

Title
Integrating

Safety Analysis Techniques,
Supporting Identification of

Common Cause Failures

Giuseppe Mauri

Thesis submitted for the degree of Doctor of Philosophy

The University of York

Department of Computer Science

September 2000

This page is intentionally left blank

Dedicated to the memory of my dear father

This page is intentionally left blank

Abstract

When we apply safety analysis techniques on a new design, our primary objective is to

anticipate potential scenarios of failure in the system under examination. If we assume

that the system has a complex hierarchical structure, this task can be interpreted as one of

identifying how failures originate at the low-levels of the design and how combinations

or sequences of such low-level failures propagate to higher levels and give rise to system

malfunctions. The ultimate aim is to identify weak areas of the design and stimulate

design iterations that improve the safety of the system under examination. Unfortunately,

the current industrial practise shows that this aim is seriously hindered by the lack of

appropriate techniques for the analysis of complex hierarchical designs.

Classical safety analysis techniques, such as Functional Failure Analysis, Hazard

and Operability Studies, Failure Mode and Effects Analysis and Fault Tree Analysis, are

performed at different stages of the design lifecycle on the basis of models that reflect

different levels of abstraction in the design. The selective and fragmented application of

different methods, however, has a number of negative implications for the quality of the

results gained from the assessment. Firstly, the results of the various safety studies are

often inconsistent. Secondly, as hardware safety analysis and software hazard analysis

typically form two separate parts of the assessment, the relationship between hardware

and software failure often remains vague and unresolved. Finally there is an inherent

difficulty in relating the results from low-level safety studies back to the high-level

functional failure analysis.

In the first part of this thesis we propose a new method for safety analysis that

enables integrated safety assessment of complex hierarchical designs. It helps analysts to

identify potential functional failures at the application level and then to systematically

determine the causes of those failures in progressively lower levels of the design

decomposition. The result of the assessment is a collection of safety analyses that

provides a consistent and meaningful picture of how low-failures are stopped at

intermediate levels of the design, or propagate and give rise to hazardous malfunctions.

In the second part of this thesis we show how features of the new method support

also effective common cause failure analysis. That is both the qualitative identification of

components vulnerable to common cause failures and the quantitative estimation of the

contribution of these events to critical failures of the system.

