 

Output fails to 
recover a 
processor failure 
and propagates 
no signal 

N/A 

Before design  
Recommendations 
The failure cannot be handled. It has to be extremely unlikely 
Effect max accepted likelihood 
10-7 on demand 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Ensure that evens in the causes column are uncoupled.  Make a Common 
Cause failure analysis. Software must be developed to comply with safety 
integrity level four. 
Max accepted likelihood for critical events in the Causes column. 
10-4 on demand for each of them 

It will be used 
during the 
verification stage 

Continue in the next page …
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Basic Events 

Reliability data  

Processor 
failure 

recoverable 
by the 

software 

 

Software fails to 
recover a 

recoverable 
hardware failure 

 
Software failure 
recoverable by 

the output 
 

Output fails to 
recover a 

recoverable 
hardware failure and 
propagates no signal 

 

Input 
failure 

recovera-
ble by 

software 

 

Software fails to 
recover a 

recoverable 
hardware failure 
and propagates 

no signal 

 … 

Failure Rate λλλλ[1/h]  10E-5  …  … 10E-5  10E-5  …  … 
Repair Rate µµµµ[1/h]  …  …  … …  …  …  … 

Mean Time to Failure MTTF [h]  …  …  … …  …  …  … 
Mission time [h]  8740  …  … 8740  8740  …  … 

Table 4-12: Piece of the FLASH table for the effect No.Signal_B1.Ctr  
 

4.3.2 Integration and Verification 

The aim of the FLASH analysis in the integration and verification phase is to confirm 

that the system with its real components meets requirements, specifications and 

recommendations produced during the decomposition and design.  This verification 

cannot be done earlier, since the detailed information about components is not available 

until the end of the design process, which is when basic components are chosen. After 

this stage, we have the most detailed knowledge about the system and all the information 

we need to assess how good the system will be with real components.  During the 

verification process, each component, sub-module and module in the hierarchy is 

individually verified to confirm that they meet requirements, specifications and 

recommendations.  The process starts from basic components and proceeds towards 

higher levels of integration finishing at the top level.  All the tables are considered and 

the likelihood of propagated events is evaluated by using fault tree analysis.  

Probabilities of these events (which are top events in fault trees) are recorded in the 

“FMEA results” column.  Additionally, in this column evidence is given to show that the 

requirements and constraints defined during the decomposition and design are met.  If 

some of the recommendations are not met they are reviewed or the system design 

enhanced.  In the latter case, the architecture of the module that does not meet 

recommendations is modified.  In some instances it may be sufficient to replace only one 

component, in others, a whole module may have to be re-engineered.  Following those 

modifications, FLASH analysis has to be re-run for all new components and all the ones 

interfacing with them.  Figure 4-21 shows the entire process of verification with the 

feedback given to the decomposition and design.  In this figure nmax represents the 

number of levels in the hierarchy, n the current level, m the current module under 

analysis and E the effect for which the tree is built.     
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Feedback to
Decomposition

and Design

Set   n  = nmax-1
Set   m = 0
Set   E  = 0

Evaluate the FT for the E effect,
m module, n level.

Compare the FT's top event
probability with the maximum
probability given for the same

event in the 5th column.

Justify whether  recommendations
recorded in the 5th column are

met.

Is the
E top event

probability less than
the one given in the

5th column?

Set E = E +1

Have all
 Effects belonging

to the m component
been analysed?

YES

NO

Set m = m + 1
Set E=0

Have all the
 m components

belonging to
the n level be

analysed?

NO

YES

YES

NO

Is n = 1?
NO

YES

Set n=n+1
Set m=0
Set E=0

The System
meets

requirements
 

Figure 4-21: Feedback to decomposition and design 

 

Trees for effects are constructed by parsing the hierarchy of tables.  These trees link in a 

consistent manner results from the functional level analysis to low level FMEAs.  The 

process of fault tree synthesis is mechanical.  It is a simple parsing of tables, from the 
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current level down to the bottom.  Figure 4-22 shows the tree drawn from the top event 

No.Flow.Module that is obtained by parsing tables for Module, A1, B1 and Controller.  

This tree can also be obtained linking trees represented in Figure 4-15, Figure 4-17, 

Figure 4-20.  Intermediate events No.Signal_A2.Ctr, No.Signal_B2.Ctr, No.Flow.A2 and 

No.Flow.B2 are not developed.  Dashed branches represent incoming events of the 

Module. Table 4-13 is the FLASH table for the Module as it should be after the 

verification (i.e. the FMEA results column is completed). 

 
 

No.Signal_A1.
Ctr

Plugged.A
1

Fail to
open.A1

No.Flow_ A1

OR

No.Signal_B1.
Ctr

Plugged.B
1

Fail to
open.B1

No.Flow_ B1

OR

No.Signal_A2.
Ctr

Plugged.A
2

Fail to
open.A2

No.Flow_ A2

OR

No.Signal_B2.
Ctr

Plugged.B
2

Fail to
open.B2

No.Flow_ B2

OR

No.Flow_
Line_2

OR

No.Flow_
Line1

OR

No.Signal_B1.Ctr

OR
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Figure 4-22: Tree for the top event No.Flow.Module 
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OUTGOING EVENTS 
Events to the 
same level 
(Effects) 

Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived 
Safety Requirements Verification (FMEA results) 

No.Flow.Module 

O_.Start_Signal.Start 
OR  
C_.Stop_Signal.Stop 
OR  
No.Flow.Tank  
OR  
No.Power.Busbar  
OR  
No.Flow_Line_1.GOE  
AND  
No.Flow_Line_2.GOE 

No flow of fuel from 
the flow controller to 
the engine. The 
engine cannot start. 
No electric power is 
provided 
 
It can be caused by an 
omission of the start 
signal, a commission 
of the stop signal, lack 
of fuel from the tank or 
because there is no 
flow in the two 
possible paths that can 
be activated by the 
Controller 

Catastrophic 

Before design  
Recommendations 
The failure of the module cannot be handled. A fault tolerant 
architecture is needed to prevent that single failures in any of 
the valves cause a system failure 
The module has to be built with redundant components.  
Effect max accepted likelihood 
10-4 on demand 

After design 
Detection 
A flow sensor after and external the module  
Recovery 
Possible for failure of one line  
Recommendation 
The second flow line has to be uncoupled with the first CCF 
analysis is required 
Max accepted likelihood for critical events in the Causes 
column. 
λ (No.Flow.Tank)            < 10-7 h-1  
P (No.Signal.Sensor)       < 10-5demand (during the mission) 
P (O_.Start_Signal.Start) < 10-5demand (during the mission) 
P (C_.Stop_Signal.Start)  < 10-5demand (during the mission) 
λ (No.Power.Busbar)       < 10-7 h-1 

Likelihood  of the event 
propagated 
5*10-5 on demand 
 
Likelihood of critical causes 
P(No.Flow.Tank)     = 5*10-6   
P(No.Signal.Sensor = 4*10-6  
P(No.Power.Busbar)= 10-8 
 
Justification 
The module is built with 
redundant components.  No 
single points to failure for 
mechanical components are 
present. At least two valves 
must fail to cause the event. 
Recovery is possible for single 
mechanical failure. Flow lines 
are sufficiently uncoupled to 
meet requirements. 
Programmable Logic Controller 
and software meet safety 
requirements for their integrity 
level. 

Group of events Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived 
Safety Requirements Verification (FMEA results) 

No.Flow_Line_1 
.GOE 

(No.flow.B1 
 OR  
No.Signal_B1.Ctr) 
OR  
(No.flow.A1  
OR 
No.Signal_A1.Ctr) 

Line 1 is out of work, 
but flow may go 
through line 2.  
 
Action is needed to 
operate line 2 

N/A 

Before design 
Recommendations 
The failure can be handled. The system detects the failure 
event and replaces Line1 with Line 2 
Ensure that the failure detection mechanism is reliable 
Effect max accepted likelihood 
The acceptable likelihood for this effect should be <10-3  on 
demand (during the mission) 

After design 
Detection 
A flow sensor after and external the module  
Recovery 
Line 2 is activated upon failure of line 1 
Recommendation 
The second flow line has to be uncoupled with the first. 
CCF analysis is required. 
Max accepted likelihood for critical events in the Causes 
column. 
P(No.Signal_A1.Ctr) < 10-5on demand (during the mission) 
P(No.Signal_B1.Ctr) < 10-5on demand (during the mission) 
P(No.flow.A1)             < 10-5 on demand (during the mission) 
P(No.flow.B1)             < 10-5 on demand (during the mission) 

Likelihood  of the event 
propagated 
4*10-4 on demand 
 
Likelihood of critical causes 
P(No.Signal_A1.Ctr)= 5*10-7 
on demand 
P(No.Signal_B1.Ctr)=5* 10-7 
on demand 
P(No.flow.B1) = 5* 10-4   on 
demand  
P(No.flow.B1) = 5* 10-4   on 
demand 
 
Justification 
The software activates Line 2 
upon failure of line 1. Flow 
lines are sufficiently uncoupled 
to meet requirements.  
Couplings have been 
minimised. The likelihood for 
the event propagated include 
the contribution from CCF. 

No.Flow_Line_2 
.GOE 

(No.flow.B2 
OR 
No.Signal_B2.Ctr)  
OR  
(No.flow.A2  
OR  
No.Signal_A2.Ctr) 

Line 2 is out of work.  
Since line 2 is 
operated upon failure 
of line 1, which is 
already lost, then the 
whole system is lost. 

N/A 

Before design  
The failure cannot be handled. Line1 has already failed. 
Failure of line 2 causes the top event 
Recommendations 
Ensure that the failure detection mechanism is reliable 
Effect max accepted likelihood 
5*10-4 on demand (during the mission) 

After design 
Detection 
Not possible 
Recovery 
Not possible 
Recommendation 
Minimise couplings with line 1, perform a common cause 
failure analysis 
Max accepted likelihood for critical events in the Causes 
column. 
P(No.Signal_A2.Ctr)< 10-5on demand (during the mission) 
P(No.Signal_B2.Ctr)< 10-5on demand (during the mission) 
P(No.flow.A2)            < 10-5  on demand (during the mission)  
P(No.flow.B2)            < 10-5  on demand (during the mission) 

Likelihood  of the event 
propagated 
4*10-4 on demand 
 
Likelihood of critical causes 
P(No.Signal_A2.Ctr)= 5*10-7 
on demand 
P(No.Signal_B2.Ctr)=5* 10-7 
on demand 
P(No.flow.A1) = 5* 10-4   on 
demand  
P(No.flow.A1) = 5* 10-4   on 
demand 
 
Justification 
The software activates Line 2 
upon failure of line 1. Flow 
lines are sufficiently uncoupled 
to meet requirements. 
Couplings have been 
minimised. The likelihood for 
the event propagated include 
the contribution from CCF. 

Table 4-13: Complete FLASH table for Module  

 

4.4 Tool support 
The FLASH method presented so far appears to be quite complex.  However, it can be 

supported by a software tool that automates the most tedious and errors prone 

procedures.  A software tool may help to navigate through the hierarchy of tables, 

generate trees, to calculate the likelihood of events propagated and to make consistency 

checks on the whole hierarchy.  The navigation through tables is useful to trace the 

propagation and transformation of events from high level functional failures to low level 

component failure modes.  The automatic fault trees generation and evaluation, allows 
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drawing trees for hazardous events and updating them any time the design is modified.  

Consistency checks are related to the FLASH hierarchy.  Hierarchies, like the one 

produced by FLASH need to be consistent to be useful.  It may happen that while writing 

tables for FLASH modules or modifying them, that consistency among tables in the 

hierarchy is lost.  Hence consistency has to be checked following changes. 

During our research, an existing software tool, the Safety Argument Manage 

(SAM), developed at the University of York [McDermid, 1994], has been adapted to 

support some phases of the FLASH method.  At present, a new SAM module supports 

writing and updating of FLASH tables.  In addition, it has been shown how generation of 

fault trees from FLASH tables is possible.  Until now the automatic tree generation has 

not been implemented in the FLASH module of the SAM software.  Here are two 

reasons: 1) lack of time; 2) it is believed to be possible to reuse part of existing code for 

the automatic fault tree generation already developed in [Papadopoulos and McDermid, 

1999a] within the HiP-HOPS module of SAM. 

FLASH tables are written using an editor very similar to widely used commercial 

table editors.  When the table hierarchy is completed, the editor makes possible 

navigating from any table to lower or higher level tables by selecting an event and 

choosing to Explore causes or Navigate back.  Causes of any event in the hierarchy can 

be traced to component failure modes.  Events are chosen from the Causes column of a 

table.  The tag of the event identifies the table that contains causes of this event.  Events 

are sought in the Effects column of the table propagating them.  Causes are in the 

corresponding box of the Causes column.  Figure 4-23 displays the Outgoing area of the 

table for the top level of a fuel system.  This table propagates three effects No_.Fuel.fc, 

More_.Fuel.fc and Less_.Fuel.fc.  Causes of the event No_.Fuel.fc are: 

 
 

O_.Fuel.bva AND O_.Fuel.bvb OR No_.PowerSupply.PS 
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Figure 4-23: Outgoing area of the table for the top level 

 

If the analyst requires to search for causes of the event O_.Fuel.bva, the software takes 

the bva table and seeks that event in output columns of this table (i.e. Output events to 

the “Same” or “Enclosing” level).  As the Figure 4-24 shows causes of this event are the 

following:  
 

Fail_to_open.bva OR O_.BVAi.ec  OR Plugged.bva 
 

 

 

Figure 4-24: Causes of the effect O_.Fuel.bva 
 

Once analysts have found causes of the event O_.Fuel.bva they may want to seek more 

details or the causes of the causes.   For instance, they may want to investigate the event 

Fail_to_open.bva, that is one of the causes of the event O_.Fuel.bva.  This event has the 
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tag bva therefore it has to be sought in the same table.  In fact it is a basic event for the 

component bva.  Reliability information for this basic event is shown in Figure 4-25.  

The function Navigate back that is highlighted at the right of the SAM window for the 

component bva leads back to the previous table i.e. Figure 4-24.  This makes it possible 

to select another event and investigate its causes or find out its reliability information.  
 

 

Figure 4-25: Basic events table for component bva 
 

The FLASH module of SAM also supports the writing of expressions in the Causes 

column of the FLASH table by providing the analyst with the set of events and gates to 

form the expression in the Causes column.  Once the analyst has chosen the function 

“write causes” and points on the Causes column, a menu appears.  This menu shows the 

only set of incoming and generated events, AND and OR gates, and parentheses that can 

be used to build expressions in that table.  Any expression is built only by selecting 

entries from that “pop-up” menu. 

For the reasons already mentioned, we did not develop the software for automatic 

fault tree construction.  That prevented us from running complex case studies.  It has 

been discovered that manual construction of fault trees from the FLASH table is quite 

tedious, and prone to mistakes.  This is particularly evident when designs are reviewed 

during an advanced stage of the lifecycle, i.e. in the integration and verification stage, 

and many trees are to be modified and re-evaluated.  In those cases the automatic fault 

tree generation would be very helpful.  Once an effect is selected in a FLASH table, the 

function Fault Tree should draw a tree with that event at the top.  When sufficient 

reliability data are available also the top event likelihood should be given.  Figure 4-26 
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displays the tree for the top event No_.Fuel.fc presented in previous tables as it should 

appears for the event in our example.  Additionally the automatic fault tree generation 

can potentially be used to check the consistency of the whole hierarchy.  Building all the 

possible fault trees in the hierarchy would not be possible if there are inconsistencies in 

tables. 

 
 

 
Figure 4-26: Fault tree for the top event No_.Fuel.fc 
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4.5 Discussion 
This chapter presented the FLASH method, which aims to support the decomposition and 

design of a system and the integration and verification process.  FLASH is performed in 

parallel to the design in a hierarchical fashion.  It uses a common syntax that formalises 

the causal relationship that underlies traditional safety analysis techniques like FHA, 

HAZOP and FMEA information.  Within the FLASH framework, causes in the (n-1) 

level tables become effects in the (n) level tables.  Fault trees are built from FLASH 

tables by parsing the relations between causes and effects. In the integration and 

verification, tables produced during the decomposition and design are reviewed and 

checked to see whether specifications and derived safety requirements are met.  FTA is 

used to estimate the likelihood of each hazard.  The aim is to calculate the probability for 

all the critical functional failure modes. 

FLASH can generate results that traditionally have been generated by FHA, HAZOP 

and FMEA, link these results and relate them back to the functional hazard assessment.  

This makes possible the feedback from the integration and verification phase to the 

decomposition and design phase in the lifecycle.  FLASH also enables automated 

consistency checks on the results from the analysis and the mechanical generation of 

fault trees. 

The major benefits expected from the application of the method are to improve 

industrial practice concerning the safety analysis of safety critical systems.  Whilst we 

have not shown that FLASH does work effectively in industries, there is evidence that it 

will be useful.  In particular we have found that FLASH can be a way to comply with 

guidelines that are going to be released for the certification of PLCs for safety critical 

applications by the Italian Institute for Safety and Health at the Work, [ISPESL/CEI, 

2000; Picciolo, 2000, Minichino et al. 2000].  PLCs are now taking the place of relay 

logic in safety critical applications and certification bodies require that PLCs meet at 

least the standard that was guaranteed by the relay logic that is Safety Integrity Level 2.  

In this context, ISPESL (Instituto Superiore per la Prevenzione E la Sicurezza sul 

Lavoro) which is responsible for the implementation of European directives, is issuing 

guidelines for the assessment of Safety Critical PLCs on behalf of the European Agency 

for Health and Safety and the Italian Ministry of Heath.  These guidelines will be a 

national standard and will recommend a hierarchical decomposition and study of systems 

according to the SADT notation [Ross, 1985] that was considered by us prior developing 
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our method and is very similar to the FLASH hierarchical decomposition. In this context 

the FLASH method can potentially be seen as a way to meet those guidelines. 

FLASH has been successfully applied to the analysis of small high integrity 

systems, among them a PLC and a computerised braking system, but it is a complex 

technique that can be heavy to apply without the assistance of suitable software to take 

charge of repetitive and error prone tasks.  It is unclear that it will be applicable to 

support the design and verification of a very large system such as an aircraft, a 

helicopter, a chemical or nuclear installation.  The design of those systems, though they 

appear to be hierarchically decomposable, is not usually approached hierarchically.  Each 

subsystem is designed separately from given specifications and then they are assembled. 

Frequently it happens that significant changes have to be made later to put all the 

subsystems together.  A real hierarchical top down design like the one proposed by 

FLASH is actually not done because it would take too much time, although it would save 

expensive modifications when the artefact is already in an advanced stage of 

construction.  In this context FLASH could still be used to develop each sub-system. 

However we believe that if a FLASH analysis is available for each sub-systems then it 

may be possible to link all these FLASH analyses to produce the FLASH model for the 

full system.  This might be possible if the technique were sufficiently highly automated. 

The next chapter extends the FLASH formalism to Common Cause Failure analysis.  

The information about modules’ lifecycle recorded into FLASH tables during the 

developing phases is used for a qualitative and a quantitative evaluation of common 

cause and the others dependent failures. 
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Chapter Five 

5Common Cause Failure 
This chapter extends the FLASH formalism presented in chapter four to treat common 

cause failures.  Here we show how the hierarchy of FLASH tables can be used to identify 

those minimal cut sets that need to be analysed for common cause failures. Additionally, 

we provide a novel method for quantitative estimation of the likelihood of minimal cut 

sets with coupled events that uses lifecycle information recorded in FLASH tables. 

5.1 Overview 
Common cause failures were extensively introduced in the second chapter.  They are a 

particular kind of failure that occur within redundant devices and endanger fault tolerant 

systems by causing their redundant channels to fail at the same time or in a short time 

interval.  They act like a single point of failure for these systems.  If it were possible to 

have fault tolerant systems with uncoupled channels, there would be no need to 

investigate common cause failures in these systems since no single cause could give rise 

to system failure.  However it is practically impossible to construct, maintain and operate 

completely independent redundant systems so there is always the need for common cause 

failure analysis in fault tolerant systems. 

The easiest way to consider common cause failures is to study minimal cut sets of 

fault trees drawn for critical events of the fault tolerant system.  Minimal cut sets 

exhaustively represent all the combinations of failures that, when occurring 

simultaneously, cause the system failure.  In the case of common cause failures, it 

happens that the root cause17 through the coupling factor causes all the events in the 

minimal cut set to occur within a very short time span.  Consequently the fault tolerant 

system fails as if all the events in the minimal cut set had arisen randomly. 

Typically, the likelihood of a minimal cut set occurring because of common cause 

failures is extremely small, at least one or two orders smaller than the smallest likelihood 

of events in the minimal cut set.  However, it is always greater than the likelihood of the 

whole minimal cut set if the events occur randomly, consequently it is the most important 

contribution to the total likelihood of the minimal cut set.  Hence analysts have to 

                                                      
17 See chapter 2 
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consider common cause failures any time they want to use redundancies to pursue failure 

rates smaller than those of any component employed in the redundant configuration. 

One purpose of common cause failure analysis is to evaluate the actual likelihood of 

minimal cut sets with coupled events.  Without considering common cause failures, fault 

trees for fault tolerant systems underestimate, often by many orders, the likelihood of the 

top event. 

FLASH supports the studies of common cause failures after fault trees have been 

drawn for critical failures and minimal cut sets obtained18.  The process consists, first, in 

the identification of minimal cut sets that have to be analysed for common cause failures 

(i.e. with coupled events), then in the estimation of the likelihood of these minimal cut 

sets. 

5.2 Identification of MCS with coupled events 
The identification of minimal cut sets with coupled events is the first step for considering 

common cause failures in the FLASH method.  In the second chapter we saw that 

common cause failures arise when there are couplings among redundant components.  

These couplings may be generated anywhere in the lifecycle of components making up 

redundant channels. Coupling may be the same person producing the design, the way 

components are manufactured, installed, tested, maintained etc.  To formalise the 

identification of couplings, many checklists have been proposed, two of these are in 

[Mosleh et al., 1993] and [SAE-ARP 4754, 1996]. However, these are very general so we 

have developed a new checklist (reported in Table 5-1) to address software components.  

These checklists aim to be a reference for designers who try to construct fault tolerant 

systems with coupling-free redundant channels, but also to help safety analysts to unveil 

hidden couplings overseen by designers. 

In addition to these two uses, we believe, checklists can be employed for an 

additional purpose, which is to collect information about potential couplings that may 

occur during the lifetime of components.  The idea is that, in correspondence with each 

heading of a checklist, we can record information specific to each component, e.g. a code 

that identifies potential couplings.  For example, in correspondence with the entry 

component manufacturer, the code may identify the company producing the component; 

in correspondence with the entry component procedure, it may identify the procedure 

                                                      
18 It is not intended in this chapter to show how minimal cut set can be obtained by    

reducing a Fault Tree.  That can be found in [Vesely, 1981]. 
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adopted for manufacturing; and so on, for all the entries in the list.  In this way we have 

unequivocally identified all19 the potential couplings in which a component may be 

affected. 

 

Development (Process) • Requirements 
• Requirements team 
• Specifications 
• Specifications team 
• Implementation strategy  
• Implementation team  
• Design strategy 
• Design team 

Test (Process) • Criteria 
• Objectives 
• Requirement test specification 
• Integration test specification 
• Unit test specification 
• Test team 

Tools (for Development 
and Test)  

• Compiler 
• Link/Loaders 
• Code Generator 
• Design & Requirements Tools 
• Operating System 
• Test Stubs and Drivers 
• Test Monitoring 
• Test Management 

Installation Procedure • Production of PROMS 
• Loading a FLASH memory 

Operating Environment • Operating System 
• Device Drivers 

Table 5-1: Checklist of potential couplings in Generic Software Modules 

 

The list20 of potential couplings is, then, inherited by basic events originating within the 

component.  This makes it feasible to compare basic events on the same ground.  For 

example, if two apparently different valves, a stop and a control valve, produced by two 

different manufacturers, are maintained by the same person21, basic events22 for both 

                                                      
19 We aim to identify all the couplings of the component by using a list of attributes that 

spans the whole lifecycle and that is as exhaustive as practical. 
20 The list of potential couplings is what, in chapter 4, was called lifecycle information, 

or lists of lifecycle categories. 
21 It can be also the same team or the subcontractor. 
22 In FLASH terminology: all their generated events. 
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valves will record the name of that person in their corresponding lifecycle category.  That 

person makes them coupled, so a minimal cut set in which there are basic events 

generated in those valves (e.g. fail to control for the control valve and fail stuck for the 

stop valve) is vulnerable to common cause failures, hence the analysts have to undertake 

common cause failure analysis. 

To show a practical example of how the FLASH method works, we will analyse the 

minimal cut set in Figure 5-1.  This figure provides a graphical representation of 

couplings that may exist in a minimal cut set of the third order.  It shows that events A, B, 

and C share a number of couplings.  First we see that all of the three events share code 

IIF1 which represents the fact that the same people have installed components in which 

these events may arise.  Then we see that events A and B are coupled by coupling codes 

i.e. DCA1, DTM1, DS1, OS1, OP1, MS1, and MP1 which are the potential couplings 

generated during the Concept and Design, the Operation and the Maintenance stages.  

Additionally we see that events B and C share coupling codes MM2, MDP2, and MPP2, 

which are the couplings generated during manufacturing.  Therefore this minimal cut set 

has to undergo common cause failure analysis.   

When a minimal cut set like this is found there are actually three possibilities.  The 

first and most obvious, is to try to remove couplings.  For instance, if only we eliminate 

the couplings IIF1 (i.e. Installation - Fitter) we prevent a potential root cause which 

could affect all the events in the minimal cut set.  This can be done employing different 

staff23 to fit components where A, B and C arise. 

The second possibility is to assume that no root causes will spread through those 

couplings, then evidence has to be given.  For instance it can be said that experience 

from similar systems has shown it to be extremely unlikely that conceivable root causes 

will spread through such coupling.  Additionally, we can say that the remaining 

couplings (i.e. those coupled events AB and BC) do not endanger the system since they 

only reduce the degree of fault tolerance from three to two failures, and they alone 

cannot cause the minimal cut set. 

The third option is to quantify the likelihood of the coupled minimal cut set with the 

method that we propose in the next section. 

                                                      
23A practical example is an accident that happened to a British Aerospace aircraft (BAE 

146) with four engines which had a four-engine failure due to common maintenance 
errors.  Now they have changed the procedure: rules say that two teams have to be 
appointed for the maintenance of the four engines (i.e. they have reduced the coupling). 
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Figure 5-1: Couplings in minimal cut set ABC 

 

5.3 Likelihood of MCS with coupled events 
The likelihood of a minimal cut set with coupled events is always evaluated by using 

parametric methods.  These methods adopt parameters to represent conditional 

probabilities of an event arising in some circumstances.  As was said in the second 

chapter, all parametric methods developed, so far, assume the symmetry hypothesis 

[Mosleh et al., 1988], which is based on the common practice in safety and reliability 

analysis to use the same likelihood for events involving similar types of components.  

Experience has actually shown that this is appropriate for systems where common cause 

failures have been studied in the last thirty years (i.e. nuclear power and chemical 

plants).  What happens is that failure rates for similar types of valves, pumps, diesel 

engines etc. (i.e. same size, activation etc.) operating in comparable environmental 
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conditions are very similar, regardless of the manufacturer and the designer [T-Book, 

1992; OREDA, 1984]. 

However we are addressing a different area.  Fault tolerant computer based systems 

are usually not constructed using similar hardware components, but by using a mixture of 

different hardware, software, information and time redundancies.  Consequently events 

representing misbehaviours of their redundant channels are always bound to have very 

different probabilities.  Therefore the symmetry hypothesis cannot be accepted when 

evaluating the likelihood of coupled minimal cut set for these systems. 

 Hence in this section we propose a novel method for the quantitative estimation of 

probabilities of minimal cut set with coupled events that does not assume the symmetry 

hypothesis.  First, we present a new perspective to look at the likelihood of a generic 

event.  Then we show how to calculate the probability of a minimal cut set with coupled 

events considering only actual couplings. 

5.3.1 Likelihood of a generic event 

The likelihood of an event is the probability that it occurs within certain conditions that 

are described by some parameters.  Among these parameters there are the failure 

probability on demand, and the frequency that the event occurs, which are functions of 

other parameters describing, for instance, environmental conditions in which the 

component originating the event is operating (e.g. environmental dependencies, etc.), 

maintenance, testing, etc.  For our studies we assume that the probability of each event is 

already known.  That is equivalent to say that contributions previously mentioned are 

already considered in the total likelihood of the event. 

 What we aim to do is partitioning the total likelihood of the event and associate each 

share to a lifecycle category.  This is like assuming that basic events in components arise 

because of something that was not properly considered or that could have been done 

better in the lifecycle of the component, i.e. an error or a defect.  The portion of the 

likelihood of each event that is associated with each lifecycle category is “the 

Percentage %I” that was introduced in chapter four. 

 In mathematical terms, the total likelihood of an event X can be written as P(X).  If 

event X is made up of n independent events ix , we can write P(X) as in the following 

expression:  
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equivalent to a minimal cut set of the third order) it can be written as:  
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However, since in our study we are considering probabilities extremely small (i.e. almost 

always smaller that 10-3, terms of the second (or greater) order, i.e. 

( ) ( )312132 , xxxxPxxP + , are extremely small if compared with term of the first order, 

i.e. ( ) ( ) ( )321 ,, xPxPxP .  Therefore they can be neglected and we can write the 

likelihood P(X), for n = 3, as:  
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P(X) can be generalized for n generic causes as in equation 5.1 that represents P(X) as 

the arithmetical sum of ith terms, each of them representing the likelihood ( )ixP  of the 

cause ix  occurring and giving rise to event X.   

                                                      
24 Except in the case events ix  are mutually exclusive, in which P(X) can be written as   

( ) ( )∑
=

=
n

i
ixPXP

1
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      (5.1) 

 

When event X is part of a minimal cut set, the cause ix  can be a potential coupling, 

consequently ( )ixP  will be the likelihood that the potential coupling ix  will give rise 

to event X.  

( )ixP  is obtained by multiplying the total likelihood P(X) of the event X times 

the Percentage %I. 

 

 ( )ixP  =  %I * ( )XP       (5.2) 

 

5.3.2 Likelihood of coupled events 

In this section we see how to estimate the likelihood of a minimal cut set with coupled 

events by using expression 5.1.  First we consider a very simple example, a minimal cut 

set made up of two events, for which the lifecycle is decomposed into two categories 

only.  Then we will examine a minimal cut set with three events, finally we will 

extrapolate an expression for a minimal cut set of order n with l lifecycle categories. 

We know that the likelihood of an uncoupled minimal cut set of the second order is 

the product of the likelihood of each event in the minimal cut set occurring randomly.  

That likelihood can be written for l lifecycle categories by using equation 5.1.  It appears 

as in 5.3. 

 

P (XY) = ( ) ( ) ( ) ( )∑∑
==

≅
l

i

l

i
ii YPXPYPXP

11

 (5.3) 

However, as we said in the second chapter, when the minimal cut set is coupled this 

expression does not hold, so we have to consider the product of the likelihood of every 

single potential cause of each event with the likelihood of every single potential cause of 

all the other events.  Therefore, the likelihood of a minimal cut set of the second order 

(n=2) with two lifecycle categories (l = 2) has to be written as in 5.4. 
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P (XY) = P [(x1+x2) (y1+y2)]    (5.4) 

   = P [x1y1 + x1y2 + x2y1 + x2y2]  
 

To further expand 5.4 we must know whether or not potential causes are mutually 

exclusive.  Actually they are not mutually exclusive.  A potential cause that gives rise to 

an event does not exclude another potential cause of that event.  For example, the fact 

that an actuator fails because it was wrongly manufactured (i.e. it wears out too quickly), 

does not exclude the same actuator failing, at exactly the same time, because it was also 

wrongly tested during maintenance.  However, the likelihood of both events happening 

simultaneously is quite small. Therefore, since potential causes are not mutually 

exclusive, expression 5.4 can be expanded as follows in 5.5. 

 

P (XY) = P [(x1+x2) (y1+y2)] 

 = P [x1y1 + x1y2 + x2y1 + x2y2]  

  = P (x1y1) + P (x1y2) + P (x2y1) + P (x2y2)  (5.5) 

     – P (x1y1y2) – P (x2y1y2) – P (x1x2y1) – P (x1x2y2)  

    +P (x1x2y1y2) 

 

This expression appears quite complex, however we can make some considerations to 

simplify it.  Since we deal with probabilities which are extremely small, terms of the 

third and fourth order (i.e. P(x1y1y2), P(x2y1y2), P(x1x2y1), P(x1x2y2) and P(x1x2y1y2)) are 

negligible when compared to terms of the second order (i.e. P(x1y1), P(x1y2), P(x2y1) and 

P(x2y2)), therefore they can be safely ignored.  Hence the probability of the same minimal 

cut set can be written as:  

  

P (XY) ≅ P (x1y1) + P (x1y2) + P (x2y1) + P (x2y2)  (5.6) 
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or in a more compact form as: 

 

P (XY) ≅ ( )∑∑
= =

2

1

2

1
,

i j
ji YXP       (5.7) 

 

Now, if we suppose that events X and Y are coupled for the first of the two lifecycle 

categories (see the Figure 5-2), we know that P(x1y1) has to be evaluated with methods 

for common cause failure analysis, whilst the remaining probabilities, i.e. P(x1y2), P(x2y1) 

and P(x2y2), can be simply calculated as products of independent terms.  Hence, if we use 

subscript letters I and C to indicate Independent and Coupled likelihood (i.e. PI and PC) 

of a generic event we can represent the value of each of the terms in 5.6 as in equation 

5.8.  

 

P (x1y1) = PI (x1) PI (y1) + PC(x1 y1)  

P (x1y2) = P (x1) P (y2)       (5.8) 

P (x2y1) = P (x2) P (y1) 

P (x2y2) = P(x2) P(y2) 
 

 

X

x1

x2

Y

y1

y2

Category 1
(Potential Coupling)

Category 2
(Potential Coupling)

β1xy

LIFECYCLE
INFORMATION

 
 

Figure 5-2: Minimal cut set of the second order with two lifecycle categories 
 

 

Therefore, estimation of the likelihood of a minimal cut set of the second order, with two 

lifecycle categories can be handled quite easily, as we have seen.  However, if we 

increase the order of the minimal cut set and the number of lifecycle categories, the 
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complexity scales up.  Actually, the number of terms in the expression for the likelihood 

of a minimal cut set of the third order with five lifecycle categories (like the one 

represented in Figure 5-3) has 125 terms that can be compactly represented by expression 

5.9. 

 

  P(XYZ) ≅ ( )∑∑∑
= = =

5

1

5

1

5

1

,,
i j k

kji ZYXP     (5.9) 

 

Now, if we look at Figure 5-3, we see that some of the couplings related to only a sub-

group of events in the minimal cut set.  For instance, the first potential coupling concerns 

events X and Y, while the second concerns events Y and Z; the third involves events X 

and Z; and only the last one touches all the three events in the minimal cut set.  Therefore 

if we highlight in bold coupled events in equation 5.9 we will have mixed likelihood 

terms like P(x1, y1, z1),  P(x2, y2, z2), P(x3, y3, z3), P(x1, y1, z2),  P(x1, y2, z2), etc. 

Probabilities of these terms can be evaluated as products of an independent likelihood 

times a common cause failure likelihood.  For example P(x1, y1, z1) can be seen as 

product of  common cause failure term P(x1, y1) times the independent term P(z1). 

 

 

P(x1, y1, z1) = P(x1, y1) * P(z1)     (5.10) 

 

Where: 

 

P(x1y1)  = PI(x1)PI(y1) + PC(x1y2) 
 



144 

 

 

x3

X

x1

x2

x4

x5

Y

y1

y2

y3

y4

y5

Z

z1

z2

z3

z4

z5

Category 1

Category 2

Category 3

Category 4

Category 5

β2yz

β3xz

β1xy

β4xy β4yz

β4xz

LIFECYCLE
INFORMATION

β4xyz

 

Figure 5-3: Minimal cut set of the third order with five lifecycle categories 

 

Probabilities for the other mixed terms with two coupled events i.e. P(x1, y1, z2) P(x1, y1, 

z3), …,P(x1, y1, z5); P(x1, y2, z2) P(x2, y2, z2), …, P(x5, y2, z2) and P(x3, y1, z3), P(x3, y2, 

z3),…, P(x3, y5, z3) can be similarly evaluated.  While the likelihood for the term P(x4, y4, 

z4) is calculated on the basis that x4, y4 and z4 are fully coupled.  Therefore it will be as in 

expression 5.11. 

 

  P(x4 y4 z4) =      PI(x4) PI(y4) PI(z4)  

+ PI(x4) PC(y4 z4)       (5.11) 

+ PI(y4) PC(x4 z4)    

+ PI(z4) PC(x4 y4)    

+ PC(x4 y4 z4) 

  

Table 5-2 reports all the terms that have to be substituted in expression 5.9 to consider 

common cause failures in the minimal cut set in our example.  The right column has 
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terms that consider common cause failures which are used to replace terms in the left 

column for the calculation of the likelihood of the minimal cut set in Figure 5-3. 