This page is intentionally left blank

Contents
Chapter One

Introduction...19

1.1 LIFE-CYCLE ...19

1.2 FAULT TOLERANCE..21

1.3 COMMON CAUSE EVENTS..22

1.4 MOTIVATION ...22

1.5 CENTRAL PROPOSITION AND OBJECTIVES..25

1.6 SCOPE OF STUDY AND METHODOLOGY ...26

1.7 ORGANISATION OF THE THESIS..26

Chapter Two

Techniques for Safety Analysis..29

2.1 INTRODUCTION..29

2.2 SAFETY ANALYSIS...32

2.2.1 Preliminary Hazard Analysis .. 32

2.2.2 Functional Hazard Assessment ... 33

2.2.3 HAZOP and HAZOP based techniques... 35

2.2.4 FMEA.. 38

2.2.5 Fault tree and Event tree analyses .. 40

2.2.6 Markov chains... 45

2.2.7 Master Plant Logic Diagram .. 46

2.2.8 Taxonomy of Techniques for safety analysis ... 49

2.3 COMMON CAUSE FAILURE ANALYSIS..50

2.3.1 Dependent failure events... 52

2.3.2 Common cause failure events.. 52

2.3.3 Common mode failure events .. 54

2.3.4 Defending against Root Cause.. 57

2.3.5 Defending against couplings... 57

2.3.6 The aerospace industry ... 59

2.3.7 Software domain.. 63

2.3.8 Defences against common cause failures.. 63

2.3.9 Common cause failures quantitative assessment... 65

2.4 DISCUSSION...71

Chapter Three

Preliminary work ..73

3.1 TEMPLATE BASED APPROACH ..73

3.2 EVENT TREE OUTPUT NOTATION...76

3.3 MASTER PLANT LOGIC DIAGRAM APPROACH ..78

3.4 DISCUSSION ...85

Chapter Four

Failure Logic Analysis for System Hierarchies ..87

4.1 FLASH OVERVIEW ...87

4.2 FLASH METHOD: TABLES ...92

4.2.1 Events .. 94

4.2.2 Areas inside a table ... 98

4.2.3 Outgoing event area: Effects ... 98

4.2.4 Incoming event area: Input and Secondary events.. 101

4.2.5 Generated Events area: Primary events.. 102

4.2.6 Table template ... 104

4.2.7 Programmable electronic modules.. 106

4.3 FLASH METHOD: PROCESS ...108

4.3.1 Decomposition and Design.. 109

4.3.2 Integration and Verification .. 122

4.4 TOOL SUPPORT ..125

4.5 DISCUSSION ...130

Chapter Five

Common Cause Failure ..133

5.1 OVERVIEW...133

5.2 IDENTIFICATION OF MCS WITH COUPLED EVENTS ...134

5.3 LIKELIHOOD OF MCS WITH COUPLED EVENTS ...137

5.3.1 Likelihood of a generic event .. 138

5.3.2 Likelihood of coupled events ... 140

5.3.3 Independent and coupled probabilities ... 146

5.4 DISCUSSION ...153

Chapter Six

Case studies..155

6.1 THE FUEL SYSTEM ..155

6.1.1 Analysis in the Decomposition and Design Stage ... 158

6.1.2 Analysis in the Integration and Verification ... 164

6.1.3 Common Cause Failures... 168

6.2 COMPUTER-ASSISTED BRAKING SYSTEM...173

6.2.1 Description.. 173

6.2.2 Analysis in the Decomposition and Design... 175

6.2.3 Integration, verification and Common Cause Failures analysis....................... 183

6.3 DISCUSSION...184

Chapter Seven

Conclusions ..187

7.1 REVIEW OF RESEARCH OBJECTIVES ..187

7.2 CONTRIBUTION OF THE THESIS...188

7.2.1 Theoretical Contribution... 188

7.2.2 Practical Contribution .. 190

7.3 SUGGESTIONS FOR FURTHER WORK ..192

7.3.1 Consolidation of the Technique... 192

7.3.2 Theoretical Extension.. 194

7.4 FINAL REMARKS..194

Bibliography ..195

This page is intentionally left blank

List of Tables

TABLE 2-1: AIMS OF SAFETY ANALYSIS TECHNIQUES... 30
TABLE 2-2: FOUR WAYS TO INVESTIGATE THE CAUSES-EFFECTS RELATIONSHIP 30
TABLE 2-3: POSITION IN THE LIFECYCLE.. 31
TABLE 2-4: PRESENTATION OF RESULTS.. 31
TABLE 2-5: PRELIMINARY HAZARD ANALYSIS TABLE ... 33
TABLE 2-6: FHA TABLE .. 34
TABLE 2-7: HAZOP TABLE... 36
TABLE 2-8: FAILURE MODE AND EFFECT ANALYSIS TABLE... 39
TABLE 2-9: COMBINATION OF SUPPORT FUNCTION FAILURE AND END STATES............................... 49
TABLE 2-10: TECHNIQUES FOR SAFETY ANALYSIS LISTED AGAINST THE FOUR CRITERIA 50
TABLE 2-11: DEFINITIONS ... 51
TABLE 2-12: CHECKLIST FOR A MOTOR OPERATED VALVE .. 59
TABLE 2-13: SUBJECTS OF PARTICULAR RISKS ANALYSIS... 60
TABLE 2-14: COMMON MODE FAULT CATEGORIES TO BE ANALYSED.. 61
TABLE 2-15: CHECKLIST WITH COMMON MODE TYPES, SOURCES, AND FAILURES/ERRORS......... 63
TABLE 2-16: CAUSE-DEFENCE MATRIX FOR ENVIRONMENTAL-RELATED CAUSES 65
TABLE 2-17: FACTOR, SUB-FACTOR AND SUB-FACTOR WEIGHT... 70
TABLE 2-18: POSSIBLE SUB-FACTOR WEIGHTS... 71

TABLE 3-1: OVERVIEW OF THE SAFETY ANALYSIS USED TO ASSESS CRITICAL SYSTEMS 84

TABLE 4-1: A FRAGMENT OF AN EXAMPLE FLASH TABLE FOR SUB-SYSTEM S1 89
TABLE 4-2: EFFECTS TO THE SAME AND ENCLOSING LEVEL... 100
TABLE 4-3: GROUPS OF EVENTS WRITTEN FOR TABLE 4-2... 101
TABLE 4-4: EFFECTS WRITTEN USING GROUPS OF EVENT, DEFINED IN TABLE 4-3....................... 102
TABLE 4-5: BASIC EVENTS IN A FLASH TABLE .. 105
TABLE 4-6: TEMPLATE FOR A FLASH TABLE OF A GENERIC MODULE ... 106
TABLE 4-7: THE 5TH COLUMN IS DIVIDED INTO MANY AREAS ... 110
TABLE 4-8: CAUSES OF THE CRITICAL EFFECTS NO.FLOW.MODULE ... 113
TABLE 4-9: GROUP OF EVENTS FOR TABLE IN TABLE 4-8 .. 114
TABLE 4-10: FLASH TABLE FOR THE MODEL IN FIGURE 4-16... 117
TABLE 4-11: FLASH TABLE FOR B1 ... 119
TABLE 4-12: PIECE OF THE FLASH TABLE FOR THE EFFECT NO.SIGNAL_B1.CTR 122
TABLE 4-13: COMPLETE FLASH TABLE FOR MODULE.. 125

TABLE 5-1: CHECKLIST OF POTENTIAL COUPLINGS IN GENERIC SOFTWARE MODULES 135
TABLE 5-2: LIKELIHOOD OF COUPLED TERMS .. 145

TABLE 6-1: FLASH TABLE FOR THE FS FUNCTION, BEFORE THE ARCHITECTURE IS DRAWN........ 159
TABLE 6-2: FRAGMENT OF THE HIGH-LEVEL FLASH ANALYSIS .. 161
TABLE 6-3: FRAGMENT OF THE FLASH TABLE FOR BVA FAILED CLOSED 161
TABLE 6-4: FRAGMENT OF THE FLASH TABLE FOR THE PLC ... 162
TABLE 6-5: FRAGMENT OF THE FLASH TABLE AFTER COMPLETION OF THE 5TH COLUMN............ 163
TABLE 6-6: TABLE FOR THE BLOCK VALVE BVA... 166
TABLE 6-7: BVA AND EC TABLES AFTER THE INTEGRATION AND VERIFICATION 167
TABLE 6-8: LIST OF THE MINIMAL CUT SETS GENERATING THE TOP EVENT 169
TABLE 6-9: COUPLING TABLE FOR MCS 1 (FTO_BVA; T1) ... 170
TABLE 6-10: PROBABILITIES THAT A COUPLING CAUSE WILL RISE AN EVENT IN MCS 81 171
TABLE 6-11: PRODUCTS THAT HAVE TO BE SUBSTITUTED IN EQUATION 5-1................................. 172
TABLE 6-12: CAB FAILURE MODES IDENTIFIED BY PHA ... 175
TABLE 6-13: TOP LEVEL FLASH TABLE.. 176
TABLE 6-14: FLASH TABLE FOR THE CAB SYSTEM.. 178
TABLE 6-15: GROUP OF EVEN TABLE FOR FLASH TABLE 6-14 ... 178
TABLE 6-16: COMMUNICATIONS PROTOCOLS .. 179
TABLE 6-17: DATA TYPES OF ALL FLOWS... 181
TABLE 6-18: THE FUNCTIONALITY OF EACH PROCESS.. 181
TABLE 6-19: ORDER OF PRIORITY TASKS (1 IS HIGH) ... 182
TABLE 6-20: FLASH TABLE FOR CHANNEL 1.. 183