 

Terms to be replaced    Likelihood of coupled terms 

P(x1 y1)    PI (x1) PI (y1) + PC (x1  y1) 

P(y2 z2)    PI (y2) PI (z2) + PC (y2 z2) 

P(x3 z3)    PI (x3) PI (z3) + PC(x3 z3) 

P(x4 y4 z4)    PI (x4) PI (y4) PI(z4) + PI (x4) PC(y4 z4) 

   + PI (y4) PC (x4 z4) + PI(z4) PC(x4 y4) 

   + PC (x4 y4 z4) 

Table 5-2: Likelihood of coupled terms 

 

Now we go back to expressions 5.6 and 5.9.  They were written for a minimal cut set of 

the second order with two lifecycle categories, and for a minimal cut set of the third 

order with five lifecycle categories respectively.  They can be extended to a generic 

minimal cut sets of order n with l lifecycle categories.  The extended expression is given 

in 5.12.  We can easily see that the number of terms in that expression is equivalent to 

the order n of the minimal cut set raised to the number l of lifecycle categories.     

 

P(X1, X2, …Xn) ≅ ( )∑∑ ∑
= = =

l

i

l

j

l

z

n
zji xxxP

1 1 1

21 ,...,,...     (5.12) 

 

This expression may have terms representing coupled probabilities up to order n.  We 

have already seen expressions for coupled probabilities of second and third order (i.e. 

P(x1y1) and P(x4y4z4) in 5.8 and 5.11).  Similar expressions can also be written for greater 

order minimal cut sets, however it is not the aim of this thesis to show the form of these 

terms. 

Drawing some conclusions, in this section we have seen that it is theoretically 

possible to analyse common cause failures at the level of potential couplings.  Hence, we 

have transferred the problem of common cause failure analysis from the minimal cut set 

level to a lower, more detailed, level.  Additionally, we have proposed a systematic way 

to identify minimal cut sets with coupled events and showed how common cause 

likelihood can be evaluated considering only contributions from real couplings and not 

with a summary analysis at minimal cut set level, as it is usually done. We have actually 
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approached the problem of common cause failure analysis the other way round.  Instead 

of leaving common cause failure analysis as a final analysis we propose to start 

collecting data already at the beginning of the lifecycle then to use these data for a 

systematic identification of potential couplings hence for the evaluation of the common 

cause likelihood. 

 However we have not yet seen how, practically, we can estimate Independent and 

Coupled probabilities that are in the expression of the likelihood of a coupled minimal 

cut set. 

5.3.3 Independent and coupled probabilities 

In this section we show a way to estimate the independent and coupled probabilities that 

are in the expression of the likelihood of a coupled minimal cut set.  The method we 

propose is based on the β factor parametric model that was introduced in the second 

chapter.  However, instead of applying this model at minimal cut set level, we apply it at 

the level of potential couplings. This way to proceed can be laborious since it should use 

as many β parameters as the number of actual couplings, however some considerations 

based on the experience gained in the past thirty years of studying common cause failures 

will help us in setting reasonable values for these parameters. 

The β factor parametric model was introduced in the second chapter.  It is the 

simplest of all the parametric methods, since it considers only the independent likelihood 

of each event in the minimal cut set and the likelihood of all the events happening 

simultaneously because of a common cause failure.  For a minimal cut set of the second 

order it is equivalent to more complicated methods, like the multiple Greek letter model.  

It becomes more and more conservative with the increasing of the order of the minimal 

cut set, however it is the model used the most to consider common cause failures. 

The β factor parametric model is quite simple to apply.  The coupled likelihood for 

a minimal cut set is obtained by multiplying the likelihood of any of the events in the 

minimal cut set (that for the symmetry hypothesis have the same likelihood) times the 

β parameter.  The independent likelihood is then obtained by subtracting the coupled 

likelihood from the total.  Therefore, if we could use the symmetry hypothesis we would 

need to know only two terms: the total likelihood, that is the likelihood of the event as if 
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it was a common, isolated basic event25, and the β parameter, that is related only to the 

degree of coupling existing among events in the minimal cut set.  

In case of a minimal cut set of the second order the study proceeds as follow.  The 

likelihood of each event in the minimal cut set (that for the symmetry hypothesis is the 

same) is given to the term QT (total likelihood).  

 

P(X)  =  P(Y)  =  QT             (5.13) 

(Symmetry hypothesis) 

 

Then, the coupled likelihood is obtained multiplying QT times the parameter β.  The 

coupled likelihood of two events PC(X, Y) is indicated by Q2.  The subscript “2” 

represents the number of events that are coupled in the minimal cut set.   

  

PC(XY) = βQT  = Q2       (5.14) 
 

The independent likelihood is, then, calculated by subtracting the coupled contribution 

Q2 from the total likelihood QT.  Since the independent likelihood refers to one event, it 

has subscript “1” i.e. Q1. 

 

 PI(X) = PI (Y) = (1-β) QT = Q1     (5.15) 

 

Therefore the common cause failure probability for a minimal cut set of the second order 

is written as in 5.16. 

 

P(X Y) = PI (X) PI (Y) + PC(XY) = Q1
 2+ Q2   (5.16) 

 

Or as function of β and QT: 

 

P(X Y) = Q1
 2+ Q2 =  [(1-β)QT]2+ βQT      (5.17) 

 

                                                      
25  The likelihood obtained from the manufacturer data sheets adapted to the condition 

where the component operates. 
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This expression shows also that for β → 0  the likelihood of the minimal cut set tends to 

the likelihood of the two events happening independently.  That is an important property, 

that we have to maintain in the expression of the likelihood of a coupled minimal cut set 

that we are going to propose. 

 

0→β
Lim  { }  )-(1

2

QT
QQ = + ] Τ

2
Τ ββ  

 

0→β
Lim  P(X Y) = P(X) P(Y)     (5.18) 

 

The proper way to proceed is to write the coupled likelihood of two events as in 5.19, 

which says that the PC for a minimal cut set XY can be thought as the fraction βxy of the 

total likelihood of event X, or as a fraction βyx of the total likelihood of event Y: 

 

PC(X Y) = βxy P(X) =  βyx P(Y)      (5.19)  

 

In this way, we would write independent probabilities PI(X) and PI(Y) as follow:  

 

 PI(X) = [P(X) - βxy P(X)] = P(X) (1-βxy) 

     = [P(Y) - βyx P(Y)] = P(Y) (1-βyx) 

  PI (Y) = [P(Y) - βyx P(Y)] = P(Y) (1-βyx) 

    = [P(X) - βxy P(X)] = P(X) (1-βxy) 

 

and we would obtain the likelihood for a coupled MCS of the second order as in 5.20: 

 

   P (XY)= [P(X)(1-βxy)] [ P(Y)(1-βyx)] +βxy P(X)    (5.20) 

 

However, this expression is quite complex and, additionally, we would have to estimate a 

lot of β parameters.  In case of a minimal cut set of greater order this expression would 

become even more complex.  For a third order minimal cut set it involves the estimation 

of twelve betas i.e. βxy,  βxz, βyx, βyz, βzx, βzy, βxyz, βxzy, βyxz, βyzx,βzxy, βzyx.  That is not 

practical, therefore we propose another way to proceed.  We still believe that using 
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expressions like 5.14 to calculate the likelihood of a group of coupled events is a good 

choice, therefore in following sections we will propose to put all our β parameters equal 

to a very conservative value (i.e. β=1).  Additionally we propose to assign to the term 

QT, the smallest of the probabilities of events in the minimal cut set, as explained in the 

next section. 

 

The β  β  β  β  parameter 

In the β factor parametric method the β parameter represents the conditional probability 

that the cause of a component failure will be shared by one or more additional 

components, given that a component has already failed.  As β is a probability, it may 

range between 0 and 1, though, practically, it usually ranges between 10-4 and 2x10-1, 

where the first value is for extremely weakly coupled systems and the second one is for 

highly coupled ones.  Additionally, β can also be seen as the strength of the coupling 

among events, the greater the β factor, the greater is the coupling. 
In our approach, the strength of the coupling among events is represented by the 

existence or not of shared coupling codes in corresponding (peer) lifecycle categories 

weighted with their Percentage %I.  The greater the number of shared coupling codes and 

the higher the Percentage %I associated with each lifecycle category, the greater is the 

coupling among events.  Basically, what in the β factor parametric method is considered 

in the β parameter is, in our approach, considered in the combination of the Percentage 

%I and the existence of shared coupling codes for corresponding lifecycle categories.  

This is actually what we wanted to achieve since we have introduced lifecycle categories, 

coupling codes and the Percentage %I to model explicitly the strength of couplings (i.e. 

the β parameter in the β factor parametric method) among events.  Therefore the β that 

appears in our method, does not represent the same conditional probability as it does in 

the β factor parametric method.  In our method we expect β  to be very near to one.  To 

be conservative, we propose to put β = 1 for the analysis of any unknown or new 

systems.  However, if there are sufficient data, β should be statistically estimated with 

methods similar to those proposed in [Mosleh, et al., 1988], but we won’t discuss this 

argument any further.  Examples that follow in this and the next chapter will show that 

the failure probability for the same coupled minimal cut set evaluated with the β factor 

parametric method and the approach proposed in this thesis (with β=1) are very similar 

(at least within the same order). 
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Value for the total likelihood QT 

As far as QT is concerned, since we cannot assume the symmetry hypothesis (equation 

5.13) and we wish to use expression 5.14 to calculate PC, we have to find another way to 

assign a value to QT.  We have at least three alternatives.  We could either put QT equal to 

the average, the smallest or the biggest value among probabilities of events in the 

minimal cut set.  However, since probabilities involved span various orders of 

magnitude, the average value will coincide with the likelihood of the most likely event.  

Additionally, if QT is equal to the most likely event, we may come to the absurd 

conclusion that the coupled likelihood is bigger than the most unlikely event in the 

minimal cut set, which is absolutely unrealistic.  Let us see an example.  We have two 

events X and Y, the likelihood of X is P(X)=10-3, the likelihood of Y is P(Y)=10-5.  If they 

were independent the likelihood of them occurring simultaneously would be their 

product i.e. 10-8.  Since they are coupled, the likelihood that they occur simultaneously 

should be bigger than the likelihood of the theoretically uncoupled minimal cut set (i.e. 

10-8), but smaller than the likelihood of the most unlikely single event (i.e. P(Y)=10-5).  If 

we have β=.1 and we put QT equal to the average likelihood among the two events in our 

minimal cut set, we would have the value QT≅10-3, which practically coincides with the 

likelihood of the most likely event (i.e. X).  After applying 5.14, we would have that 

PC(X,Y) ≅ 10-4, which is absurd, since this figure is bigger than the upper bound of the 

likelihood that can realistically be associated with the coupled minimal cut set that we 

said is P(Y)=10-5.  Hence, if we cannot use the average or the biggest value among 

probabilities of events in the minimal cut set, we are left with the smallest one.  Coming 

back to our example.  If we put QT equal to the smallest likelihood (i.e. 10-5) we would 

have that PC(XY)=10-6, that is inside the boundary we were expecting. Hence we propose 

to put the coupled probability for a minimal cut set of the second order equal to the 

smallest among the probabilities of events in the minimal cut set.  For a second order 

minimal cut set we indicate that as in the following 5.21. 

PC(X Y) = β min [P(X); P(Y)]       (5.21) 

 

Consequently, independent probabilities are written as in 5.22: 

 

 PI(X) = P(X) - β min [P(X); P(Y)]     (5.22) 

 PI(Y) = P(Y) - β min [P(Y); P(Y)] 
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The complete formula for the likelihood of the coupled minimal cut set of the second 

order obtained under these conditions, is stated in 5.23.  This expression satisfies limit 

5.18 that says that, for β → 0, the likelihood of the minimal cut set tends to the 

likelihood of the two events to occur independently, as shown by the 5.24. 

 

P(X Y) = PI(X) PI(Y) + PC(X Y) = 

   ={P(X)-β min[P(X); P(Y)]}{P(Y)-β min[P(X); P(Y)]} 

                        + β min[P(X); P(Y)]       (5.23) 

 

0→β
Lim   {P(X)-β min[P(X); P(Y)]}{P(Y)-β min[P(X);P(Y)]} 

 + β min[P(X); P(Y)] = P(X)P(Y)    (5.24) 

 

It can be demonstrated that the expression for the likelihood of a coupled minimal cut set 

of the third order is represented by the following expression:  

 

P(X,Y,Z) = Pi(X)Pi(Y)Pi(Z)+Pi(X)[Pc(Y; Z)-Pc(X; Y; Z)]+Pi(Y)[Pc(X; Z) 

 -Pc(X; Y; Z)]+Pi(Z)[Pc(X; Y)-Pc(X; Y; Z)]+Pc(X; Y; Z) 

 

and, within our hypotheses about β  and QT, it can be reduced to the following: 

 

P(X,Y,Z) ={P(X)-β min[P(X);P(Y);P(Z)]}{P(Y)-β min[P(X); P(Y);P(Z)]}{P(Z)-

β min[P(X);P(Y);P(Z)]} + β Min[P(X);P(Y);P(Z)] 

 

Expressions for greater order minimal cut sets can also be written, but it is not intended 

in this thesis to investigate all the statistics related to this matter. 

  

Final considerations 

Using expressions for the likelihood of coupled events obtained in previous sections at 

the level of lifecycle categories, produces better, more realistic results than applying 

them at minimal cut set level.  At the level of lifecycle categories, we individually 
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consider each cause of coupling.  Then, we perform the analysis only on the causes that 

are shared among events in the minimal cut set by applying proposed formula for 

estimating the coupled likelihood.  Since each cause is responsible for only a fraction of 

the total likelihood of each event (i.e. the Percentage %I which refers to the 

corresponding lifecycle category), the use of a conservative value for β does not produce 

too conservative a figure for the likelihood of the minimal cut set as a whole.  Let us see 

an example.   

If we take the minimal cut set in Figure 5-2 and we suppose that: 

 

• The first lifecycle category is responsible for a 5 percent share of the total 

likelihood of each event (i.e. percentage %1=5);  

• The second lifecycle category is responsible for the remaining 95 percent (i.e. 

percentage %2=95); 

• The total likelihood of event X is P(X)=10-3; 

• The total likelihood of event Y is P(Y)=10-5. 

 

After applying 5.2 and 5.23 to equation 5.8, we obtain probabilities in expression 5.6.  

These are the passages: 

 

P(x1) = %1*P(X) = .5 *10-4   

P(x2) = %2*P(X) = .95 *10-3 

P(y1) = %1*P(Y) = .5 *10-6   

P(y2) = %2*P(Y) = .95 *10-5 

β        = 1 

P(x1y1) ={ P(x1)-βmin[P(x1);P(y1)]}{P(x1)-βmin[P(x1);PT(y1)]}+βmin[P(x1);P(y1)]   

≅ .25*10-9 + .5*10-6 ≅ .5 * 10-6 

P(x1y2)  = P(x1) P(y2)  = .25 * 10-9  

P(x2y1)  = P(x2) P(y1)   = .475  * 10-8 

P(x2y2)  = P(x2) P(y2)   = .9025 * 10-7 

 

P(XY)   ≅ P(x1y1) + P(x1y2) + P(x2y1) + P(x2y2) ≅ .5 * 10-6   (5.25) 
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If we wanted to obtain the same value for that likelihood by applying the same study at 

minimal cut set level, we would have had to put β = .5*10-1 as shown in the 5.26.  Being 

that a low value for β, we would have to introduce arguments to justify it.  That would 

have required using expert judgement. 

 

P(X,Y)  = PI(X) PI(Y) + PC(X,Y) ≅  

 ≅ 10-8 + .5*10-1 * 10-5 ≅ .5 * 10-6    (5.26) 

 

What we have actually done is to screen individual causes that may give rise to events 

and be responsible for couplings in a minimal cut set.  This has been done on the basis of 

a checklist that spans the whole lifecycle of each component in the system.  This assumes 

that lifecycle information was collected during the decomposition and design stages, 

when this procedure is more economic and practical. In addition to the screening of 

couplings, we have assigned a share of the likelihood of each event to causes of events.  

Then we have provided mathematical support for evaluating the likelihood of coupled 

minimal cut sets that considers individually the contribution of each single cause of each 

event.  As the weight of each cause we took the share of the total likelihood of each event 

that is associated to the correspondent lifecycle category. 

 

5.4 Discussion 
In this chapter we have extended the FLASH formalism to consider common cause 

failures.  We have used some of the information stored into FLASH tables for two 

purposes: investigation of minimal cut sets to find ones with coupled events and 

estimation of their likelihood. 

 The identification of minimal cut sets with coupled events was achieved by 

analysing all minimal cut sets responsible for critical failures in the system under 

investigation.  Events in each minimal cut set were scanned to see whether they were 

sharing one or more causes of coupling (i.e. coupling codes defined in Chapter four).  If 

any sharing was found, the minimal cut set was considered coupled.  Since the method 

identifies exactly those categories of the lifecycle responsible for actual couplings, it 

makes it easy to investigate feasible remedies for those couplings.  The analysts can then 

give evidence why those couplings cannot give rise to common cause failures or, in the 

last resort, calculate the likelihood of minimal cut sets considering only contributions 
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from those couplings that were identified.  The innovative contribution of the method lies 

in the systematic identification of the actual couplings.  They come out of a mechanical 

process that is the comparison of lifecycle information of events in the minimal cut set.  

This process can also be easily automated.  Therefore the liability for the identification 

of couplings is transferred from expert judgement summarily estimating the likelihood at 

minimal cut set level, to choosing the most convenient lists to use as base for the 

identification of couplings among events. 

 The estimation of the likelihood of minimal cut sets with coupled events, is the 

natural step forward, after the identification of actual couplings.  We provided a 

mathematical framework to calculating the likelihood of minimal cut sets considering the 

contribution of each actual coupling.  Since the expression for that likelihood was quite 

complex we made some approximations by eliminating terms which influence was 

negligible for the final results. 

Drawing some conclusion, we have shown that common cause likelihood can be 

evaluated considering only contributions from real couplings and not with a summary 

analysis at minimal cut set level, as is usually done.  We have transferred the problem of 

common cause failure analysis from the minimal cut set level to a lower (more detailed) 

level, systematised the identification of couplings, and obtained more realistic results. 

The next chapter presents two case studies to illustrate the overall FLASH process 

as described in this and the previous chapter.  The first case study is a Fuel System 

adapted from [Vesely, 1981], the second case study is a computerised braking system. 
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Chapter Six 

6Case studies 
This Chapter presents two case studies illustrating the FLASH process during the 

decomposition and design, and during the integration and verification stages of the 

lifecycle.  The first case study is based on a Fuel System adapted from an example in the 

fault tree handbook [Vesely, 1981], the second case study is based on a computerised 

braking system developed at the University of York, but based on realistic industrial 

data. 

6.1 The Fuel System 
The system that we examine in this section is a (hypothetical) fuel system (FS) whose 

task is to provide emergency supply of fuel to an engine (a generator of electrical power, 

for example) when the main supply to that engine is out of order. The system is 

automatically activated when the primary supply fails, however, it can also be manually 

activated and interrupted.  As Figure 6-1 shows, the fuel system draws fuel resources 

from a tank and provides fuel supplies to the engine.   
 

 

Tank  (Tk)

Fuel System (Fs)

Engine (Eg)

Fuel.Tk Fuel.Fs

Ω

S Engine

F Output

Button

Start.Button
Stop.Button

PowerSupply.PS

 

Figure 6-1: The Fuel System 
 

Safety specifications for the fuel system require single point failures, which can give rise 

to hazards, to be avoided. Real-time specifications require that the engine speed Ω be 

limited at Ω=Ω0=constant.  Moreover, the engine speed cannot deviate from the nominal 

value Ω0 for more than 5 seconds. Only a failure may cause such a deviation for a longer 
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period.  Figure 6-2 illustrates the hierarchical decomposition of the Fuel System. At the 

first level of the decomposition (functional), we can see the whole equipment 

encapsulated in a box that receives fuel from the tank, electrical power, start/stop 

command signals and delivers the fuel to the engine. At the second level, we can see the 

architecture of the system, in other words basic components and their connections. The 

diagram shows three block valves (BVA, BVB and BVX), two control valves (CVA and 

CVB) and an Electronic Controller (PLC) which sets the position of those valves to 

regulate the path and rate of flow between the tank and the engine. Finally at the lowest 

level of the decomposition, we see a high level representation (GRAFCET) of the control 

sequence executed by the controller. 

The control sequence shows that, in normal conditions of operation, the controller 

sets valve BVX to the closed position and lets the fuel flow through the path that connects 

valves BVA and CVA.  While the system is in this state (Path1), the controller manages 

the position of valve CVA and ensures that the flow of fuel through the valve always 

equals the current demand by the engine. When the controller detects a disturbance of 

that flow (caused, for example, by a failure or blockage of a valve) it activates a new path 

in the system to restore the flow of fuel at the output.  The new path (Path2) is the one 

connecting valves BVB and CVB.  Finally, the control sequence shows that a failure (or 

blockage) of valve BVB while the system is in that state will trigger further action by the 

controller, namely the activation of a third path (Path3) in the system, that between 

valves BVA and CVB26. 

However, there are two cases in which Path3 is not available. The first case is when 

CVA fails open (i.e. Stuck Open or Significant Internal Leakage), BVA closes and the 

flow goes through Path2 (i.e. Path3 is not available since BVA has to stay closed to avoid 

the fuel going through CVA that is failed open).  The second case arises when BVA fails 

open (i.e. Fail to close or Significant Internal Leakage), CVA reduces the flow to a 

minimum, but the supply is not completely shut off. Both of them are critical incidents 

and the likelihood has to be less than 10-3 during the mission.  To activate the remaining 

possible path (i.e. Path4, through valve BVB, BVX and CVA), CVB must be plugged and 

BVB, BVX and CVA must be still operating.  This is an extremely unlikely circumstance 

therefore Path4 was not implemented. 

                                                      
26  There is actually a fourth possible path, that connecting valves BVB and CVA, which 

for simplicity we do not consider in this discussion.  
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Figure 6-2 :Hierarchical Decomposition of the Fuel System 
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6.1.1 Analysis in the Decomposition and Design Stage 

The analysis of the Fuel System (FS) starts at functional level.  The fuel system is 

studied as a function that has to provide fuel to the engine when it is required.  As such 

the system has three failure modes: a) fuel is required, but not provided, b) fuel is not 

required, but provided and c) fuel is provided when required, but the system is not fully 

functional27 (i.e. a recovery action took place to by-pass a faulty component).  Hence the 

FLASH table for the fuel system at functional level propagates three effects as 

represented in Table 6-1.  These effects have different criticality levels that are indicated 

in the Criticality column (i.e. Catastrophic, Critical and Negligible).  The 5th column 

reports recommendations that have to be considered by designers for the development of 

the fuel system internal architecture.  For example, recommendations for the first effect 

states that the system should be fault tolerant for single failures in mechanically activated 

components, additionally they require that the likelihood of this effect be smaller than 10-

6 during the mission time. For the second and third effect requirements are less 

demanding, being events not as critical as the first.  However their likelihood is requested 

to be smaller than 10-3 during the mission. 

 After the functional hazard analysis is completed, the FLASH method requests the 

architecture achieving the function to be proposed. The architecture has to take into 

account specifications, recommendations and derived safety requirements into the 5th 

column. Such architecture is shown in Figure 6-3.  It requires the failure of at least two 

valves to cause the failure of the system.  Figure 6-4 represents the correspondent failure 

model of the fuel system drawn according to the FLASH notation.  Names are given to 

flows delivered by components according to the syntax defined in Chapter 4.  

 

 

 

 

 

 

 

 

                                                      
27 In this case a fault occurred.  The system is still working properly, however any 

additional fault may cause a system failure i.e. failure modes a) or b). 
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FUEL SYSTEM 

Failure event … Description Criticality 5th Column: Justification, Design Recommendations,  
Derived Safety Requirements 

Comments
(FMEA) 

Fuel is required, but 
not provided .fs 
(No Flow – fuel 
from the FS to the 
engine) 

 

No Flow of fuel on 
the line that feeds 
the engine. The 
engine cannot start. 
No electric power is 
provided. 

Catastrophic 

Before design  
Recommendations 
The failure of the module cannot be handled. A fault tolerant architecture is 
needed to prevent that single failures in mechanically activated component 
will cause a system failure. The module has to be built with redundant 
components.  
Effect max accepted likelihood 

10-6 during the mission 
After design 
Detection 
… 
Recovery 
… 
Recommendation 
… 
Max accepted likelihood for critical events in the Causes column. 
… 

Fuel is not required, 
but provided .fs 

 
The engine does not 
stop – Electric power 
is wasted 

Critical 

Before design  
Recommendations 
Single point to failures are allowed 
Effect max accepted likelihood 
10-3 during the mission 
After design 
Detection 
… 
Recovery 
… 
Recommendation 
… 
Max accepted likelihood for critical events in the Causes column. 
… 

Fuel is provided when 
required, but the 
system is not fully 
functional .fs 

 

The engine performs 
properly, but a failure 
has occurred – 
Electric power is 
provided 

Negligible 

Before design  
Recommendations 
Single point to failures are allowed 
Effect max accepted likelihood 
10-3 during the mission 
After design 
Detection 
… 
Recovery 
… 
Recommendation 
… 
Max accepted likelihood for critical events in the Causes column. 
… 

 

Table 6-1: FLASH table for the FS function, before the architecture is drawn 
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Figure 6-3: Architecture for the fuel system 
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Figure 6-4:Details for the fuel system 

 

Table 6-2 illustrates a fragment of the high-level FLASH analysis for the fuel system 

after the causes column has been completed. The table records one (and perhaps the most 

critical) of the functional failure modes of the system, the absence of flow in the line that 

feeds the engine (No Flow – fuel to the engine).  According to the analysis, this event can 

be caused by an omission of the start signal (which causes a failure to start the system), a 

commission of the stop signal (which causes inadvertent shut-down of the system), or a 

combination of component failures that block all the available paths in the system (No 

Flow-Path1, No Flow-Path2, No Flow-Path3). For simplicity and economy of space, the 

table that we present here determines only the causes of failure in the third path (No 

Flow – Path3). The analysis shows that the flow in this path is disrupted either by 

internal failures of valves BVA, BVX, CVB or omissions of the signals that are 

continuously sent by the electronic controller to maintain block valves BVA and BVX 

open (Omission – DPBVA , Omission – DPBVX).   The root causes of those events are 

further explored in the FLASH tables for the corresponding components (i.e. the valves 

and electronic controller). 
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FUEL SYSTEM 
Failure event Causes  Description 

No Flow – fuel from the 

FS to the engine  

Omission – Start OR 
Commission – Stop OR 
 
(No flow – Path1 AND  
 No flow – Path2 AND  
 No flow – Path3)  
 
Where: 
No flow – Path3 =           
BVA failed closed OR  
BVX failed closed OR  
CVB failed closed OR  
Omission – DPBVA OR  
Omission – DPBVX 

No Flow of fuel on the line 
that feeds the engine. The 
engine cannot start. No 
electric power is provided. 
 
It can be caused by an 
omission of the start signal, a 
commission of the stop signal 
or because there is no flow in 
the three possible paths that 
can be activated by the PLC. 
For simplicity, the causes of 
failure in one path only  
(Path3) are further explored 
only 

Table 6-2: Fragment of the high-level FLASH analysis 
 

Table 6-3 presents a fragment of the analysis for valve BVA. Here we can see that the 

condition BVA failed closed can be caused either by an electromechanical failure of the 

valve (BVA failed to open) or because the aperture of the valve is blocked (BVA 

Plugged).  

 
Block Valve A 

Failure Event Description Causes 

BVA failed closed 

Valve BVA is inadvertently closed due 
to an internal hardware failure which 
causes it to fail to open or because it is 
plugged. 

BVA failed to open OR BVA 
plugged  

Table 6-3: Fragment of the FLASH table for BVA failed closed 

 

Table 6-4, on the other hand, contains fragments of the analysis for the electronic 

controller (PLC).  There we can see that the failure of the electronic controller to deliver 

the valve open signal to BVA (Omission – DPBVA) can arise from different root failures in 

the two states of the system that the valve is active (i.e. in states: Path1 and Path3). In 

both states, the event is caused by a number of low level internal hardware failures of the 

controller (electronic controller output circuit stuck at zero; electronic controller 

register BVA_CVA stuck at zero; electronic controller register BVA stuck at zero; 

electronic controller logical operation negated).  However, in the first state and while 

the system delivers fuel through the initial path, the analysis shows that the event can 

also be caused by a failure of the sensor that monitors the position of valve BVA. Indeed, 

if the output of that sensor is stuck at zero (Omission -PBVA), the controller will wrongly 

perceive this as an indication that BVA is closed.  This in turn will trigger a inadvertent 
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transition of the control sequence to the second state (Path2), the deactivation of the 

initial path (including BVA) and the activation of the second path in the system. 

On the other hand, if the system is in a transition towards the third state (for 

example because valve BVB has failed closed) the electronic controller may fail to open 

valve BVA simply because sensor PBVB has failed to detect that BVB is failed closed 

(Commission – PBVB).  Here, we can observe that the analysis provides some useful 

pointers to particular subtle failures that may confuse the controller, corrupt the control 

sequence and eventually compromise the failure detection and recovery mechanisms of 

the system. 

 
 

Electronic Controller (PLC) 

Failure event Description Causes Contributing 
Factor 

Omission – 
DPBVA 

The PLC fails to deliver the valve open 
signal to valve BVA, while the system is 
in state Path1 (in other words while it 
delivers fuel through valves BVA and 
CVA. 
 
It can be caused by a number of low level 
PLC hardware failures, or because there is 
a commission of the PBVA (sensor) signal 
which causes an inadvertent exit from the 
Path1 state. 

PLC output circuit stuck at 
zero OR 
PLC register BVA_CVA stuck 
at zero OR 
PLC register BVA stuck at zero 
OR 
PLC logical operation negated 
OR  
 
Omission – PBVA 

Path1 

Omission – 
DPBVA 

The PLC fails to deliver the valve open 
signal to valve BVA, while the system is 
in state Path3 (in other words while it 
delivers fuel through valves BVA, BVX 
and CVB. 
 
It can be caused by a number of low level 
PLC hardware failures, or because there is 
a commission of the PBVB (sensor) signal 
which prevents the system of entering the 
Path3 state. 

PLC output circuit stuck at 
zero OR 
PLC register BVA_CVB stuck 
at zero OR 
PLC register BVA stuck at zero 
OR 
PLC logical operation negated 
OR  
 
Commission – PBVB 

Transition from 
Path2 to Path3 

Table 6-4: Fragment of the FLASH table for the PLC 

 

After writing causes for events propagated, it is possible to finish off the 5th column by 

considering the possibility to detect, recover from, or mitigate the effect of the event 

propagated, and eventually to issue recommendations for further developing lower level 

components and the Maximum accepted likelihood for critical causes.  Table 6-5 

represents a fragment of the FLASH table for the electronic controller after the 

completion of the 5th column. 
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Electronic Controller (PLC) 

Failure 
event Description Causes 

Contribu-
ting 

Factor 

5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements  

Omission – 
DPBVA 

The PLC fails to deliver 
the valve open signal to 
valve BVA, while the 
system is in state Path1 
(in other words while it 
delivers fuel through 
valves BVA and CVA. 
 
It can be caused by a 
number of low level 
PLC hardware failures, 
or because there is a 
commission of the PBVA 
(sensor) signal which 
causes an inadvertent 
exit from the Path1 
state. 

PLC output circuit 
stuck at zero OR 
PLC register 
BVA_CVA stuck at 
zero OR 
PLC register BVA 
stuck at zero OR 
PLC logical operation 
negated OR  
 
Omission – PBVA 

Path1 

Before design  
Recommendations 
The failure cannot be handled. It has to be 
extremely unlikely 
Effect max accepted likelihood 
10-5 on demand 
After design 
This failure cannot be recovered. 
Detection 
Sensor off valve BVA 
Recovery 
Unlikely  
Recommendation 
Software must be developed to comply with 
safety integrity level four  
Max accepted likelihood for critical  
events in the Causes column. 
P(PLC output circuit stuck at zero t)<10-6h-1

P(PLC register BVA_CVA stuck at 
                                                  zero)<10-6h-1 
P(PLC register BVA stuck at zero)   <10-6h-1 
P(PLC logical operation negated)     <10-6h-1 
P(Omission – PBVA)                          <10-6h-1

Omission – 
DPBVA 

The PLC fails to deliver 
the valve open signal to 
valve BVA, while the 
system is in state Path3 
(in other words while it 
delivers fuel through 
valves BVA, BVX and 
CVB. 
 
It can be caused by a 
number of low level 
PLC hardware failures, 
or because there is a 
commission of the PBVB 
(sensor) signal which 
prevents the system of 
entering the Path3 state. 

PLC output circuit 
stuck at zero OR 
PLC register 
BVA_CVB stuck at 
zero OR 
PLC register BVA 
stuck at zero OR 
PLC logical operation 
negated OR  
 
Commission – PBVB 

Transi-
tion from 
Path2 to 

Path3 

Before design  
Recommendations 
The failure cannot be handled. It has to be 
extremely unlikely 
Effect max accepted likelihood 
10-5 on demand 
After design 
This failure cannon be recovered. 
Detection 
Sensor off valve BVA 
Recovery 
Unlikely  
Recommendation 
Software must be developed to comply with 
safety integrity level four  
Max accepted likelihood for critical  
events in the Causes column. 
P(PLC output circuit stuck at zero t)<10-6h-1

P(PLC register BVA_CVB stuck at  
                                                 zero)<10-6h-1 

P(PLC register BVA stuck at zero)  <10-6h-1 
P(PLC logical operation negated)    <10-6h-1 
P(Commission – PBVA)                    <10-6h-1 

Table 6-5: Fragment of the FLASH table after completion of the 5th column 

 

Figure 6-5 shows a fragment of the fault tree that is mechanically generated from the 

hierarchy of FLASH tables for the fuel system.  It can be seen how the interruption of 

flow in the line that feeds the engine (No Flow – fuel to the engine) can be caused by a 

combination of lower level malfunctions and basic component failure modes. 

Additionally, since the tree is constructed by parsing the hierarchy of FLASH tables, its 

construction validates whether the hierarchy is consistent and the required information is 

in the hierarchy of tables. 
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The following section presents the FLASH analysis of the fuel system in the 

integration and verification phase of the lifecycle. 
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Figure 6-5: The fault tree for the failure event “No Flow – fuel to the engine” 

 

6.1.2 Analysis in the Integration and Verification 

The aim of the FLASH analysis in the integration and verification is to confirm that each 

module and component of the hierarchy meets the requirements, specifications and 

recommendations entered into the FLASH tables (i.e. the 5th column). The process of 

verification starts from modules at the lowest hierarchical level and proceeds towards the 

top functional level. Fault trees are built for each effect and evaluated using fault tree 

analysis. The structure of each tree is taken from the Causes column and by parsing 

tables of included modules. The likelihood of the top event is recorded in the “FMEA 

results” column as “Likelihood of the effect”.  

 Among modules here considered, block valve A (BVA) and Electronic Controller 

(EC) are basic components.  Hence they are analysed first.  The likelihood of each event 

propagated by BVA can be calculated from information into Table 6-6.  For example, 

O_.Fuel.bva, which tree is shown in Figure 6-6, is caused by two basic events (i.e. 

Fail_to_open.bva and Plugged.bva) and one incoming event (i.e. O_.BVAi.Ec).  The 
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likelihood28 of each basic event is calculated considering the mission time, the failure 

probability on demand and the failure rate as reported in Table 6-6.  The likelihood of 

incoming event O_.BVAi.Ec, is obtained either, developing and evaluating the fault tree 

with that top event (i.e. represented in Figure 6-7) or, taken from the Summary FMEA 

result column in the table for the Electronic controller (i.e. Table 6-7).  Hence, from 

Table 6-6 and Table 6-7 we determine that, in the transition between Path2 and Path3, 

P(Plugged.bva)=5*10-4, P(Fail_to_open.bva)=4.13*10-4 and P(O_.BVAi.Ec)= 7*10-5.  

Consequently, the likelihood of event O_.Fuel.BVA (when the system is in transition 

between Path2 and Path3) is P(O_.Fuel.bva)≅ 9.8*10-4. 

 

 

(BVA failed Closed)
O_.Fuel.bva

O
R

Omission-DP BVA
(O_.BVAi.Ec)

Fail_to_open.
bvaPlugged.bva

 
Figure 6-6: Tree for the event omission Fuel from BVA 

  

This likelihood is recorded in the FMEA result column for the event along with 

information demonstrating that recommendations and constraints in the 5th column are 

met.  We can see that in Table 6-7, the FMEA results column reports that the detection 

for the event O_.Fuel.BVA is possible from a speed sensor on the engine and from a flow 

sensor on the flow to the engine.  Additionally, it says that the likelihood of this event is 

9.8*10-4 in both states in which it may a rise.  Since recommendations and constraints are 

actually met and the likelihood for the event O_.fuel.bva is less then the acceptable value 

into the 5th column the analysis moves further, another event in the same table is 

                                                      
28 The likelihood that the event “E” happens during the mission time “∆t” is equal to the 
sum of the likelihood the event happens on demand “qo” plus the likelihood the event 
happens during the mission time.  If it is assumed an exponential distribution with 
constant rate “λE” for the event to happen, the equation for likelihood of the event 

becomes 





∆
−+=∆ ∆− tE

E
Ee

t
qoP λλλ 1),tE,( . 
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analysed.  When all the events in that table have been considered, the analysis moves to 

another table at the same or higher hierarchical level.  If all of the recommendations and 

constraints are met the analysis will eventually reach the highest functional level and 

validate the overall design.  In any other case some modifications in the design will be 

necessary. 