List of Figures

FIGURE 1-1: SAFETY LIFE CYCLE ..20

FIGURE 2-1: FPTN MODULE...38

FIGURE 2-2: FAULT TREE ...41

FIGURE 2-3: DYNAMIC FAULT TREE GATES...42

FIGURE 2-4: EVENT TREE ...44

FIGURE 2-5: MARKOVIAN MODEL FOR A SYSTEM WITH THREE STATES ...46

FIGURE 2-6: AN EXAMPLE OF MPLD IN FAILURE SPACE ..48

FIGURE 2-7: DEPENDENT FAILURES ..52

FIGURE 2-8: THE ROOT CAUSE THROUGH THE COUPLING FACTOR AFFECTS SEVERAL COMPONENTS53

FIGURE 2-9: CAUSES OF COMMON-MODE FAILURE..55

FIGURE 2-10: TRIPLE REDUNDANT SYSTEM RAISING OIL FROM THE SUMP TO THE TANK67

FIGURE 2-11: TREE FOR THE SYSTEM IN FIGURE 2-10...68

FIGURE 3-1: FAULT TREE BUILT USING MINI-TREES...74

FIGURE 3-2: FRAGMENT OF A FUNCTIONAL BLOCK DIAGRAM OF A COMPUTERISED

 BRAKING SYSTEM ..75

FIGURE 3-3: CAUSE AND CONSEQUENCE ANALYSIS STYLE NOTATION...76

FIGURE 3-4: FAULT TREES ARE SHOWN BELOW AN EVENT TREE ...77

FIGURE 3-5: MPLD* FOR COMPLETE LACK OF BRAKING IN A BRAKING SYSTEM.............................79

FIGURE 3-6: HIGH FUNCTIONAL LEVEL ...81

FIGURE 3-7: MEDIUM FUNCTIONAL LEVEL..81

FIGURE 3-8: DETAILED FUNCTIONAL LEVEL ...82

FIGURE 3-9: TABLE ASSOCIATED WITH COMPONENT A1 REPRESENTED IN FIGURE 3-784

FIGURE 4-1: THE DESIGN HIERARCHY AND THE HIERARCHY OF SAFETY ANALYSES88

FIGURE 4-2: RELATIONSHIP BETWEEN DESIGN HIERARCHY AND HIERARCHY OF FLASH TABLES...91

FIGURE 4-3: THE TOP-LEVEL FAULT TREE FOR THE EVENT “FUNCTIONAL_FAILURE_OF_S”91

FIGURE 4-4: AN EXAMPLE OF A MECHANICALLY GENERATED FAULT TREE92

FIGURE 4-5: HIERARCHY OF MODULES AND TABLES...93

FIGURE 4-6: FIELDS IN A FLASH TABLE FOR A FUNCTION, A SYSTEM AND A COMPONENT94

FIGURE 4-7: SYNTAX FOR EVENTS..95

FIGURE 4-8: TAXONOMY OF EVENTS ..96

FIGURE 4-9: INCOMING, OUTGOING AND GENERATED..97

FIGURE 4-10: MAIN AREAS OF A FLASH TABLE...98

FIGURE 4-11: SYNTAX OF THE CAUSES COLUMN OF A FLASH TABLE ..99

FIGURE 4-12: PROPAGATION OF EVENTS IN A PROGRAMMABLE ELECTRONIC COMPONENT108

FIGURE 4-13: PROCESS OF CREATING A FLASH TABLE ..110

FIGURE 4-14: MODEL OF FAULT TOLERANT FLOW CONTROLLER ...112

FIGURE 4-15: TREE FOR THE EVENT NO.FLOW.MODULE FOR THE MODULE IN FIGURE 4-14..........115

FIGURE 4-16: FAILURE MODEL FOR COMPONENT “A1”...116

FIGURE 4-17: THIS TREE FOR THE EFFECT NO.FLOW.A1 IN FIGURE 4-11.......................................117

FIGURE 4-18: MODEL FOR COMPONENT B1..118

FIGURE 4-19: CONTROLLER WITH INCLUDED MODULES ..120

FIGURE 4-20: TREE FOR THE EVENT NO.SIGNAL_B1.CTR FOR THE CONTROLLER IN FIGURE 4-19120

FIGURE 4-21: FEEDBACK TO DECOMPOSITION AND DESIGN...123

FIGURE 4-22: TREE FOR THE TOP EVENT NO.FLOW.MODULE ..124

FIGURE 4-23: OUTGOING AREA OF THE TABLE FOR THE TOP LEVEL...127

FIGURE 4-24: CAUSES OF THE EFFECT O_.FUEL.BVA..127

FIGURE 4-25: BASIC EVENTS TABLE FOR COMPONENT BVA...128

FIGURE 4-26: FAULT TREE FOR THE TOP EVENT NO_.FUEL.FC ..129

FIGURE 5-1: COUPLINGS IN MINIMAL CUT SET ABC..137

FIGURE 5-2: MINIMAL CUT SET OF THE SECOND ORDER WITH TWO LIFECYCLE CATEGORIES142

FIGURE 5-3: MINIMAL CUT SET OF THE THIRD ORDER WITH FIVE LIFECYCLE CATEGORIES.............144

FIGURE 6-1: THE FUEL SYSTEM..155

FIGURE 6-2 :HIERARCHICAL DECOMPOSITION OF THE FUEL SYSTEM..157

FIGURE 6-3: ARCHITECTURE FOR THE FUEL SYSTEM...159

FIGURE 6-4: DETAILS FOR THE FUEL SYSTEM..160

FIGURE 6-5: THE FAULT TREE FOR THE FAILURE EVENT “NO FLOW – FUEL TO THE ENGINE”164

FIGURE 6-6: TREE FOR THE EVENT OMISSION FUEL FROM BVA..165

FIGURE 6-7: TREES FOR THE EVENT OMISSION DP- BVA ...167

FIGURE 6-8: CAB SYSTEM CONTEXT DIAGRAM ..174

FIGURE 6-9: STRUCTURE OF THE PROPOSED BRAKING SYSTEM HARDWARE177

FIGURE 6-10: FUNCTIONAL BLOCK DIAGRAM OF THE CAB SYSTEM ...179

FIGURE 6-11: TIMING OF 1 CYCLE OF THE CAB SYSTEM ON PROCESSOR 1182

Acknowledgements

I wish to thank my supervisor John McDermid whose help, guidance and financial

support have been invaluable throughout all the work. He has always shown interest and

enthusiasm in my research and created an environment that encourages the autonomy of

spirit and the development of new ideas that were necessary for this kind of work, hence

he has my deepest thanks.

 A number of colleagues here at York and at the European Commission in Ispra

(Italy) have provided constructive comments and acted as sounding boards for my ideas.

I would like to thanks Sergio Contini, Tim Kelly, Marcelo Masera, Mark Nicholson,

Divya Prasad, David Pumfrey, Stefan Scheer, Marc Wilikens and Weihua Wu. A special

thanks goes to Yiannis Papadopoulos a fellow doctoral student and friend with whom I

have shared a common interest in the topic of safety analysis. Our collaboration over the

last three years has helped me to clarify some aspects of my work in the area. Thanks

also to Steve Wilson that modified the software platform that supports the method.

Without his software it would have been much harder to run the case studies. Finally, I

would like to thank Ginny Wilson and Filomena Ottaway who were wonderful in sorting

out administrative issues connected to the work and the university.

On a personal note I would like to thank all the people who helped to keep life in

perspective during the last five years in York. Amongst them particular thanks goes to

Marco Carcassoni, Michele Cassano, Stratos Chatzikyriakos, Doriana Delfino, Sofie

Emmertsen, Tse-Min Lin, Karsten Loer, Olga Miranda, Eman Nasr, Yiannis

Papadopoulos, Michela Pilotto, Gloriana Regginato, Stefania Ziccolella and my

invaluable friend Gerry Faith.

There are no words to express my thanks to my father Raimondo Mauri, who despite

encouraging me for four years did not have the chance to see the end of my doctorate, to

my mother Wilma Cervini, who has always encouraged me to keep going, and finally, to

my brother Edoardo who, yet having lost a partner of adventures, has always been close

to me.

This page is intentionally left blank

Author’s Declaration

I declare that the research in this thesis is original work conducted by the author between

October 1995 and September 2000, in the High Integrity System Engineering (HISE)

group. Some parts of the thesis have already been published, specifically, Chapter 2 is

partially based on [Mauri, 1996], Chapter 3 is based on [Mauri, 1997a-b], Chapter 4 is

based on [Mauri et al, 1998] and [Papadopoulos, Mauri, McDermid, 2000]. Chapter 5 is

partially based on [Mauri, 1997b]. Finally, Chapter 6 is partly based on [Mauri, 1997b],

[Mauri et al, 1998] and [Papadopoulos, Mauri, McDermid, 2000].