 

Same level Causes Effects & Consequences Critica-
lity 

5th Column 
Justification, Design Recommendations, Derived Safety Requirements 

Summary 
FMEA 
results 

O_.Fuel.bva 

Fail_to_open.
bva OR 
O_.BVAi.ec 
OR 
Plugged.bva 

The fuel goes through the 
valve when it should not NA 

Before design  
Recommendations 
…. 
Effect max accepted likelihood 
The likelihood must be less than 10-3 during the mission time (100 hours) 
 
Detection: should be possible. i.e. from a speed sensor on the engine and 
from a flow sensor on the flow to the engine. 
Recovery: must be possible for single failure. 
Recommendations: Detection algorithm should know the status of the 
system and find suitable way to detect failures and recover them. 
Accepted Likelihood: 
λ (Fail_to_open.bva) < 10-3  h-1 
λ (O_.BVAi.ec)         < 10-4 h-1 
λ (Plugged.bva)         < 10-3 h-1 

 

C_.Fuel.bva 

Fail_to_close.
bva OR 
Severe_Int_Le
ackage.bva 
OR 
C_BVAi.ec 

The fuel doesen't go 
through the valve when it 
should 

NA 

Before design  
Recommendations 
…. 
Effect max accepted likelihood 
10-4 during the mission 
Detection: should be possible. i.e. from a speed sensor on the engine and 
from a flow sensor on the flow to the engine. 
Recovery: must be possible for single failure. 
Recommendations: Detection algorithm should know the status of the 
system and find suitable way to detect failures and recover them. 
Accepted Likelihood: 
The likelihood must be < 3*10-5 during the mission 

 

O_.BVAo.bva O_.BVAo.bva The sensor fails giving 
output bit 0 NA 

Before design  
Recommendations 
…. 
Effect max accepted likelihood 
10-4 during the mission 
Detection: not possible 
Recovery: must be possible for single failure. 
Recommendations: Detection algorithm should know the status of the 
system and find suitable way to detect failures and recover them. 
Accepted Likelihood:  
The likelihood must be < 3*10-5 during the mission 

 

C_.BVAo.bva C_.BVAo.bva The sensor fails giving 
output bit 1 NA 

Before design  
Recommendations 
…. 
Effect max accepted likelihood 
10-4 during the mission 
Detection: not possible 
Recovery: must be possible for single failure. 
Recommendations: Detection algorithm should know the status of the 
system and find suitable way to detect failures and recover them. 
Accepted Likelihood: 
The likelihood must be < 3*10-5 during the mission 

 

Basic Events 

Reliability data  Fail_to_open.bva  Severe_Int_Leackage.b

va 

Fail_to_close.bva Plugged.bva  C_.BVAo.bva  O_.BVAo.bva  … 

Description  Fail to open 
when required 

 There is a major 
leakage inside the 

valve 

The valve fails to 
close 

 The valve is 
Plugged 

The sensor 
fails giving 
output bit 1 

 The sensor 
fails giving 
output bit 0 

  

Failure Rate λ[1/h]  3e-006  3e-006 1.4e-006 5e-005  2e-007  2e-007   
Repair Rate µ[1/h]             
Failure Probability on 
Demand [qo] 

 4.1e-004   4.1e-004        

Mean Time to Failure 
MTTF [h] 

            

Mission time [h]  100  100 100 100  100  100   

Table 6-6: Table for the block valve BVA 
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PLC register
BVA_CVA

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path1)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Omission -
P BVA

 

PLC register
BVA_CVB

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path3)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Commission
- P BVA

 

Figure 6-7: Trees for the event omission DP- BVA 
 

Block Valve A 
Failure 
Event Causes Description Justification, Design Recommendation & Actions 

Required Summary FMEA Results 

BVA failed 
closed 
(O_.Fuel 
.bva) 

BVA failed to 
open OR BVA 
plugged 
OR 
O_.BVAi.ec 

Valve BVA is 
inadvertently 
closed due to an 
internal 
hardware failure 
which causes it 
to fail to open 
or because it is 
plugged. 

Before design  
Recommendations 
…. 
Effect max accepted likelihood 
The likelihood must be less than 10-3 during the 
mission time (100 hours) 
Detection: should be possible. i.e. from a speed 
sensor on the engine and from a flow sensor on the 
flow to the engine. 
Recovery: must be possible for single failure. 
Recommendations: Detection algorithm should 
know the status of the system and find suitable way 
to detect failures and recover them. 
Accepted Failure Rate: 
λ (Fail_to_open.bva)  < 10-3 h-1 
λ (O_.BVAi.ec)         < 10-4 h-1 
λ (Plugged.bva)         < 10-3 h-1 

The detection is possible 
from a speed sensor on the 
engine and from a flow 
sensor on the flow to the 
engine. 
The average likelihood that 
the event O_.Fuel.bva has to 
be generated by internal 
events is 9.8*10-4 
Likelihood is very near the 
upper bound for the 
acceptability.  

 

Electronic Controller (PLC) 

Failure event Causes Description Contributing 
Factor 

5th Column: Justification, Design 
Recommendations, Derived Safety 
Requirements  

Summary FMEA Results 

Omission – 
DPBVA 
(O_.BVAi 
.ec) 

PLC output circuit 
stuck at zero OR 
PLC register 
BVA_CVB stuck 
at zero OR 
PLC register BVA 
stuck at zero OR 
PLC logical 
operation negated 
OR  
 
Commission – 
PBVB 

The PLC fails to 
deliver the valve 
open signal to 
valve BVA, while 
the system is in 
state Path3 (in 
other words while 
it delivers fuel 
through valves 
BVA, BVX and 
CVB. 
 
It can be caused by 
a number of low 
level PLC 
hardware failures, 
or because there is 
a commission of 
the PBVB (sensor) 
signal which 
prevents the 
system of entering 
the Path3 state. 

Transition 
from 
Path2 to 
Path3 

Before design  
Recommendations 
The failure cannot be handled. It has to be 
extremely unlikely 
Effect max accepted likelihood 
10-4 during the mission time 
After design 
This failure cannon be recovered. 
Detection 
Sensor off valve BVA 
Recovery 
Unlikely  
Recommendation 
Software must be developed to comply with 
safety integrity level four  
Max accepted Failure Rate for critical 
events in the Causes column. 
λ(PLC output circuit stuck at zero t)<10-6 h-1 
λ (PLC register BVA_CVB stuck at  
                                                 zero)<10-6 h-1 
λ (PLC register BVA stuck at zero) <10-6 h-1 
λ (PLC logical operation negated)    <10-6 h-1 
λ (Commission – PBVA)                     <10-6 h-1 

The actual likelihood is 7*10-5 
during the mission. The failure 
cannot be handled, however it is 
extremely unlikely. The software 
is developed to comply with 
safety integrity level four. 

Table 6-7: BVA and Ec tables after the Integration and Verification 
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6.1.3 Common Cause Failures 

Common cause failures are the subset of dependent failures that cannot be treated 

explicitly in the analysis.  They arise when two or more events in a minimal cut set are 

coupled.  FLASH addresses the study of common cause failures when there is all the 

information required for constructing fault trees and minimal cut sets for each tree can be 

obtained. Minimal cut sets susceptible to common cause failure are subsequently 

identified by comparing lifecycle information among their events.  When events sharing 

the same coupling code in a peer lifecycle category are found, these events are 

considered coupled; hence that minimal cut set has to be considered for common cause 

failure analysis. 

Table 6-8 reports the list of all the minimal cut sets of the fuel system responsible 

for the functional failure mode “Fuel is required, but not provided .fs”.  It can be seen 

that there are 96 minimal cut sets of the second order and 188 minimal cut sets of the 

third order.  The FLASH method requires all these minimal cut sets to be analysed to 

find couplings.  For example the first minimal cut sets represent the simultaneous failure 

of the first timer register (i.e. T1) and block valve A (i.e. FTO_BVA = Fail to Open).  An 

accurate examination of Table 6-9 representing its couplings, reveals that these events 

are actually uncoupled hence the likelihood of this MCS is the simple product of the 

likelihood of each of its constituent events (i.e. P(FTO_BVA) * P(FTO_BVA)= 1*10-8). 

On the other hand, Errore. L'origine riferimento non è stata trovata. for minimal 

cut set 81 (i.e. C_BVAO_BVA; FTO_BVA) clearly shows several couplings.  This 

minimal cut set represents the simultaneous arising of two failure events inside the block 

valve BVA: a) the fail to open of the valve and the failure of the sensor monitoring the 

flow through the valve.  These events are coupled since they share coupling codes in 

several lifecycle categories.  For instance they have the same concept and design i.e. 

Design architecture=DCA1, technological material equipment type=DTM1, and 

Specification=DS1, additionally, they share the same installation fitter (i.e.IIF1), finally 

they the have same staff and procedures for operation (i.e. OS1 and OP1) and 

maintenance (i.e. MS1 and MP1). Hence, the likelihood for this minimal cut set has to be 

estimated using methods for common cause failure analysis. 
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LIST OF MINIMAL CUTSETS SORTED VS. ORDER 
#   Minimal Cut Sets  #  Minimal Cut Sets  #  Minimal Cut Sets  # Minimal Cut Sets  

 1  FTO_BVA T1  72 O_O_C_O200 T2  143 C_I005 O_IO10 O_R403  214 C_I001 C_I_C_I005 O_IO10  
 2  FTO_BVA O_I005  73 FTO_BVA O_R405  144 C_I_C_I005 O_IO10 O_R403  215 C_I_C_I001 C_I_C_I005 O_IO10  
 3  FTO_BVA O_I_C_I005  74 O_R405 PLG_BVA  145 C_ESSB1_EN O_IO10 O_R403  216 C_BVBO_BVB C_I_C_I005 O_IO10  
 4  FTO_BVA O_ESSB1_EN  75 O_O200 O_R405  146 O_I005 O_IO10 O_R403  217 C_ESSB1_EN O_IO10 T3  
 5  C_I_C_I006 FTO_BVA  76 O_O_C_O200 O_R405  147 O_IO10 O_I_C_I005 O_R403  218 0_R406 C_ESSB1_EN O_IO10  
 6  C_ESSB2_EN FTO_BVA  77 FTO_BVA O_R402  148 O_ESSB1_EN O_IO10 O_R403  219 C_ESSB1_EN C_I001 O_IO10  
 7  FTO_BVA O_I006  78 O_R402 PLG_BVA  149 C_I006 O_IO10 O_R403  220 C_ESSB1_EN C_I_C_I001 O_IO10  
 8  FTO_BVA O_I_C_I006  79 O_O200 O_R402  150 C_I_C_I006 O_IO10 O_R403  221 C_BVBO_BVB C_ESSB1_EN O_IO10  
 9  FTO_BVA O_ESSB2_EN  80 O_O_C_O200 O_R402  151 C_ESSB2_EN O_IO10 O_R403  222 O_I005 O_IO10 T3  
 10  PLG_BVA T1  81 C_BVAO_BVA FTO_BVA  152 O_I006 O_IO10 O_R403  223 0_R406 O_I005 O_IO10  
 11  O_R404 PLG_BVA  82 C_BVAO_BVA PLG_BVA  153 O_IO10 O_I_C_I006 O_R403  224 C_I001 O_I005 O_IO10  
 12  C_I005 PLG_BVA  83 C_BVAO_BVA O_O200  154 O_ESSB2_EN O_IO10 O_R403  225 C_I_C_I001 O_I005 O_IO10  
 13  C_I_C_I005 PLG_BVA  84 C_BVAO_BVA O_O_C_O200  155 O_R401 O_R403 T1  226 C_BVBO_BVB O_I005 O_IO10  
 14  C_ESSB1_EN PLG_BVA  85 C_I000 FTO_BVA  156 O_R401 O_R403 O_R404  227 O_IO10 O_I_C_I005 T3  
 15  O_I005 PLG_BVA  86 C_I000 PLG_BVA  157 C_I005 O_R401 O_R403  228 0_R406 O_IO10 O_I_C_I005  
 16  C_I006 FTO_BVA  87 C_I000 O_O200  158 C_I_C_I005 O_R401 O_R403  229 C_I001 O_IO10 O_I_C_I005  
 17  O_I_C_I005 PLG_BVA  88 C_I000 O_O_C_O200  159 C_ESSB1_EN O_R401 O_R403  230 C_I_C_I001 O_IO10 O_I_C_I005  
 18  O_ESSB1_EN PLG_BVA  89 C_I_C_I000 FTO_BVA  160 O_I005 O_R401 O_R403  231 C_BVBO_BVB O_IO10 O_I_C_I005  
 19  C_I006 PLG_BVA  90 C_I_C_I000 PLG_BVA  161 O_I_C_I005 O_R401 O_R403  232 O_ESSB1_EN O_IO10 T3  
 20  C_I_C_I006 PLG_BVA  91 C_I_C_I000 O_O200  162 O_ESSB1_EN O_R401 O_R403  233 0_R406 O_ESSB1_EN O_IO10  
 21  C_ESSB2_EN PLG_BVA  92 C_I_C_I000 O_O_C_O200  163 C_I006 O_R401 O_R403  234 C_I001 O_ESSB1_EN O_IO10  
 22  O_I006 PLG_BVA  93 FTO_BVA O_R404  164 C_I_C_I006 O_R401 O_R403  235 C_I_C_I001 O_ESSB1_EN O_IO10  
 23  O_I_C_I006 PLG_BVA  94 C_I005 FTO_BVA  165 C_ESSB2_EN O_R401 O_R403  236 C_BVBO_BVB O_ESSB1_EN O_IO10  
 24  O_ESSB2_EN PLG_BVA  95 C_I_C_I005 FTO_BVA  166 O_I006 O_R401 O_R403  237 C_I006 O_IO10 T3  
 25  O_O200 T1  96 C_ESSB1_EN FTO_BVA  167 O_I_C_I006 O_R401 O_R403  238 0_R406 C_I006 O_IO10  
 26  O_O200 O_R404  97 C_I_C_I001 C_I_C_I005 O_R401  168 O_ESSB2_EN O_R401 O_R403  239 C_I001 C_I006 O_IO10  
 27  C_I005 O_O200  98 C_BVBO_BVB C_I_C_I005 O_R401  169 FTO_BVB O_IO10 O_R403  240 C_I006 C_I_C_I001 O_IO10  
 28  C_I_C_I005 O_O200  99 C_ESSB1_EN O_R401 T3  170 FTO_BVB O_R401 O_R403  241 C_BVBO_BVB C_I006 O_IO10  
 29  C_ESSB1_EN O_O200  100 0_R406 C_ESSB1_EN O_R401  171 O_IO10 O_R403 PLG_BVB  242 C_I_C_I006 O_IO10 T3  
 30  O_I005 O_O200  101 C_ESSB1_EN C_I001 O_R401  172 O_R401 O_R403 PLG_BVB  243 0_R406 C_I_C_I006 O_IO10  
 31  O_I_C_I005 O_O200  102 C_ESSB1_EN C_I_C_I001 O_R401  173 O_IO10 O_O201 O_R403  244 C_I001 C_I_C_I006 O_IO10  
 32  O_ESSB1_EN O_O200  103 C_BVBO_BVB C_ESSB1_EN O_R401  174 O_O201 O_R401 O_R403  245 C_I_C_I001 C_I_C_I006 O_IO10  
 33  C_I006 O_O200  104 O_I005 O_R401 T3  175 O_IO10 O_O_C_O201 O_R403  246 C_BVBO_BVB C_I_C_I006 O_IO10  
 34  C_I_C_I006 O_O200  105 C_BVBO_BVB O_I_C_I005 O_R401  176 O_O_C_O201 O_R401 O_R403  247 C_ESSB2_EN O_IO10 T3  
 35  C_ESSB2_EN O_O200  106 O_ESSB1_EN O_R401 T3  177 O_IO10 O_R403 T2  248 0_R406 C_ESSB2_EN O_IO10  
 36  O_I006 O_O200  107 0_R406 O_ESSB1_EN O_R401  178 O_R401 O_R403 T2  249 C_ESSB2_EN C_I001 O_IO10  
 37  O_I_C_I006 O_O200  108 C_I001 O_ESSB1_EN O_R401  179 O_IO10 O_R403 O_R405  250 C_ESSB2_EN C_I_C_I001 O_IO10  
 38  O_ESSB2_EN O_O200  109 C_I_C_I001 O_ESSB1_EN O_R401  180 O_R401 O_R403 O_R405  251 C_BVBO_BVB C_ESSB2_EN O_IO10  
 39  O_O_C_O200 T1  110 C_BVBO_BVB O_ESSB1_EN O_R401  181 O_IO10 O_R402 O_R403  252 O_I006 O_IO10 T3  
 40  O_O_C_O200 O_R404  111 C_I006 O_R401 T3  182 O_R401 O_R402 O_R403  253 0_R406 O_I006 O_IO10  
 41  C_I005 O_O_C_O200  112 0_R406 C_I006 O_R401  183 C_BVAO_BVA O_IO10 O_R403  254 C_I001 O_I006 O_IO10  
 42  C_I_C_I005 O_O_C_O200  113 C_I001 C_I006 O_R401  184 C_BVAO_BVA O_R401 O_R403  255 C_I_C_I001 O_I006 O_IO10  
 43  C_ESSB1_EN O_O_C_O200  114 C_I006 C_I_C_I001 O_R401  185 C_I000 O_IO10 O_R403  256 C_BVBO_BVB O_I006 O_IO10  
 44  O_I005 O_O_C_O200  115 C_BVBO_BVB C_I006 O_R401  186 C_I000 O_R401 O_R403  257 O_IO10 O_I_C_I006 T3  
 45  O_I_C_I005 O_O_C_O200  116 C_I_C_I006 O_R401 T3  187 C_I_C_I000 O_IO10 O_R403  258 0_R406 O_IO10 O_I_C_I006  
 46  O_ESSB1_EN O_O_C_O200  117 0_R406 C_I_C_I006 O_R401  188 C_I_C_I000 O_R401 O_R403  259 C_I001 O_IO10 O_I_C_I006  
 47  C_I006 O_O_C_O200  118 C_I001 C_I_C_I006 O_R401  189 C_I001 O_IO10 T1  260 C_I_C_I001 O_IO10 O_I_C_I006  
 48  C_I_C_I006 O_O_C_O200  119 C_I_C_I001 C_I_C_I006 O_R401  190 0_R406 O_I005 O_R401  261 C_BVBO_BVB O_IO10 O_I_C_I006  
 49  C_ESSB2_EN O_O_C_O200  120 C_BVBO_BVB C_I_C_I006 O_R401  191 C_I001 O_I005 O_R401  262 O_ESSB2_EN O_IO10 T3  
 50  O_I006 O_O_C_O200  121 C_ESSB2_EN O_R401 T3  192 C_I_C_I001 O_I005 O_R401  263 0_R406 O_ESSB2_EN O_IO10  
 51  O_I_C_I006 O_O_C_O200  122 0_R406 C_ESSB2_EN O_R401  193 C_BVBO_BVB O_I005 O_R401  264 C_I001 O_ESSB2_EN O_IO10  
 52  O_ESSB2_EN O_O_C_O200  123 C_ESSB2_EN C_I001 O_R401  194 O_I_C_I005 O_R401 T3  265 C_I_C_I001 O_ESSB2_EN O_IO10  
 53  FTO_BVA FTO_BVB  124 C_ESSB2_EN C_I_C_I001 O_R401  195 0_R406 O_I_C_I005 O_R401  266 C_BVBO_BVB O_ESSB2_EN O_IO10  
 54  FTO_BVB PLG_BVA  125 C_BVBO_BVB C_ESSB2_EN O_R401  196 C_I001 O_I_C_I005 O_R401  267 O_R401 T1 T3  
 55  FTO_BVB O_O200  126 O_I006 O_R401 T3  197 C_I_C_I001 O_I_C_I005 O_R401  268 0_R406 O_R401 T1  
 56  FTO_BVB O_O_C_O200  127 0_R406 O_I006 O_R401  198 C_BVBO_BVB O_IO10 T1  269 C_I001 O_R401 T1  
 57  FTO_BVA PLG_BVB  128 C_I001 O_I006 O_R401  199 O_IO10 T1 T3  270 C_I_C_I001 O_R401 T1  
 58  PLG_BVA PLG_BVB  129 C_I_C_I001 O_I006 O_R401  200 0_R406 O_IO10 T1  271 C_BVBO_BVB O_R401 T1  
 59  O_O200 PLG_BVB  130 C_BVBO_BVB O_I006 O_R401  201 C_I_C_I001 O_IO10 T1  272 O_R401 O_R404 T3  
 60  O_O_C_O200 PLG_BVB  131 O_I_C_I006 O_R401 T3  202 O_IO10 O_R404 T3  273 0_R406 O_R401 O_R404  
 61  FTO_BVA O_O201  132 0_R406 O_I_C_I006 O_R401  203 0_R406 O_IO10 O_R404  274 C_I001 O_R401 O_R404  
 62  O_O201 PLG_BVA  133 C_I001 O_I_C_I006 O_R401  204 C_I001 O_IO10 O_R404  275 C_I_C_I001 O_R401 O_R404  
 63  O_O200 O_O201  134 C_I_C_I001 O_I_C_I006 O_R401  205 C_I_C_I001 O_IO10 O_R404  276 C_BVBO_BVB O_R401 O_R404  
 64  O_O201 O_O_C_O200  135 C_BVBO_BVB O_I_C_I006 O_R401  206 C_BVBO_BVB O_IO10 O_R404  277 C_I005 O_R401 T3  
 65  FTO_BVA O_O_C_O201  136 O_ESSB2_EN O_R401 T3  207 C_I005 O_IO10 T3  278 0_R406 C_I005 O_R401  
 66  O_O_C_O201 PLG_BVA  137 0_R406 O_ESSB2_EN O_R401  208 0_R406 C_I005 O_IO10  279 C_I001 C_I005 O_R401  
 67  O_O200 O_O_C_O201  138 C_I001 O_ESSB2_EN O_R401  209 C_I001 C_I005 O_IO10  280 C_I005 C_I_C_I001 O_R401  
 68  O_O_C_O200 O_O_C_O201  139 C_I_C_I001 O_ESSB2_EN O_R401  210 C_I005 C_I_C_I001 O_IO10  281 C_BVBO_BVB C_I005 O_R401  
 69  FTO_BVA T2  140 C_BVBO_BVB O_ESSB2_EN O_R401  211 C_BVBO_BVB C_I005 O_IO10  282 C_I_C_I005 O_R401 T3  
 70  PLG_BVA T2  141 O_IO10 O_R403 T1  212 C_I_C_I005 O_IO10 T3  283 0_R406 C_I_C_I005 O_R401  
71 O_O200 T2  142 O_IO10 O_R403 O_R404  213 0_R406 C_I_C_I005 O_IO10  284 C_I001 C_I_C_I005 O_R401 