This page is intentionally left blank

Chapter One

1Introduction

The success of many modern applications is highly dependent on the correct functioning

of complex computer based systems. In some cases, failures in these systems may bring

serious consequences in terms of loss of human life [Hecht and Hecht, 1986]. Systems in

which failure could endanger human life are termed safety-critical. The application of

these systems ranges from transport (aircraft, driverless and high speed trains, active

safety in cars) through power production plant (nuclear power plants), medicine (life-

support, patient monitoring, pacemaker) to industrial processes (chemical and petro-

chemical industries). Significant effort is required to assess and certify these systems

since software is extensively used. Software behaves different from hardware upon

which safety critical systems of the past were based. Hence computer based safety

critical systems, which are the topic of this thesis, have to be analysed with new analysis

methods. At the moment a number of safety analysis methods (most of them extension

of methods used for the analysis of pure hardware artefacts) are used throughout the

lifecycle of computer based safety critical systems to ensure that they meet the necessary

standards.

1.1 Life-cycle
To develop safety critical systems a number of stakeholders’ requirements have to be

considered, but safety is paramount. According to recent guidelines [SAE-ARP 4754-

4761, 1996; IEC 61508, 1997] the safety analysis process should be conducted

throughout the lifecycle of safety critical systems from the specification stage through

implementation, integration, verification, operation, maintenance and decommissioning.

This means also that safety engineers have to work together with system engineers to

meet the safety requirements for the requested artefact. In this thesis we will concentrate

on the safety analysis performed during the part of the lifecycle represented in Figure

1-1. These are the safety analyses which support the “Decomposition and Design” and

the “Integration and Verification” processes. The purpose of these analyses is to check

the developing system design against safety requirements, anticipate potential scenarios

20

of failure and, eventually, provide feedback to system engineers on whether the system

they are constructing will behave safely. This should avoid employing resources in

developing systems that will not later be acceptable to regulatory authorities.

 The safety lifecycle is often represented with a “V” shape. The left branch

represents the continuous assessment of the design as it progresses towards the

development of more and more details (lower level components). During this process a

number of recommendations and safety related requirements are produced. They add up

to stakeholders safety requirements. All these constraints are to be met by the system.

The verification of those constraints takes places in the right branch of the safety

lifecycle, which represents the assessment of the integration process. The overall design

of the system is accepted only if it is demonstrated that specifications, recommendations

and safety related requirements issued during the decomposition and design stages are

met i.e. the system is “not worse than” the one specified. The process of verification

starts from the lowest decomposition levels (i.e. component level) and proceeds towards

top functional levels (that is the opposite of the process that happens during the

decomposition and design). If requirements and recommendations given for each peer

decomposition level are not met, they can either be renegotiated with stakeholders or

designs have to be changed, increasing the overall developing cost.

Component Level:
Causal Analysis

Architectural Level(s):
Consequence Analysis

and
Predictive Causal Analysis

Feedback

From Concept
Requirements

Towards the
Release

Decom
position & Design In

te
gr

at
io

n
&

Ve
rif

ica
tio

n

Not worse
than

Functional Level(s):
Hazard Identification

Verification and
testing:

Causal Analysis

Figure 1-1: Safety life cycle

21

A safety critical system may also require a high level of reliability to be achieved. That is

the case of systems that are requested to be fully (or partially) working to be safe, for

example a flight control system in an aircraft or an emergency feed water system in a

nuclear power plant. In these systems the high level of safety (as well as reliability) is

traditionally achieved by using fault tolerance.

1.2 Fault tolerance
Fault tolerance is a particular technique that allows building systems that preserve the

delivery of their expected (or a minimum) service despite the presence of errors caused

by faults within the system itself [Avizienis, 1985]. To achieve this behaviour they

employ redundancy. Redundancies can be classified into four types: 1) hardware

redundancy; 2) software redundancy; 3) time redundancy; and 4) information

redundancy. In the case of hardware redundancy the system is provided with more

hardware components (e.g. channels) than it would need if the hardware were perfect.

Upon failure of a hardware component (or channel) a spare one is switched in. In the

case of software redundancy the system may be provided with different versions of tasks.

Different and independent teams of programmers write tasks so that when one fails under

certain inputs another version can be used and there is a chance that the alternate will

function safely. In the case of time redundancies the scheduler has some slack so that

some tasks can be rerun and still meet deadlines. In the case of information redundancies

data are coded in such a way that a certain number of bit errors can be detected and/or

recovered.

A fault tolerant system will only fail if multiple failure events happen. The smallest

combination of failure events happening together (i.e. linked by an “AND” gate) which

causes a system to fail is called Minimal Cut Set (MCS). A fault tolerant system usually

has minimal cut sets that span various orders. The order of a minimal cut set is the

number of failure events that occurring simultaneously will verify it. An order is defined

also for a fault tolerant system. The order of a fault tolerant system is the order of the

smallest minimal cut set that causes a critical failure. To be fault tolerant, a system

cannot have minimal cut set of the first order.

The introduction of redundancies makes the work of safety engineers more difficult,

since redundancies bring with them a new class of events named common cause events.

22

1.3 Common Cause Events
Common cause events affect safety analysis so that the measurable likelihood of a

minimal cut set is bigger than the product of the likelihood of each single event in the

minimal cut set considered alone. Common cause events make useless increasing the

number of redundant channels beyond a certain limit as shown in [Mauri, 1995] and

[Cojazzi, et al, 1995]. If engineers were able to build redundant systems with

independent redundant channels, there would not be the need of Common Cause Failure

(CCF) analysis. In addition, engineers would be able to reach the aimed level of safety

(and reliability) by increasing the level of redundancy. Unfortunately, it is practically

impossible to build independent redundant channels and the contribution of common

cause events have to be evaluated to assure that safety and reliability requirements are

met in fault tolerant systems.

The easiest way to consider common cause failures is to work on minimal cut sets.

Events in a minimal cut set may represent the same failure mode in different components

(i.e. common mode) or different failure modes. They can be generated by the same cause

(i.e. common cause) or by different causes. However, the issue for the purpose of this

thesis, is that, when all the events in a minimal cut set arise simultaneously by the same

root cause, the fault tolerant system fails as if the events in the minimal cut set had arisen

randomly. The likelihood of a minimal cut set occurring because of a common cause

failure is usually extremely small, however, it is always greater than the likelihood of the

minimal cut set to happen randomly. Purpose of common cause failure analysis is to

evaluate this likelihood and to help improving the design. Without considering common

cause events, the likelihood of critical minimal cut sets for fault tolerant systems would

be underestimated.

A lot of confusion exists on an unequivocal definition of common cause events

especially between the nuclear and the aerospace industry. This thesis will be mostly

based on the well founded definition given in [Mosleh, et al., 1988] which was based on

the results of the benchmark exercise on common cause failure [Amendola, 1986; Poucet

et al., 1987], organised by the European Commission.

1.4 Motivation
When we apply safety analysis techniques on a new design, the immediate objective is to

anticipate potential scenarios of failure in the system under examination. If we assume

that the system has a complex hierarchical structure, this task can be interpreted as one of

23

identifying how failures originate at the low-levels of the design and how combinations

or sequences of such low-level failures propagate to higher levels and give rise to system

malfunctions. The ultimate aim of this analysis is to identify weak areas of the design

and stimulate design iterations, which eventually improve the failure detection and

control mechanisms of the system under examination. Unfortunately, the current

industrial practise shows that this aim is seriously hindered by the lack of appropriate

techniques for the analysis of complex hierarchical designs.

Classical safety analysis techniques (such as Functional Failure Analysis [SAE-ARP

4754, 1996], Hazard and Operability Studies [Kletz, 1992], Failure Mode and Effects

Analysis [Palady, 1995] and Fault Tree Analysis [Vesely, 1981]) are performed at

different stages of the design lifecycle on the basis of models that reflect different levels

of abstraction in the design. The selective and fragmented application of different

methods, however, has a number of negative implications for the quality of the results

gained from the assessment. Firstly, the results of the various safety studies are often

inconsistent. Secondly, as hardware safety analysis and software hazard analysis

typically form two separate parts of the assessment, the relationship between hardware

and software failures often remains vague and unresolved. Finally there is an inherent

difficulty in relating the results from low-level safety studies back to the high-level

functional failure analysis. Although fault trees are built precisely for this purpose, the

traditional process of constructing these fault trees relies exclusively on expert

knowledge, and lacks a systematic or structured algorithm which the analyst can apply on

a system model in order to derive the tree. In the context of a complex system this

process becomes tedious, time consuming and error prone, and the resultant fault trees

are large but, more importantly, difficult to interpret and verify. In consequence, safety

analyses are in practice not only voluminous but also fragmented and inconsistent. Such

analyses are also difficult to interpret and do not always provide a useful resource in the

design of the system.

Common cause failure analysis has always been matter of concern for system

developers and regulatory authorities. This is mainly due to the difficulty and the

uncertainty of the quantification of the likelihood of common cause events. Nuclear

industries have been pushed since the sixties to address this problem. The reason was

that regulatory authorities (in USA and Europe) were, already at that time, asking for

nuclear power plants where the likelihood of any critical failure was well below 10-6 per

24

year1. Aerospace and automotive industries are not yet asked for such a low frequency

for critical failures. At the moment it seems that they are pursuing frequencies for

critical failure of 10-9 per hour [SAE-ARP 4761, 1996], which is 10 times bigger2 than

the minimum allowed for nuclear power plants. However the achieved failure rate for

civil aircraft is around 10-6 critical accidents per hour3. This higher “accepted” frequency

for critical failures (about 104 time bigger than for nuclear) is perhaps one of the reasons4

for which the aircraft industry is still allowed to “escape” the quantification of the

likelihood of common cause failure events. They perform only qualitative analysis on

potential root causes of common cause events and their effect on the system [SAE-ARP

4761, 1996]. They achieve this by conducting careful design and verifying that

components and sub-systems are sufficiently “strong” to resist environmental hazards

specified in a checklist (that is what they call Zonal Hazard Analysis). Then, they

produce evidence that the system, as a whole (e.g. the aircraft), will resist particular risks

specified on another checklist, for example the impact of a bird, fire, tyre burst (by

performing what they call Particular Risks Analysis). Finally, they verify that events in

minimal cut sets are sufficiently uncoupled against possible causes of common failure

specified into another checklist, this is achieved by performing what they call Common

Mode Analysis [SAE-ARP 4761, 1996]. Checklists are provided by regulatory

authorities, as well as being maintained by developers, and the aim of these analyses is to

1 This is partly achieved since in the nuclear history of about 2*104 civil reactor per year

(i.e. 500 reactors running per 40 years) we have had only one critical accident:
Chernobyl. However Russian reactors were built with a critical failure rate of 10-3 per
year. Hence Chernobyl should not be taken into account. Three Mile Island accident is
not to be considered a critical accident, since the container worked properly and
avoided the spreading of long life radioactivity into the environment.

2 The frequency of 10-6 critical reactor failures per year is equivalent to 1.1*10-10
reactor failures per hour (i.e. 10-6 critical reactor failures per year divided 8.76 *103
hours per year). This is almost 10 time smaller than the failure frequency of 1*10-9
aimed for critical failures in civil aircrafts.

3 The actual failure rate perceived by common people for critical failures in civil aircraft
can be quantified as follows. If we suppose that there are 104 aircraft flying every day
around the world, each flying 5*103 hours per year, losing 12 aircraft every year, this
means that the actual critical failure rate is around 4*10-6 per hour (i.e. 104 aircraft
around the world times 5*103 hours flown per year divided 12 aircraft lost in one
year). http://www.ntsb.gov/Aviation/Table1.htm reports “0.012 critical accidents per
105 flight hours” that is not far from our estimation. [Boeing, 1996] also reports similar
values.

4 Another reason is the difficulty of estimating failure rates for some software
components.

25

produce evidence that minimum requirements are met. However, to the best of our

knowledge, regulatory authorities do not ask for any quantitative evaluation of the impact

of couplings that cannot be removed.

One of the reasons that the quantitative estimation of common cause failure is

“escaped when possible”, is that in the way it is performed by the nuclear industries it is

expensive and largely based on the estimation of some parameters which may often have

a large uncertainty. In many cases values for these parameters are given by field experts

(expert judgement), in other cases a conservative value is taken a priori. While the first

option can be impractical (lack of experts for specific fields) and expensive (in some

cases there are very few experts all over the world), the second option penalises good

systems.

Hence, if we could mechanise the process of common cause failure analysis by

supporting and facilitating expert judgement, we would also improve the chance of

quantitative common cause failure analysis being more frequently used.

1.5 Central Proposition and Objectives
The central proposition of this thesis is the following:

“It is possible to produce an integrated safety analysis framework

which can be used to produce a complete and consistent safety

analysis, including treatment of common cause failure and which can

be used to drive “a design-for-safety” process.”

The main objectives of this research work are:

a) Study the current industrial practice for safety analysis of critical computer based

systems and for common cause failure analysis;

b) Provide a method and a notation usable throughout the lifecycle, that supports the

design-for-safety of computer based safety critical systems;

c) Provide a method that supports common cause failure analysis;

d) Give specifications for a software tool that supports the proposed method.