Table 6-8: List of the minimal cut sets generating the top event 

 

For common cause failure analysis we will use the method proposed in chapter 5 as an 

extension of the FLASH method.  First of all we calculate the total likelihood of each 

event during the mission, i.e. P(FTO_BVA)=1.0e-3 and P(C_BVAO_BVA)=1.0e-5.  

Then, we calculate the likelihood of each lifecycle category to cause the event by 

applying expression 5-2 (the whole list of probabilities is reported in Table 6-10).  For 

example, the likelihood of event FTO_BVA to be caused by an error in the lifecycle 

category Manufacturer (i.e. MM1) of valve BVA is:  
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 P(FTO_BVAMM1) = P(FTO_BVA)* 3/100 = 3*e-5 
 

Then, we calculate the likelihood of each coupling cause by applying expression 5.23 to 

obtain the list of coupled probabilities shown in Table 6-11 (estimated by using β= 1). 

 
 

Basic Events 

 

  FTO_BVA  T1    
Failure Rate λ[1/h] 1e-6   1e-7       
Repair Rate µ[1/h] -   -       

Mean Time to Failure MTTF [h] -   -       
Failure Probability on demand  1e-3   -       

R
el

ia
bi

lit
y 

 D
at

a 

Mission time [h] 100   100       
 

 Coupl. 
Code 

%  Coupl. 
Code 

%       

 Design 
Architecture DCA1 2  DCA3 8       

Concept and 
Design 

Technological 
Materials 
Equipment Type 

DTM1 3  DTM3 7 
      

 Specifications DS1 1  DS3 6       
 Manufacturer MM1 3  MM3 5       

Manufacturing Procedures MPD1 5  MPD3 4       
 Process MPP1 1  MPP3 8       

Installation/ Fitter IIF1 3  IIF3 5       
Integration Procedures IIP1 6  IIP3 4       
And Test Location IIL1 2  IIL3 6       

 Routing IIR1 5  IIR3 7       
Operation Staff OS1 4  OS3 8       

 Procedures OP1 6  OP3 6       
Maintenance Staff MS1 7  MS3 2       

 Procedures MP1 8  MP3 3       
Test Staff TS1 6  TS3 1       

 Procedures TP1 8  TP3 3       
Calibration Staff CS1 7  CS3 5       

 Procedures CP1 6  CP3 1       
 Mechanical and 

Thermal EMT1 5  EMT3 3       

Environmental Electrical and 
Corrosion EEC1 4  EEC3 6       

Li
fe

cy
cl

e 
C

at
eg

or
ie

s 

 Chemical and 
miscellaneous ECM1 8  ECM3 2       

Table 6-9: Coupling table for MCS 1 (FTO_BVA; T1) 
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Basic Events 
 

   FTO_BVA  C_BVAO_BVA   

Failure Rate λ[1/h]  1e-6   1e-7     
Repair Rate µ[1/h]  -   -     

Mean Time to Failure MTTF [h]  -   -     
Failure Probability on demand   1e-3   -     R

el
ia

bi
lit

y 
 D

at
a 

Mission time [h]  100   100     
 

  Coupl. Code %  Coupl. Code %    
 Design Architecture  DCA1 2  DCA1 8    

Concept and 
Design 

Technological Materials 
Equipment Type 

 DTM1 3  DTM1 7    
 Specifications  DS1 1  DS1 6    
 Manufacturer  MM1 3  MM2 5    

Manufacturing Procedures  MPD1 5  MPD2 4    
 Process  MPP1 1  MPP2 8    

Installation/ Fitter  IIF1 3  IIF1 5    
Integration Procedures  IIP1 6  IIP2 4    
And Test Location  IIL1 2  IIL2 6    

 Routing  IIR1 5  IIR2 7    
Operation Staff  OS1 4  OS1 8    

 Procedures  OP1 6  OP1 6    
Maintenance Staff  MS1 7  MS1 2    

 Procedures  MP1 8  MP1 3    
Test Staff  TS1 6  TS2 1    

 Procedures  TP1 8  TP2 3    
Calibration Staff  CS1 7  CS2 5    

 Procedures  CP1 6  CP2 1    
 Mechanical and Thermal  EMT1 5  EMT2 3    

Environmental Electrical and Corrosion  EEC1 4  EEC2 6    

Li
fe

cy
cl

e 
C

at
eg

or
ie

s 

 Chemical and miscellaneous  ECM1 8  ECM2 2    
 

Basic Events 
 

   FTO_BVA  C_BVAO_BVA 
 

  Coupling 
Code 

Likelihood that the 
Lifecycle category 

causes the basic event 
 

Coupling 
Code 

 

Likelihood that the 
Lifecycle category 

causes the basic event 
 Design Architecture  DCA1 2e-5  DCA1 8e-7 

Concept and 
Design 

Technological Materials 
Equipment Type 

 DTM1 3e-5  DTM1 7e-7 
 Specifications  DS1 1e-5  DS1 6e-7 
 Manufacturer  MM1 3e-5  MM2 5e-7 

Manufacturing Procedures  MPD 1 5e-5  MPD 2 4e-7 
 Process  MPP 1 1e-5  MPP 2 8e-7 

Installation/ Fitter  IIF1 3e-5  IIF1 5e-7 
Integration Procedures  IIP1 6e-5  IIP2 4e-7 
And Test Location  IIL1 2e-5  IIL2 6e-7 

 Routing  IIR1 5e-5  IIR2 7e-7 
Operation Staff  OS1 4e-5  OS1 8e-7 

 Procedures  OP1 6e-5  OP1 6e-7 
Maintenance Staff  MS1 7e-5  MS1 2e-7 

 Procedures  MP1 8e-5  MP1 3e-7 
Test Staff  TS1 6e-5  TS2 1e-7 

 Procedures  TP1 8e-5  TP2 3e-7 
Calibration Staff  CS1 7e-5  CS2 5e-7 

 Procedures  CP1 6e-5  CP2 1e-7 
 Mechanical and Thermal  EMT1 5e-5  EMT2 3e-7 

Environmental Electrical and Corrosion  EEC1 4e-5  EEC2 6e-7 

Li
fe

cy
cl

e 
C

at
eg

or
ie

s 

 Chemical and 
miscellaneous 

 ECM1 8e-5  ECM2 2e-7 

Table 6-10: Probabilities that a coupling cause will rise an event in MCS 81 
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Terms that have to be substituted Dependent likelihood expression Likeli-
hood  

P(FTO_BVADCA1)P(C_BVAO_BVADCA1) 

{P(FTO_BVADCA1) 
-Min[(P(FTO_BVADCA1);P(C_BVAO_BVADCA1)]} 
*{P(C_BVAO_BVADCA1) 
-Min[(P(FTO_BVADCA1);P(C_BVAO_BVADCA1)]} 
+ Min[(P(FTO_BVADCA1);P(C_ BVAO_BVADCA1)] 

≅2e-7 

P(FTO_BVADTM1)P(C_BVAO_BVADTM1) 

{P(FTO_BVADTM1) 
-Min[P(FTO_BVADTM1);P(C_BVAO_BVADTM1)]} 
*{P(C_BVAO_BVADTM1) 
-Min[(P(FTO_BVADTM1);P(C_BVAO_BVADTM1)]} 
+Min[(P(FTO_BVADTM1); P(C_BVAO_BVADTM1)] 

≅3e-7 

P(FTO_BVADS1)P(C_BVAO_BVADS1) 

{P(FTO_BVADS1) 
-Min[P(FTO_BVADS1);P(C_BVAO_BVADS1)]} 
*{P(C_BVAO_BVADS1) 
-Min[(P(FTO_BVADS1);P(C_BVAO_BVADS1)]} 
+Min[(P(FTO_BVADS1);P(C_BVAO_BVADS1)] 

≅1e-7 

P(FTO_BVAIIF1)P(C_BVAO_BVAIIF1) 

{P(FTO_BVAIIF1) 
-Min[P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)]} 
*{P(C_BVAO_BVAIIF1) 
-Min[(P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)]} 
+Min[(P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)] 

≅3e-7 

P(FTO_BVAOS1)P(C_BVAO_BVAOS1) 

{P(FTO_BVAOS1) 
-Min[P(FTO_BVAOS1);P(C_BVAO_BVAOS1)]} 
*{P(C_BVAO_BVAOS1) 
-Min[(P(FTO_BVAOS1);P(C_BVAO_BVAOS1)]} 
+Min[(P(FTO_BVAOS1); P(C_BVAO_BVAOS1)] 

≅4e-7 

P(FTO_BVAOP1)P(C_BVAO_BVAOP1) 

{P(FTO_BVAOP1) 
-Min[P(FTO_BVAOP1);P(C_BVAO_BVAOP1)]} 
*{P(C_BVAO_BVAOP1) 
-Min[(P(FTO_BVAOP1);P(C_BVAO_BVAOP1)]} 
+Min[(P(FTO_BVAOP1);P(C_BVAO_BVAOP1)] 

≅6e-7 

P(FTO_BVAMS1)P(C_BVAO_BVAMS1) 

{P(FTO_BVAMS1) 
-Min[P(FTO_BVAMS1);P(C_BVAO_BVAMS1)]} 
*{P(C_BVAO_BVAMS1) 
-Min[(P(FTO_BVAMS1);P(C_BVAO_BVAMS1)]} 
+Min[(P(FTO_BVAMS1);P(C_BVAO_BVAMS1)] 

≅7e-7 

P(FTO_BVAMP1)P(C_BVAO_BVAMP1) 

{P(FTO_BVAMP1) 
-Min[P(FTO_BVAMP1);P(C_BVAO_BVAMP1)]} 
*{P(C_BVAO_BVAMP1) 
-Min[P(FTO_BVAMP1);P(C_BVAO_BVAMP1)]} 
+Min[(P(FTO_BVAMP1);P(C_BVAO_BVAMP1)] 

≅8e-7 

Sum of all the dependent probabilities ≅4e-6 

Table 6-11: Products that have to be substituted in equation 5-1 
 

Substituting these values into expression 5-7, we obtain the likelihood of the minimal cut 

set, which is 4e-6 during the mission time.  This value is almost two orders bigger than 

the likelihood calculated without considering couplings, that is 1.e-8. 

Under same conditions, if we had applied the Beta factor parametric method to MCS 

81 we would have obtained a likelihood of the same order (only four time bigger than it 

was obtained with the FLASH method).  This can be seen from the following expression. 

 

P(FTO_BVA)*P(C_BVAO_BVA)+Beta*Min[P(FTO_BVA);P(C_BVAO_BVA)]= 

≅ 1.0e-3 * 1.0e-5 + 0.1 * Min[1.0e-3,1.0e-5] 

≅ 1.0e-6 
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Hence, the FLASH method contributes studying and evaluating inter-component 

dependencies since:  

1) Only real couplings among events in a MCS are considered. 

2) Quantitative estimation of the likelihood of MCS with coupled events is based only 

on real couplings hence the figure for the likelihood of MCS is more accurate and 

realistic. 

3) For a given MCS and under same conditions, the FLASH method obtains a similar 

value for the likelihood of the MCS as the β factor parametric model.  

6.2 Computer-Assisted Braking system 

6.2.1 Description 

The Computer-Assisted Braking (CAB) system that we address in this section is a model 

of a concept being considered for employment in modern cars to enhance braking 

performance and vehicle safety.  It is meant to provide three functions in addition to 

traditional brakes.  The Anti-lock braking, widely known as ABS, that detects the onset 

of wheel lock up (which would result in skidding) and momentarily release the brakes to 

allow the wheel to turn and regain grip. The Emergency stop detection and enhancement 

that detects the rapid pedal movement associated with an emergency stop, and 

automatically maximises the braking used.  The Load-compensated braking that 

measures the weight on the vehicle’s suspension to ensure that a given pressure on the 

brake pedal provides the same degree of braking, regardless of how heavily the vehicle is 

loaded, or how the load is distributed. 

The braking system has to meet legal requirements therefore it must retain a direct 

hydraulic link from the brake pedal to the brakes so that, in the event of complete failure 

of the computerised parts of the system, the driver will still have minimal braking 

functionality.  Additionally, to allow the system to control braking individually to each 

wheel, there must be four separate hydraulic lines, the pressure in each of which can be 

altered (reduced as well as increased) by computer controlled actuators.  This means that, 

if the system fails, the actuators must be guaranteed to return to a “neutral” position, 

where they are neither increasing nor decreasing the driver’s braking effort.  Therefore, it 

was decided to fit each hydraulic line to each wheel with a feedback pressure sensor to 

allow closed-loop control.  The brake pedal is to be fitted with two sensors, each 

returning a value indicating how hard the pedal has been pressed.  Axles of the vehicle 
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are to be fitted with two pressure transducers to measure the load on the vehicle.  Finally, 

each wheel is to be fitted with a rotation sensor to be used for lock-up detection for anti-

lock braking functions.  The braking system context diagram is shown in Figure 6-8. 
 

 

CAB

Axle load
sensors

Wheel rotation
sensor

Hydraulic lines

Actuators and
feedback sensors

Brake discs

Control lines

Brake pedal and
duplicated sensors

 
Figure 6-8: CAB system context diagram 

 

Since the braking system has to be implemented in a vehicle it has to meet some basic 

performance requirements that are derived from the vehicle dynamics.  It has to achieve 

the maximum available braking pressure in less than 400 ms, additionally, it has to 

decrease the pressure delivered such that brakes are fully released from maximum 

pressure in less than 200 ms. Finally, the maximum permissible latency from pedal 

movement to brake effect is 20 ms. 

Hence, it was decided to fit two output controllers to drive the hydraulic actuators, 

each controlling the actuators for a diagonal pair of wheels.  These controllers are 

already designed (commercial of the shelf).  Each takes required output commands over a 

duplicated Controller Area Network (CAN) bus29 link, and converts these to the required 

                                                      
29Controller Area Network (CAN) is a high-speed local area network protocol designed to have predictable 

properties, and to be suitable for control applications.  In CAN, data is transmitted as a message consisting 
of between 1 and 8 bytes. Messages are sent via stations, which police access to the bus. Typically, each 
station can buffer a maximum of 14 incoming or outgoing messages. Each message source is assigned a 
unique identifier, represented as an 11-bit number.  This identifier is used to filter messages and assign 
priorities to the messages. Messages have a period, or minimum inter-arrival time, which they inherit from 
the sending task. If either the sender or receiver of a message detects an error, the sender station is signaled 
and re-transmits the message.  

See ISO Draft International Standard Road Vehicles - Interchange of Digital Information - Controller 
Area Network (CAN) for High Speed Communication, ISO DIS 11898, 1992 

or K. Tindell,  A. Burns and A. Wellings "Calculating Controller Area Network (CAN) Message 
Response Times" in Proceedings of the 1994 IFAC Workshop on Distributed Computer Control. 
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electrical output to the actuators.  Each controller works on a cyclic basis, and will only 

alter its outputs once per period of the cycle.  If more than one output command message 

were received in a period, only the first will be used; subsequent messages will be 

ignored. If no command message is received during any period, outputs will be “frozen” 

at the last value received until a new command is received. 

Because of the highly critical nature of the application, the manufacturer has 

imposed further design constraints. The computer hardware implementing the design 

must have redundancy.  Additionally, the system must exhibit graceful degradation in 

case of failures.  In particular, there must be a “fallback” algorithm which is capable of 

running independently on any of the redundant hardware units, and which is capable of 

providing minimum braking functionality (i.e. pressure simply proportional to pedal 

travel) on its own.  Finally there must be redundancy in any communication system used 

between the hardware units. 

6.2.2 Analysis in the Decomposition and Design 

The safety analysis of the CAB started carrying out a preliminary hazard analysis (PHA) 

on the computerised braking system.  The analysis concluded that any deviation from the 

specified behaviour is potentially hazardous.  Seven specific failure modes were 

identified, and assigned criticalities as summarised in Table 6-12.  Most of these failure 

modes are already present in a hydraulic braking system. They are caused by loss of 

hydraulic fluid or ingress of air, water or other contaminants into brake lines.  Failure 

modes that the PHA identified as unique to a computer-assisted system are the 

unexpected application of brake (c) and uneven braking (f).  
 

ID Effect description Risk class 

A Complete lack of braking Catastrophic  
B Lock up (1-4 wheels, 1-2 axles) Catastrophic 
C Unexpected application / release of brakes Catastrophic 
D Braking response not proportional to demand Major 

E Tardy response (time from demand to brake effect, slow rate 
of change in response to demand) Major 

F Uneven braking (pressures vary "wildly" in response to 
constant demand) Major 

G Unequal braking (1-3 wheels brake less or more than required) Major 
Table 6-12: CAB failure modes identified by PHA 
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Table 6-13 represents the FLASH table that corresponds to the same analysis level as the 

PHA. For economy of space we have put the complete table, as it looks after the 

completion of the FLASH analysis.  However during the PHA only the first, third and 

fourth columns are completed.  It can be noticed that these columns contain the same 

information as Table 6-12. 
 

Instance = Brakes Component Type = Brakes Periodicity = Sporadic Tag = Brakes 

Event propagated  Causes Description Criticality  
5th Column: Justification, Design 

Recommendations,  
Derived Safety Requirements 

Comments 
(FMEA) 

 a_.Braking_func 
.brakes  

 V_.Sens_in.Sens 
OR (V_.FN_RO.cab 
AND 
V_.FO_RN.cab) 

Complete lack of 
braking Catastrophic 

b_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
(V_.FN_RO.cab 
AND 
V_.FO_RN.cab) 

Lock-up (1-4 wheels, 
1-2 axles)  Catastrophic 

c_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
(V_.FN_RO.cab 
AND 
V_.FO_RN.cab) 

Unexpected 
application/release 
of brakes    

Catastrophic 

Before design  
Recommendations 
Sensors should be fail-safe and without 
SPF.  
Hardware redundancies must be implemented.
Effect max accepted likelihood 
10-7 during the mission time 
After design 
Detection 
Not possible 
Recovery 
The driver will try to correct with the steering 
wheel 
Recommendation 
Software must be developed to comply with 
safety integrity level four  
Max accepted likelihood for critical events 
in the Causes column. 
The rate of V_.Sens_in.Sens must be < 
.5E-7 [1/h], each V_.FN_RO.cab and  
V_.FO_RN.cab rate must be <0.4E-3 
[1/h].  

According to the 
implementation and 
integration 
proposed/hypothesise
d, there are no SPFs 
and the expected rate 
for the event is 0.6E-7 
[1/h]  
V_.Sens_in.Sens rate is 
< 0.4E-7 [1/h]  
V_.FN_RO.cab rate is < 
0.1E-3 [1/h] 
V_.FO_RN.cab rate is < 
0.1E-3  [1/h] 

d_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
(V_.FN_RO.cab OR 
V_.FO_RN.cab) 

Braking response not 
proportional to 
demand 

Major 

Sensors are fail-safe 
and without SPF. 
d_.Braking_func.brake
s rate is < 0.3E-3 [1/h] 

e_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
FN_RO.cab OR 
V_.FO_RN.cab 

Tardy response (time
from demand to 
brake effect, slow 
rate of change in 
response to demand)

Major 

Sensors are fail-safe 
and without SPF. 
e_.Braking_func.brakes 
rate is < 0.3E-3 [1/h] 

f_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
FN_RO.cab OR 
V_.FO_RN.cab 

Uneven braking 
(pressures vary 
"wildly" in response 
to constant demand)

Major 

Sensors are fail-safe 
and without SPF. 
f_.Braking_func.brakes 
rate is < 0.3E-3 [1/h] 

g_.Braking_func 
.brakes  

V_.Sens_in.Sens OR 
V_.FN_RO.cab OR 
V_.FO_RN.cab OR 
E_.FN_RO.cab OR 
E_.FO_RN.cab OR 
L_.FN_RO.cab OR 
L_.FO_RN.cab 

Unequal braking. (1-
3 wheels brake less 
or more than 
required) 

Major 

Before design  
Recommendations 
Sensors should be fail-safe and without 
SPF.  
Effect max accepted rate  
<0.4E-3 [1/h] 
After design 
Detection 
Possible 
Recovery 
The driver will try to correct with the steering 
wheel 
Recommendation 
Software must be developed to comply with 
safety integrity level four  
Max accepted failure rate for critical 
events in the Causes column. 
Each rate of: E_.FN_RO.cab, 
E_.FO_RN.cab, L_.FN_RO.cab, and  
L_.FO_RN.cab must be < 0.1*10-3 [1/h].  

Sensors are fail-safe 
and without SPF. 
g_.Braking_func.brake
s rate is <0.6*10-4 [1/h] 
E_.FN_RO.cab 
rate<0.7*10-4 [1/h] 
E_.FO_RN.cab 
rate<0.7*10-4 [1/h] 
L_.FN_RO.cab 
rate<0.9*10-4 [1/h] 
L_.FO_RN.cab 
rate<0.9*10-4 [1/h] 

Table 6-13: Top level FLASH table 

 

After the preliminary hazard analysis a system design is proposed.  It consists of three 

independent hardware “channels”.  Each comprises a processor, with necessary memory, 

hardware timer and counter registers for scheduling and accurate interval timing of 

sensor input, signal processing electronics to handle the inputs from the sensors and dual 

CAN bus stations.  Sensor inputs are duplicated, and hard-wired to each board. The three 

boards communicate only via the duplicated CAN buses, which are also used to send 

output to the output controllers.  Figure 6-9 shows the high level structure of the 
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proposed braking system hardware and flows delivered by some modules.  With this 

information it is possible to complete the 2nd and 5th columns in Table 6-13 and begin 

development and analysis of lower levels components.  Table 6-14 is a fragment of the 

FLASH table for the CAB device.  It represents rows regarding the delivery of 

commands to brakes actuators of the front near side and rear offside wheels (FN_RO).  

The table shows how Omission (O), Commission (C), Early (E), Late (L) and Value (V) 

failures in the output module (Output.Mod1) directly result in similar failures to be 

propagated by the CAB.  Whilst, value failure propagated form the CAB to the front near 

side and rear offside wheels of the car (i.e. V_.FN_RO.CAB) can be caused by a fault in 

both busses (V_.Busses.2B) or in the three processors (V_.Pair_1.3P).  More specifically, 

the failure logic underneath propagation of V_.Busses.2B and V_.Pair_1.3P is further 

considered in Table 6-15 representing the so called group of events (4.2.3). 
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Figure 6-9: Structure of the proposed braking system hardware 
 
 
 

The development of sub-modules proceeds.  The control system of the CAB is developed 

to be cyclic, with some processes running at regular intervals to provide the necessary 

response characteristics.  The scheduling of processes is periodic for processes that run 

at regular intervals (offsets is used to control the order and time interval between process 

running at the same periodic rate), while it is sporadic for tasks that run in response to 

some events e.g. the arrival of a signal from another process. 
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Instance = 
CAB Component Type = CAB Periodicity = Perodic Tag = CAB 

Event 
propagated  Causes Description 

5th Column: Justification, 
Design Recommendations,  

Derived Safety Requirements 

Comments 
(FMEA) 

O_. 
FN_RO.cab  O_.Output.Mod1 

Omission 
braking for 
2/4 wheels 

This event is stopped by the 
output module 

According to the implementation 
and integration 
proposed/hypothesised the 
expected rate for the event is 
0.3*10-4 [1/h] 

C_. 
FN_RO.cab  C_.Output.Mod1 

Commission 
braking for 
2/4 wheels 

This event is stopped by the 
output module 

The expected rate for the events is 
0.3*10-4[1/h] 

E_. 
FN_RO.cab  E_.Output.Mod1 Early braking 

for 2/4 wheels 

The event must exhibit a 
rate < 0.3*10-3[1/h]. The 
E_.Output.Mod1 rate must 
be<0.1*10-3[1/h] 

The expected rate for the events is 
0.9*10-4[1/h] 

L_. 
FN_RO.cab  L_.Output.Mod1 Late braking 

for 2/4 wheels 

The event must exhibit a 
rate < 0.3*10-3[1/h]. The 
L_.Output.Mod1 rate must 
be<0.1*10-3[1/h]. 

The expected rate for the events is 
0.9*10-4[1/h] 

V_. 
FN_RO.cab 

V_.Output.Mod1 
OR V_.Pair_1.3P 
OR V_.Busses.2B 

Wrong  
braking value 
for 2/4 wheels 

The event must exhibit a 
rate < 0.4*10-3[1/h]. 
V_.Output.Mod1 and 
V_.Pair_1.3P must 
be<0.2*10-3[1/h];  
 V_.Busses.2B must be 
<0.1*10-7 [1/h] 

The expected rate for the event is  
< 0.1*10-3[1/h].  V_.Output. 
Mod1 and V.Pair_1.3P rate is 
<0.5*10-4[1/h];  
V_.Busses.2B is <0.9*10-8[1/h]. 

Table 6-14: Flash table for the CAB system 

 

GROUPS OF EVENTS 

GOE Causes Description  
Justification, Design 

Recommendations, Action 
required  

Comments 
(FMEA) 

V_.Pair_1.3P 

V_.Pair_1.ch1 
AND 
V_.Pair_1.ch2 
AND 
V_.Pair_1.ch3 

Wrong pressure value 
delivered to brakes 
(All three channels 
fail giving the same 
value to the output 
module) 

The event must exhibit a 
rate<0.5*10-4 [1/h]  
V_.Pair_1.ch1, V_.Pair_1.ch2 
and  V_.Pair_1.ch3 rate must 
be<0.1*10-4 [1/h]  

The expected 
rate for the 
events 
(considering 
common cause 
failures) is 
0.3*10-7[1/h] 

V_.Busses.2B 

(Fail_silent.Bu
s.Bus1 AND 
V_.Bus.Bus2) 
OR 
(V_.Bus.Bus1  
AND 
Fail_silent.Bus
.Bus2) OR 
(V_.Bus.Bus1  
AND 
V_.Bus.Bus2) 

All data exchange are 
messed up 

The event must exhibit a rate < 
0.1*10-7  

The expected 
rate for the 
events 
(considering 
common cause 
failures) is 
0.9*10-8[1/h] 

Table 6-15: Group of even table for FLASH Table 6-14 

 

To meet requirement for a maximum 20 ms latency from pedal movement to brake effect, 

a 10 ms period has been selected for the main periodic tasks. This ensures that a 

complete iteration of the main control loop will always complete within the time limit.  

The proposed top-level functional decomposition of the CAB system is shown in Figure 

6-10.  The notation used to show the inter-process communications is based on DORIS / 
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DIA30, a development of MASCOT. The communications protocols used are summarised 

in Table 6-16. 
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Figure 6-10: Functional block diagram of the CAB system 

 
Interaction 
Name 

Symbol Inputs Outputs Writer can be 
held up 

Reader can be 
held up 

Signal 
 

One One N Y 

Pool 
 

One One or more N N 

Multicast 
Signal 

 
One Many, distributed N Y 

Table 6-16: Communications protocols 

                                                      
30 H. Simpson Methodological and Notational Conventions in DORIS Real Time 

Networks British Aerospace Dynamics Division, 1994 
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In each period of the cycle, each channel (processor) calculates a basic braking value 

from the pedal sensor value. The values of all the other sensors are then used to 

determine whether the three modifiers (i.e. Anti-lock, Emergency stop enhancement and 

Load compensation) are required in the current cycle, and calculate the necessary 

changes in braking for each wheel to implement these modifiers.  The three channels 

then vote on which modifiers to add. For a modifier to be added, at least two of the 

channels must have determined that it is required. The actual amount by which braking at 

each wheel is to be increased or decreased to implement the modifiers is not 

communicated, as it is so dependent on the precise value of the sensors read by each 

channel.  This means that, if one channel has not calculated a value for a modifier that 

has been voted necessary (i.e. the other two channels require it), then this channel must 

revert to the basic value initially calculated.  

 The system is scheduled so that the OUT processes on the three processors should 

always complete in the order Processor 1 - Processor 2 - Processor 3.  In the case where 

a channel has had to revert to a basic value, this will be output later than the normal 

completion time of all three OUT processes, to ensure that the basic value is not used if 

an enhanced value is available from another channel. This ensures that Processor 1 

normally controls the braking, avoiding the possible fluctuations caused by switching 

between channels, as would be the case if output order were not pre-determined. Data 

types of all the flows in the design shown in Figure 6-10 are shown in Table 6-16. The 

functionality of each process is reported in Table 6-18. 

 The use of a pre-emptive, priority-based scheduler is proposed for the system. This 

means that, if a low-priority process is executing, and a higher priority task becomes 

runable, the low-priority task will be suspended until the high priority task has 

completed.  Figure 6-11 shows roughly what the timing of processes in one cycle of the 

CAB system is expected to be. 
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Flow name Source Destination Protocol Data Type 

Sens_in Sensors IN Pool 

14 Individual sensor values: 
2 pedal 
4 wheel rotation 
4 axle load 
4 pressure feedback 

Sensor_ 
Feedback IN OUT Pool Record containing 

4 pressure feedback values 

All_sens IN MODIFIER_ 
SELECTION Pool 

Record containing 
pedal value 
4 wheel rotation sensor values 
4 axle load values 

Pedal_val IN BASIC Signal Pedal value 

Basic_press BASIC MODIFIER_ 
SELECTION Signal Record containing 

4 basic braking values (1 per wheel) 

Modifier_ 
Values 

MODIFIER_ 
SELECTION 

MODIFIER_ 
ADDITION Pool 

Record containing 
4 basic braking values (1 per wheel) 
4 ABS modifier (1 per wheel) 
4 Load compensation modifiers (1 per wheel) 
4 Emergency stop modifiers (1 per wheel) 

Votes MODIFIER_ 
SELECTION 

BUS_ 
WATCHER 
(On all 3 
processors) 

Signal Record containing 3 flags, indicating whether 
each of the 3 modifiers is required 

All_votes BUS_ 
WATCHER 

MODIFIER_ 
ADDITION Pool Record containing 3 sets of 3 votes (i.e. one from 

each processor) 

Final_press MODIFIER_ 
ADDITION OUT Pool 

Record containing 
4 Braking values (1 per wheel) 
Flag indicating whether modifiers have been 
added successfully 

Pair_1 OUT Hardware Signal Braking actuator drive values for front nearside 
and rear offside wheels 

Pair_2 OUT Hardware Signal Braking actuator drive values for front offside 
and rear nearside wheels 

Table 6-17: Data types of all flows 

 
 
IN (Periodic process run at the start of each cycle) 
Read all sensors 
Use data from both pedal sensors to form single pedal value 
Output pedal value to BASIC 
Output pedal, wheel revolution and load values to pool for use by MODIFIER SELECTION 
Output actuator feedback to pool for use by OUT 
 
BASIC (Sporadic process triggered by arrival of pedal sensor data) 
Calculate a basic braking pressure for each wheel based on the pedal sensor only 
 
MODIFIER SELECTION (Sporadic process triggered by arrival of basic) 
Use all sensor information to determine which modifiers are required in this cycle 
Calculate modifier values and place record containing basic and modifier values in pool for use by MODIFIER 
ADDITION 
Broadcast votes to all BUS WATCHER processes to identify which modifiers are required 

 
BUS WATCHER (Sporadic process triggered by arrival of votes) 
Build up record of votes (i.e. which processors have determined a need for each of the modifiers) 
 
MODIFIER ADDITION (Periodic process, with offset from start of cycle) 
From record of all votes assembled by BUS WATCHER, determine which modifier(s) to add to the basic braking value 
If no value is available for a required modifier, revert to basic 
 
OUT (Periodic process, with offset from start of cycle) 
If modifiers successfully added output calculated pressure immediately (adjusted according to sensor Feedback) 
otherwise wait until end of period, and output basic value (adjusted according to sensor feedback) 
 

Table 6-18: The functionality of each process 
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1 OUT 
2 MODIFIER ADDITION 
3 IN 
4 BUS WATCHER 
5 BASIC 
6 MODIFIER SELECTION 
 

Table 6-19: Order of priority tasks (1 is high) 

 

MODIFIER
ADDITION

MODIFIER
SELECTIONBIN BASIC B B OUT   INP1

OUT offset from start of cycle

Duration of one cycle

MODIFIER ADDITION offset

A B C D E F G  
Figure 6-11: Timing of 1 cycle of the CAB system on processor 1 

 

Table 6-20 represents the fragment of the FLASH analysis that regards the propagation 

of Pair_1 from Channel_1.  We can see that some failure events (i.e. O, C, E) are 

stopped by the output module, while value failure (i.e. V_.) is propagated to brake shoes.  

A value failure of Pair_1 out of Channel_1 can be due to a single failure that arise inside 

Channel_1, (i.e. V_.Pair_1.Out1, V_.Sensor_feedback.In1, V_.Modifier_values.MS1, 

V_.Final_press.MA1, V_.All_votes.BW1 or V_.Processor.P1), a failure of both busses 

(i.e. V_.Busses.2B) or some internal failure of Channel_1  (i.e. V_.Pedal_Val.In, 

V_.Basic_Press.BS1, V_.All_sens.In, V_.Votes.MS1) combined to a failure in an output 

of another channel (i.e. V_.Votes.Ch2 or V_.Votes.Ch3). 

The study of the CAB has continued further.  However we are not reporting 

tables that have been made for all the other modules in Figure 6-10 since we believe we 

already have illustrated enough the FLASH process in practice. 
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Instance = 
Channel_1 Component Type = Channel Periodicity = Signal Tag = Ch1 

Event 
propagated Causes Description 

5th Column: Justification, 
Design Recommendations,  

Derived Safety Requirements

O_. 
Pair_1.ch1  

O_.Pair_1.Out1 AND O_.Busses.2B OR 
O_.Processor.P1 

Omission for value 
to output mod 1 

This event is not 
propagated. In case of 
omission the output 
module will use the 
previous value 
delivered by the system. 

C_. 
Pair_1.ch1  

C_.Pair_1.Out1 OR C_.Busses.2B OR 
C_.Processor.P1 

Commission for 
value to output  
mod 1 

This event is not 
propagated. In case of 
commission the output 
module will use the 
previous value 
delivered by the system. 