26

1.6 Scope of Study and Methodology
The foundation of this thesis is the techniques widely used by the automotive,

aeronautical and nuclear industry for the analysis of critical computer based systems.

Some of these techniques, i.e. FHA, HAZOP, FMEA, FTA have been used for almost 30

years.

This thesis addresses the part of the lifecycle that goes from the decomposition and

design to integration and verification stages. It concentrates on linking existing

techniques and in proposing a novel method for the qualitative and quantitative

estimation of common cause failures. Case studies have been done on a Fuel System and

a Computer Assisted Braking system.

1.7 Organisation of the Thesis
The thesis is divided into seven chapters: chapters one and seven providing an

introduction and a conclusion to the thesis, respectively. The key contribution of the

thesis is contained in chapters four and five. The literature survey and the work that

brought to the formulation of the main method presented in the thesis are in chapters two

and three, respectively.

Chapter Two - Techniques for Safety Analysis

In the second chapter we review the main safety analysis techniques used for the

assessment of critical computer based systems by presenting principles that underlie

individual techniques. Although those techniques are mostly used in the nuclear and

aerospace industry, particular attention is reserved for what has been done for software in

safety critical applications. Then we focus on techniques for the analysis of common

cause failures. We explain the mechanisms of common cause failures and explore the

various ways common cause failures are currently investigated. We close the chapter

pointing out areas where further research is needed and setting out the questions that we

aim to address in the thesis.

Chapter Three – Preliminary Work

The third chapter summarises the work that was done at the beginning of our research

and that brought us (through many refinements) to the formulation of the method, known

as Failure Logic Analysis for System Hierarchies (FLASH). It highlights the process

underneath the development of the technique and explores some alternative approaches.

27

Chapter Four – Failure Logic Analysis for System Hierarchies

This chapter presents the basic FLASH method, as it would be used in an idealised top

down process. FLASH aims to support the lifecycle making possible Design-for-Safety.

FLASH creates a framework, linking several continuous phases of the lifecycle, pointing

out inconsistencies among designs representing different phases of the lifecycle, linking

low level analyses to the FHA and supporting dependent failure analysis. FLASH is

applied in two different stages of the lifecycle. In the first stage it checks the evolving

design against higher-level safety requirements and supports the establishment of derived

safety requirements for each sub-system. In the second stage it verifies whether the

product as implemented and integrated meets its concept level and derived safety

requirements.

Chapter Five – Common Cause Failure

This chapter extends the FLASH formalism presented in chapter four to treat common

cause failures. We show how the hierarchy of FLASH tables can be used to identify

those minimal cut sets that need to be analysed for common cause failures. Additionally,

we provide a novel method for quantitative estimation of the likelihood of minimal cut

sets with coupled events that uses some of the information collected during FLASH

analysis.

Chapter Six – Case Studies

This chapter outlines the application of the proposed method on two case studies. We

show different stages of the application of the method and highlight the most important

features. Each case study is separately evaluated and compared with what could be

achieved by using other analysis techniques. The pragmatics of dealing with complex

evolving designs is presented here.

Chapter Seven – Conclusion

This chapter provides a summary of our research work, draws the conclusions of the

thesis and highlights potential areas for further development.

28

This page is intentionally left blank

29

Chapter Two

2Techniques for Safety Analysis

2.1 Introduction
In this chapter we review the main safety analysis techniques (as well as recently

proposed variations of those techniques) used in the assessment of critical computer

based systems. In the first part of the chapter we present the principles that underlie

individual techniques and we use four criteria to compare and highlight similarities and

differences among those techniques. In the second part of the chapter we focus on

techniques for the analysis of common cause failures. We identify the mechanisms of

common cause failures and explore the various ways common cause failures are

investigated in current practice. Finally we point out areas where further research is

needed and set out the questions that we aim to address in this thesis.

The four criteria against which we will examine and categorise the main safety

analysis techniques are as follows:

1) Aim;

2) How they explore the relationship between causes and effects;

3) Position in the lifecycle;

4) Presentation of results.

The first criterion explores the primary “Aim” of the technique under examination. As

Table 2-1 indicates there are techniques that primarily aim to produce a qualitative

analysis, for example by generating a list of potential failures that affect a system, and

techniques that produce a quantitative analysis for example predicting the frequency of

some critical accidents. Besides those two classes of techniques, there is a third class

formed by techniques that enable both qualitative and quantitative analysis.

30

Aims Example of possible outputs

Qualitative Analysis Generating a list of potential failures that affect a system

Quantitative Assessment Predicting the frequency of critical events

Both Qualitative Analysis &
Quantitative Assessment

A graph resembling a tree with probabilities associated
with each leaf, branch, ramification and root

Table 2-1: Aims of Safety Analysis Techniques

The second criterion in our categorisation considers the way safety analysis techniques

proceed in their investigation i.e. “how they explore the relationship between causes and

effects”. There are at least four different ways to proceed. There are deductive techniques

that start from known effects to seek unknown causes, inductive techniques that start from

known causes to forecast unknown effects, exploratory techniques that link unknown

causes to unknown effects and descriptive techniques [Fenelon et al., 1994] that link

known causes to known effects. The above categorisation scheme is illustrated in Table

2-2.

Effects Known Unknown
Known Descriptive techniques Inductive techniques

C
au

se
s

Unknown Deductive techniques Exploratory techniques

Table 2-2: Four ways to investigate the causes-effects relationship

The third criterion in our categorisation is “Position in the lifecycle”. Some techniques

are used at different stages in the development process to provide feedback to the design

and development process. The techniques that are used at the beginning of the design

process focus on the analysis of the abstract concept of the system. They identify

potential failure modes to give advice for the development of the architecture of the

system. We refer to these techniques as being used early in the life cycle. The group of

techniques that follows, concentrates on the analysis of the architecture of the system. At

this stage, the allocation of functions to sub-systems and components is known and the

purpose is to identify hazards that may arise due to (abnormal) deviations of flows

between components of the architecture. We refer to these techniques as being used in

the intermediate phases of the lifecycle. Finally, there are techniques which are used

after the full design process is completed. They mainly perform confirmatory analyses to

determine whether or not the full design meets specifications and requirements. We refer

31

to these techniques as being used in later phases in the lifecycle. Beside these three

groups of techniques, a further group is formed by techniques used across the design

lifecycle. These techniques can usually provide continuous feedback to designers. This

categorisation scheme is illustrated in Table 2-3.

Position in the lifecycle Description
Early Analysis of the abstract concept of the system

Intermediate Analysis of the architecture of the system

Late Assessment that the full design meets specifications and
requirements

Across Provide continuous feedback to designers
Table 2-3: Position in the lifecycle

The fourth and last criterion in our categorisation is based on the “presentation of

results”. There are some techniques for safety analysis that provide results in a graphical

format and others that provide them in tabular forms. A graphical format provides a

more intuitive and perhaps easier to understand representation of the results from the

assessment. It is also generally easier to relate the failure and recovery logic depicted in a

graph back to the system design. However, as the graph grows, fragmentation becomes

inevitable and the intuitive capacity is jeopardised, since the graph becomes difficult to

read. Conversely, the tabular format can provide a quantity of detailed information which

is easy to be read but less intuitive. There are only a few safety analysis techniques that

provide both results in a graphical and tabular output for the same information. Those are

among the techniques surveyed in the next section. Details of this criterion are

summarised in Table 2-4.

Presentation of results Features

Graphical
Intuitive, understandable, relate to the system
representation of the logic or sequences of failures and
recovery measures

Tabular A lot of detailed information easy to be read
Both tabular and

graphical Intuitive and easy to read

Table 2-4: Presentation of results

32

2.2 Safety Analysis
Having explained the four criteria that will help us examine, relate and contrast different

safety analysis techniques, we can now proceed to the review. The presentation of each

technique starts with a brief historical background and proceeds with a more detailed

description of the technique which also identifies the position of the technique in the

above classifications.

2.2.1 Preliminary Hazard Analysis

Preliminary Hazard Analysis (PHA) was introduced in the late sixties (1966) after the

Department of Defense of the United States of America requested safety studies to be

performed at all the stages of product development. They issued guidelines that were

applied from 1969 onward [MIL-STD-882, 1969] [MIL-STD-882d, 1999].

The Preliminary Hazard Analysis technique is used in the later stages of

requirement analysis and in the early stages of the design process (early in the lifecycle).

The purpose of Preliminary Hazard Analysis is to identify safety critical areas, to provide

an initial assessment of hazards, and to define requisite hazard controls and subsequent

actions. The technique is not well formalised. It typically consists of brainstorming

where the preliminary design is discussed on the basis of the experience of people

involved in the brainstorming activity. Check lists are commonly used to help in

identifying hazards. Results are presented in a tabular format. Table 2-5 displays a piece

of a Preliminary Hazard Analysis table as an example. It has been made out for two of

the hazards that may arise with a computerised braking system in a car. The first column

of the table reports hazards that have to be investigated, for instance the loss of the

braking capabilities of a car and uneven braking. The second column describes the

effects of the hazard, in our case the possible death and injury of people or directional

instability. The third column reports the severity level for the hazard (e.g. catastrophic,

critical, marginal or negligible). The fourth column sets out the conditions in which the

hazard produces the most serious effects. The fifth column reports the exposure to

danger, that is a measure of the time spent within the area of danger. The sixth and last

column gives information about the ability of the system or the driver to avoid danger.

Hazards listed in the first column are usually taken from a Preliminary Hazard List [MIL-

STD-882c, 1993] that is compiled before the actual Preliminary Hazard Analysis.

Often Preliminary Hazard Analysis tables have a few additional columns. They are

domain specific, defined by the company or even by the customer. In our table Effects,

33

Criticality, Co-effectors, Exposure to danger and Avoidance to Danger are the output of

the analysis, while the Hazard is the input.

Preliminary Hazard Analysis is a qualitative technique. It explores relationships

among potential causes (i.e. the hazard) to give unknown effects the (accident) hence it is

inductive. It is applied only during the early stages of the developing process and

produces a tabular output.

Hazard Effect
(accident) Severity Co-effectors Exposure to

danger
Avoidance
of danger

Loss of
Braking

Death or serious
injury to
occupants of the
vehicle, other
vehicles or
pedestrians

Critical

High speed
travel and
requirement to
slow down or
stop

Frequent =
1e-2 [1/h]

Unlikely to
avoid
danger

Uneven
Braking

Directional
instability.
Death or serious
injury to
occupants of the
vehicle, other
vehicles or
pedestrians

Critical
Heavy traffic,
Hazardous
road condition

Frequent =
1e-2 [1/h]

Likely to
avoid
danger

Table 2-5: Preliminary Hazard Analysis table

2.2.2 Functional Hazard Assessment

Functional Hazard Assessment (FHA) approaches the analysis of the top-level design

from the functional viewpoint [SAE-ARP 4754/4761, 1996]. The aim of this technique is

to identify which functions of the system contribute to hazards, and thus assigning them a

criticality level. Functional Hazard Assessment was developed by the aerospace industry

to bridge between hardware and software, since functions are generally identified

without specific implementations. It requires domain specific knowledge to produce

meaningful results from Functional Hazard Analysis. The output is a set of tables which

give for each function, for each failure condition, and for each phase, a description of

effects, mitigation procedures, and often the type of analysis that has to be performed to

have the system accepted by regulatory authorities. Table 2-6 shows a standard

Functional Hazard Assessment output table as reported by the Aerospace Recommended

Practice [SAE-ARP 4761, 1996]. The first column lists functions that have to be assessed

(i.e. Decelerate Aircraft on the Ground). For that function, the second column lists the

34

failure conditions (i.e. Loss of Deceleration Capability, Partial Loss of Deceleration

Capability) that may apply to each function. In our case each of the two failure

conditions have four sub-cases (i.e. a-b-c-d). Identical failure conditions e.g. sub-cases a

and c (or b and d) have different effects on the aircraft if they happen in different

operational states e.g. taxying or landing of the aircraft.

Function
Failure Condition
(Hazard
Description)

Phase
Effects of failure
Condition on
Aircraft/Crew

Classification
Reference to
Supporting

Model

Verifica-
tion

Decelerate
Aircraft on
the Ground

1. Loss of
Deceleration
Capability

Landing
/Run to
take off/
Taxi

See Below

1.a. Unannuciated
loss of deceleration
capability

Landing/
Run to
take off

Crew is unable to
decelerate the aircraft,
resulting in a high speed
overrun

Catastrophic Aircraft
Fault Tree

1.b. Annuciated
loss of deceleration
capability

Landing

Crew selects more suitable
airport, notifies emergency
ground support, and
prepares occupants for
landing overrun

Hazardous

Emergency
landing
procedures in
case of loss of
stopping
capability

Aircraft
Fault Tree

1.c. Unannuciated
loss of deceleration
capability

Taxi

Crew is unable to stop the
aircraft on the taxiway or
gate resulting in low speed
contact with terminal,
aircraft, or vehicles

Major

1.d. Annunciated
loss of deceleration
capability

Taxi

Crew steers the aircraft
clear form any obstacles
and calls for a tug or
portable stairs

No Safety
Effects

1.e. Inadvertent
Deceleration after
the aircraft cannot
be safely stopped in
the ground

Takeoff

Crew is unable to take off
due to the application of
brakes at the same time as
high thrust settings,
resulting in a high speed
overrun

Catastrophic Aircraft
Fault Tree

2. Partial Loss of
Decelerating
Capability

Landing
/Run to
take off

See Below

2.a. Unannuciated
loss of deceleration
capability

Landing
/Run to
take off

Crew is unable to
completely decelerating
the aircraft before the end
of the runway resulting in
a potential overrun

Hazardous Aircraft
Fault Tree

2.b. Annuciated
loss of deceleration
capability

Landing

Crew selects more suitable
airport, notifies emergency
ground support, and
prepares occupants for
landing overrun

Major

2.c. Unannuciated
loss of deceleration
capability

Taxi

Crew may not be able to
adequately stop the
aircraft before obstacle,
resulting in low speed
collision.