E_. 
Pair_1.ch1  

E_.Pair_1.Out1 OR E_.Busses.2B OR 
E_.Processor.P1 

Early for value to 
output mod 1 

This event is not 
propagated. In case of 
omission the output 
module will use the 
previous value 
delivered by the system. 

L_. 
Pair_1.ch1  

L_.Pair_1.Out1 OR L_.Busses.2B OR 
L_.Processor.P1 

Late for value to 
output mod 1 

This event is not 
propagated. In case of 
omission the output 
module will use the 
previous value 
delivered by the system. 

V_. 
Pair_1.ch1  

V_.Pair_1.Out1 OR 
V_.Sensor_feedback.In1 OR 
V_.Modifier_values.MS1 OR 
(V_.Pedal_Val.In OR V_.Basic_Press.BS1 
OR V_.All_sens.In OR V_.Votes.MS1) 
AND (V_.Votes.Ch2 OR V_.Votes.Ch3) 
OR V_.Final_press.MA1 OR 
V_.All_votes.BW1 OR  V_.Busses.2B OR 
V_.Processor.P1 

Wrong value to 
output mod 1 

The event must exhibit a 
rate < 0.4*10-3 h-1  

Table 6-20: FLASH table for Channel 1 

 

6.2.3 Integration, verification and Common Cause Failures analysis 

FLASH analysis in the integration and verification stage confirmed that the design meets 

specifications, recommendations and derived safety requirements issued during the 

decomposition and design.  FLASH tables presented in the previous section (i.e. Table 

6-13, Table 6-14 and Table 6-15) already showed the column Summary FMEA results 

with results from the verification stage. Common cause failure analysis has not been 

performed on the CAB system.  It would have followed the same path as the analysis of 

the Fuel System.  Once minimal cut sets for critical failure modes are obtained, they are 

searched for couplings.  If couplings are not found, their likelihood is calculated as 

product of likelihood of each event in the minimal cut set; if couplings are found, the 

extension of the FLASH method presented in chapter 5 has to be applied as we did in the 

first case study presented in this chapter. 
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6.3 Discussion 
The overview of these case studies has highlighted how the FLASH analysis can be 

integrated with the decomposition and design, and the integration and verification, stages 

of the lifecycle. The FLASH process was able to provide the results expected from FHA, 

HAZOP, FMEA, and FTA.  Chapter 2 discussed the main problems arising in the 

assessment of complex systems, when classical safety analysis techniques are applied. 

These are the inconsistencies between the various analyses and the difficulty in linking 

the results back to the functional hazard assessment. It is believed that FLASH has 

overcome these issues.  Additionally, the way FLASH decomposes a system and collects 

information about events is a valuable help for considering common cause failures.  It 

has been shown how data gathered into FLASH tables during the lifecycle can be used to 

identify minimal cut sets vulnerable to common cause failures. Coupled events and 

coupled components are identified and when reliability data are known, quantitative 

figures can also be derived.  Hence, on the basis of the FLASH analysis, analysts and 

designers can decide whether to accept a proposed system design or ask for 

improvements. 

FLASH can be compared with classical analysis methods on the basis of the support 

it gives to development, formality, speed of analysis, keeping the analysis updated with 

design and providing immediate feedback. In addition, the traceability of functional 

failures to basic events becomes useful when it has to be shown that the system meets 

specifications and safety requirements. 

The FLASH approach is quite formal and it becomes heavier as the complexity of 

the system increases.  It becomes laborious and tedious when tables are compiled by 

hand.  However a software tool can speed up the FLASH process and make it a 

competitor (we at least hope) of classical methods in terms of results obtained and 

overall economy of the safety analysis.  A suitable software tool will reduce to instants 

the most tedious phases of the FLASH process that is consistency checking of tables and 

FT construction and evaluation. We have experienced that the “FLASH schema” we 

implemented into the SAM platform [McDermid, 1994], extensively helps in navigating 

the FLASH hierarchy by following links among tables.  This tool had helped 

considerably in the writing and updating of tables for our case studies. 
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Though FLASH is based on classical, widely diffused safety analysis techniques it 

is a completely new approach and its results and benefits have to be compared with ones 

achieved with the best industrial practice. The application of FLASH to a variety of 

industrial cases will prove the practicability of this technique in an industrial 

environment. It is believed that some changes might have to be made to the FLASH 

approach to adapt this technique to some complex systems (e.g. adding new columns to 

accommodate additional information).  However, it is also believed that the basic 

FLASH process will not need to change significantly. 
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Chapter Seven 

7Conclusions 
 

This thesis has made a step towards integration of safety analysis techniques ordinarily 

performed in sequence during the lifecycle of computer based safety critical systems.  

Integration was made possible by the identification of several links amongst such 

analysis techniques.  We exploited those links to provide a unifying analysis technique, 

supporting common cause failure assessment and continuous feedback to designers so 

that we can substantiate also what is often called “design for safety”.  The result is to 

improve the quality of the safety analysis of moderately complex computer based safety 

critical systems. 

7.1 Review of Research Objectives 
The research addressed some limitations and shortcomings of classical safety analysis 

techniques that were pointed out in Chapter 2.  These were presented in terms of the 

following questions: 

 

a) Is it possible to develop a technique that encompasses the different safety analyses 

typically performed across the lifecycle? 

b) Can the application of this technique result in a meaningful and easy way to perform 

a collection of safety analyses which can assist the design of the system? 

c) Can we ensure the consistency of the results within the assessment? 

d) Can those results be represented both graphically and in tables, so that we can 

combine the benefits of both representations? 

e) Finally, is it possible to use this technique to systematise the identification of 

common cause failures? 

 

To answer these questions we investigated different approaches, which resulted in a 

method called FLASH.  This was described in Chapter 4 and was extended to enable 

common cause failure analysis in Chapter 5.  The method was applied in two case studies 

presented in Chapter 6. 
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7.2 Contribution of the thesis 
We believe that the material presented in this thesis substantiates to a large extent the 

central proposition that was expressed in Chapter 1: 

 

“It is possible to produce an integrated safety analysis framework 

which can be used to produce a complete and consistent safety 

analysis, including treatment of common cause failure and which can 

be used to drive “a design-for-safety” process.” 

 

The proposed safety analysis framework is founded on current industrial practice for 

safety analysis and on our understanding of the similarities shared among analysis 

techniques.  The framework supports common cause failure analysis by providing an in-

depth and detailed screening of the real couplings amongst components and quantitative 

estimation of the common cause failure contribution.  Finally, design for safety is 

achieved by the continuous feedback between designers and analysts that is furthered by 

the proposed analysis process. 

7.2.1 Theoretical Contribution 

Need for Formality and Traceability throughout the design process 

We started our research studying current industrial practice and saw that a number of 

different techniques are used for safety analysis as the design evolves.  However these 

techniques are not formally linked to each other and, as a consequence, the consistency 

of the analysis cannot be assured throughout the design and development process (2.2).  

In a complex design it is, therefore, often difficult to trace (using the results of the safety 

assessment) causes of critical malfunctions of the system in the hierarchy of subsystems 

and components which comprises the design (2.4). 

Need for Careful Screening of Couplings among events in minimal cut sets 

We showed that there are two possible ways to prevent common cause failures, either by 

eliminating (effects of) root causes or by removing coupling factors.  In the first case 

defences against potential root causes are considered and put in place (2.3.4).  In the 

second case, a high degree of diversity among components is required (2.3.5).  However, 

whilst there are methods that assess defences against the causes of common cause 
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failures (e.g. the cause defence matrix in 2.3.8), there are no methods that provide a 

careful screening of couplings among events in the same minimal cut set. 

Need for Quantification of the Common Cause Failures Likelihood 

We saw that, whilst there are a number of methods for making a quantitative evaluation 

of common cause failures in pure hardware systems, these methods cannot be used for 

evaluating the likelihood of common cause failures in computer based safety critical 

systems.  The reason is that all of these methods are based on the symmetry hypothesis 

which, unfortunately, cannot be accepted for minimal cut sets in computer based safety 

critical systems, since probabilities of events in the same minimal cut set may span 

various orders (2.3.9). 

Extending Recently Proposed Techniques 

To address the limitations and shortcomings that were pointed out, we investigated 

various approaches.  First we tried to extend software fault tree notation [Leveson, 1983] 

(3.1).  We merged this technique with the Cause Consequence Analysis notation 

formulating what we called “Event Tree Output notation” (3.2).  Then, we attempted to 

extend the Master Plant Logic Diagram [Modarres, 1992] producing the MPLD* 

notation (3.3).  Finally, at the last stage of our early work, we introduced two other 

notations: a graphical one to represent the mapping of software to hardware and a table 

based one to store the detailed information that was not practical to store in the MPLD*.  

However, we were not yet able to achieve the targets that we had set out for our thesis.  

None of the above notations was integrated with classical techniques (i.e. FHA, HAZOP, 

FMEA and FTA) nor could they be used to link those techniques (3.4). 

Links amongst Classical Safety Analysis Techniques 

The identification of links amongst classical safety analysis techniques and the decision 

to develop an approach which encourages the top-down study of computer based safety 

critical systems were the major turning points that led to the proposed method.  Firstly, 

we realised that the causes of failure events considered at a certain level of the analysis 

can become the failure events considered in subsequent levels (4.1).  Secondly, a 

common syntax that formalised such causal relationships was introduced (4.2.3) and a 

table suitable for supporting FHA, HAZOP, FMEA and containing information to 

construct fault trees was outlined (4.2.6).  Finally, the process of the FLASH analysis 



190 

was established both as it should be approached in the decomposition and design (4.3.1) 

and in the integration and verification (4.3.2) stages of the lifecycle. 

Systematic Screening of Couplings 

The FLASH framework is also designed to enable the identification of couplings among 

components, and to support common cause failure analysis, i.e. by means of screening of 

minimal cut sets to find ones with coupled events and by quantitative evaluation of such 

cut sets.  In this process, events in each minimal cut set are scanned to see whether or not 

they share one or more potential couplings (5.2).  If any sharing is found, minimal cut 

sets are considered coupled, and they are designated to undertake common cause failure 

analysis.  By exactly identifying actual couplings, FLASH makes it easy to propose 

effective remedies. 

Likelihood of Minimal Cut Sets with Coupled Events 

We also provided a mathematical approach for calculating the likelihood of minimal cut 

sets that considers the contribution of each actual coupling cause (5.3) as identified by 

the FLASH method.  We have transferred the problem of common cause failure analysis 

from the minimal cut set level to a lower, more detailed, level systematising the 

identification of couplings and obtaining more realistic figures.  As a consequence, the 

basis for the identification of couplings is transferred from “expert’s judgement” to the 

list of lifecycle categories used for identifying couplings among events and its weighting 

factors. 

7.2.2 Practical Contribution 

Integration of Safety Analyses Techniques 

As we discussed in Chapters 2 and 4, the integration of safety analysis techniques 

performed throughout the lifecycle offers possibilities for checking the consistency of 

results of safety analysis, guaranteeing continuous feedback to designers, providing a 

compact and accessible format to present safety analysis results (e.g. to certification 

authorities), and finally the advantage of applying one technique instead of several.  The 

greater cost due to the utilisation of a more complex and articulated technique31, should 

be paid back by the fact that less techniques have to be taught to the personnel and that 

                                                      
31 FLASH is more complex than any single technique it intends to replace. 
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the results from one level analysis are immediately available to start the following level 

of analysis.  Additionally, all safety analyses are immediately accessible to anyone with 

the knowledge of that single technique without any conversion cost.  Furthermore, costs 

for the infrastructure (e.g. software packages) necessary to support the overall safety 

analysis process may also be reduced, although there are issues of developing tool 

support (see below). 

Results both Graphical and Tabular 

The provision of safety analysis results, both in tabular and graphical format, combines 

the advantages of the ability to provide detailed tabular information that is easy to 

access32 and an intuitive33 graphical representation.  In FLASH the graphical 

representation of results is taken from the tabular one.  Fault trees can actually be built 

starting from tables at any level of the hierarchy by parsing relationships between causes 

and effects. 

Industrial Practice 

It is expected that FLASH will improve the industrial practice of safety analysis of 

computer based safety critical systems (at least of moderate complexity34).  Whilst we 

have not shown that FLASH does work effectively in industry, there is evidence that it 

will be useful.  In particular we have found that FLASH may offer a way to comply with 

guidelines that are to be released for the certification of Programmable Logic Controller 

(PLC) for safety critical applications by the Italian regulatory authorities (4.5). 

Automation 

FLASH can be supported by a software tool that eases repetitive and error prone tasks, 

helps to navigate through the hierarchy of tables, generate trees, calculate the likelihood 

of events propagated and make consistency checks on the whole hierarchy.  Suitable 

software may automate also the scanning of minimal cut sets to find those sharing one or 

more causes of coupling  (5.2).  We believe also that the quantitative evaluation of the 

                                                      
32Though tabular representation is perhaps little intuitive and difficult to understand at a 

glance, it can be detailed down to any granularity. 
33Graphical representation can be intuitive and easy to understand at a glance, however 

when graphs extend to multiple pages, they are no longer intuitive. 
34At present, FLASH is quite complex to apply, hence expensive.  Therefore we reckon it 

is justifiable at least for highly critical systems.  
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total failure probability for each coupled minimal cut set can be automated to a certain 

extent.  A preliminary software prototype with basic features has been developed and 

presented in (4.4). 

Providing Support to Design for Safety 

The case studies discussed in the sixth chapter showed how FLASH analysis is 

integrated with the decomposition and design, and the integration and verification stages 

of the lifecycle.  The application of this technique was able to provide the results that we 

would expect from FHA, HAZOP, FMEA, and FTA.  Additionally, we have shown how 

the data gathered into the FLASH tables during the lifecycle can be used to identify 

minimal cut sets that are vulnerable to common cause failures and to estimate the 

likelihood of those cut sets.  Hence, on the basis of the FLASH analysis, analysts and 

designers are provided with a comprehensive and detailed view on system safety 

implementation, hence they may use this information to decide whether to accept a 

proposed system design or ask for improvements. 

7.3 Suggestions for Further Work 
We believe that this thesis is only a starting point towards integration of safety analysis 

techniques.  As such we can see several areas in which further work can be done.  At 

present there are some limitations that we believe are easy to remove, and some others 

that probably require more thought.  Further work on this method can be divided into two 

main domains: the consolidation of the present technique and a theoretical extension.  

7.3.1 Consolidation of the Technique 

This work has to be done to have the technique accepted and employed as best practice 

by the industry. 

Automation 

Often in this thesis we have stressed the problem of automation.  Though FLASH can be 

performed by hand, the process becomes heavier for the analyst as the complexity of the 

system increases.  The analyst is actually asked to perform a lot of repetitive and error 

prone tasks.  Our software prototype has considerably helped us to run our case studies, 

but its limited potential has prevented us considering big industrial applications.  

Therefore, there is the need of a more powerful tool, which automates the process 

further. 
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Industrial Case Studies 

Once a suitable software tool is available, it will be possible to run industrial case 

studies.  These should demonstrate whether or not a FLASH approach is feasible in 

complex systems. At present, there is no conclusive evidence that the method supports 

the design and verification of a very large system such as an aircraft, a helicopter, a 

chemical or nuclear installation. The design of those systems (though they appear to be 

hierarchically decomposable) is not usually approached hierarchically.  As it was pointed 

out in Chapter 4, FLASH could still support the development at sub-system level.  

However, it still remains to be demonstrated that if a FLASH analysis is available for 

each sub-system then it may be possible to link all these FLASH analyses to each other 

in order to produce a FLASH model for the full system. 

Validation 

Though FLASH is based on classical, widely diffused, safety analysis techniques it is a 

completely new approach and its results and benefits have to be compared with those 

achieved with the best industrial practice.  Availability of industrial case studies 

performed using FLASH will allow benchmarking the method against current safety 

analysis techniques, and enable to access the extent of its limitations and benefits.  

FLASH can be compared with classical analysis methods on the basis of the support 

it gives to development, formality, speed of analysis, keeping the analysis updated with 

design and providing immediate feedback.  The traceability of functional failures to basic 

events, which FLASH provides, becomes useful when evidence is required that the 

system meets specifications and safety requirements.  It is believed that, to adapt the 

technique to some complex systems, some changes might have to be made (e.g. adding 

new columns to accommodate additional information).  However, it is also believed that 

the basic FLASH process will not change significantly. 

Certification 

Provided that the proposed framework will “survive” the test on industrial case studies, it 

might also be certified by regulatory authorities as a standard practice to conduct and 

present safety analyses.  Hence industries may be asked to present safety analyses in a 

“FLASH format”.  At present, we believe FLASH has a good chance to reach this point, 

since it can trace any event to its causes and it seems it fits the forthcoming Italian 

guidelines on PLCs for safety critical applications.  Additionally FLASH tables have the 

potential to accommodate features that may be requested by certification authorities.  For 
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instance, FLASH tables may be modified to record motivations for any decision 

concerning safety made during the design.  Names of people responsible for such 

decisions could also be recorded, hence, eventually, it could be possible to trace whoever 

is liable for any (good or wrong) design decision. 

7.3.2 Theoretical Extension 

This is the work that can be done to extend or improve the technique itself. 

Sensitivity Analysis 

Another extension of FLASH could be in improving the technique itself.  For example, 

during the verification stage, a sensitivity analysis made on fault trees [Homma and 

Saltelli, 1996] drawn for critical events could show the impact of potential improvements 

even before proposing modifications to the design [Contini et al., 1999b] and performing 

again the FLASH analysis.  This will indeed speed up the overall analysis process. 

Merging with other Approaches and Techniques 

The FLASH method can potentially be usefully extended to formalise the writing and 

updating of causes-effect relationships into FLASH tables.  For instance it could be 

evaluated whether it is feasible to include a formal algorithm, which automates the 

writing of those relationships.  Example of suitable algorithms are proposed in 

[Papadopoulos and McDermid, 1999a-b], in [Atkinson & Carpignano, 1996] and in 

[Sardella, 1995].  These enhancements may boost additional automation and formality.  

7.4 Final Remarks 
Closing the thesis we wish to say that our approach is a contribution towards improving 

consistency, completeness and correctness in safety analysis.  We have focused our 

efforts towards the integration of well-established safety analysis techniques and found 

an interesting way to link several safety analysis techniques35 ordinarily performed in 

series during the lifecycle.  We were also able to consider common cause failures both 

qualitatively and quantitatively.  The proposed method incorporates a number of 

principles that, in theory, could enable their application in a complex system.  The two 

case studies we ran demonstrated the validity of the approach when applied to 

                                                      
35Although integration of classical techniques is the route we selected, we are aware that 

perhaps other routes could be taken to achieve our goals.  
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moderately complex systems. However a conclusive evaluation of the real value and 

scalability of this approach could only be achieved in a much wider and realistic context 

of application. 
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