Minor

2.d. Annunciated
loss of deceleration
capability

Taxi

Crew steers the aircraft
clear from any obstacles
and calls for a tug or
portable stairs

No Safety
Effects

 …… … …
 Table 2-6: FHA table

35

The operational state is called Phase in our table and it is reported in the third column.

During the landing phase the failure condition 1.a is classified as catastrophic. In case of

taxiing, the same failure condition is classified as major. The classification of failure

conditions is reported in the fifth column. Mitigation measures that can be taken to limit

effects are reported in the sixth column. Analyses that have to be undertaken to verify

that the system meets safety requirements go into the seventh and last column.

Several other techniques have been proposed to achieve a Functional Hazard

Analysis. One of these, the Functional Failure Analysis (FFA), is recommended in

[Papadopoulos and McDermid, 1999a]. This technique considers three misbehaviours

for each function. They are 1) function not provided when requested; 2) function

provided when not required; and 3) malfunction. The Functional Failure Analysis table

differs slightly from the table described above, but it pursues the same objective.

The aim of the Functional Hazard Analysis is to perform a qualitative analysis in the

early stages of the design process to identify which functions of the system contribute to

hazards, thus it is an deductive technique. The output is tabular.

2.2.3 HAZOP and HAZOP based techniques

HAZard and OPerability study (HAZOP) [CISHEC, 1977] [Kletz, 1992] [Adelard, 1994]

was developed by Imperial Chemical Industries in the early 1970's [Lawley, 1974]

[Lawley, 1976] and extended to software in the early 1990's [McDermid et al., 1995].

HAZOP is performed after an outline equipment design is proposed showing the main

design components and the flows between them. The results of the HAZOP may be

either to accept the proposed architecture, subject to some safety-related derived

requirements, or to ask for the design to be modified.

HAZOP is a team process, aimed at achieving an "imaginative anticipation of

hazards". At a mechanistic level it consists of completing a table according to some

"guide words" (e.g. None, More of, Less of, Part of, More than, Other). A guideword

describes a hypothetical deviation from the normally expected attributes of a flow.

Driven by these guidewords, failure causes and their effects are listed. The acceptability

of the effects of the deviations is considered and measures proposed to decrease the

likelihood of the failure cause, or to mitigate the effects. Table 2-7 shows an example of

a HAZOP table for a hydrocarbon flow feeding a chemical reactor. The first column

reports two of the guidewords that drive the analysis, i.e. none and more. The team starts

36

from these guidewords to identify deviations to the expected behaviour of the flow that

are placed in the second column (i.e. No Flow, More Flow, More Pressure, More

Temperature, etc.). In the third column the team records potential causes of deviation in

the flow (in our case the flow feeding the chemical reactor). For instance, there may be

no hydrocarbon available in the storage tank or a failure of the pump feeding the reactor.

Consequences of each deviation are recorded into the fourth column. In our case this

give rise to the formation of polymers in the heat exchanger. The last column reports

actions that the team recommends for reducing the hazard.

The aim of the HAZOP is to perform a qualitative analysis in the intermediate

stages of the design process to anticipated hazards, thus it is an exploratory technique.

The output is tabular.

Guide
Word Deviation Possible Causes Consequences Action Required

NONE No flow No hydrocarbon available from
storage

Loss of feed to reactor.
Polymer formed in
heat exchanger

1) Ensure good communication
 with storage area
2) Install low level alarm on
 settling tank

Transfer pump fails (motor
fault, loss of power, impeller
corroded etc.)

As above Covered by 2)

MORE More flow
Level control valve fails to
open, or Level Control Valve
bypassed in error

Settling tank overfills

3) Install high level alarm
4) Check size of overflow
5) Establish locking-off

procedure for Level Control
Valve bypass when not in use

 More
Pressure

Isolation valve or Level Control
Valve closed when pump
running

Line subjected to full
pump pressure 6) Install kickback on pumps

 More
Temperature

High intermediate storage
temperature

Higher pressure in
transfer line and
settling tank

7) Install warning of high
 temperature at intermediate
 storage

… … … …

Table 2-7: HAZOP table

HAZOP has been traditionally used for hazard identification at plant level. More recently

though we have seen categorisations of abstract failure classes for software components

[Ezhilchelvan and Shrivastava, 1986], [Bondavalli and Simoncini, 1990], and a number

of HAZOP-inspired techniques for hazard analysis of software architectures [Burns and

Pitblado, 1993]. The early extension of HAZOP to computers was called CHAZOP, for

Computer HAZOP. However CHAZOP was really an extended checklist, and did not

really build on ideas of flows and guidewords. Work in York produced the Software

Hazard Analysis and Resolution in Design (SHARD) [McDermid and Pumfrey, 1994]

which is much more HAZOP-like, but applied new guidewords i.e. Early, Late,

Omission, Commission, and Value, rather then the classical guidewords. Like HAZOP,

37

SHARD is used to analyse an outline design and can produce derived safety

requirements.

The aim of SHARD is to perform a qualitative analysis in the intermediate stages of

the design process to anticipate hazards, thus it is an exploratory technique. When

hazards are known, SHARD may also be used in a deductive mode (i.e. for the analysis

of embedded systems). The output of SHARD is tabular.

Another technique that originated from HAZOP is the Failure Propagation and

Transformation Notation (FPTN) [Fenelon & McDermid, 1993] [Fenelon et al., 1994].

This is a hierarchical graphical notation that represents system failure behaviour. It is

linked to a design notation and, like HAZOP and SHARD, is both an inductive and

deductive analysis. FPTN makes consistency checks and is designed to be used at all

stages of the life cycle. FPTN represents a system as a set of interconnected modules;

these might represent anything from a complete system to a few lines of program code.

The connections between these modules are failure modes, which propagate between

them. Figure 2-1 displays a FPTN module. Each module has a set of input failures, to

which it is susceptible (i.e. A:t, B:t, C:Vu, X:Vd at the left side of the module), and a set

of output failures, which it propagates (i.e. D:o, E:c, F:o at the right side of the module).

A module can also generate new failures (e.g. F:o) and handle existing ones (e.g. X:Vd).

Equations inside the module show how the input and the internally generated failure

modes contribute to the output failure modes (i.e. D:o = A:t & B:t; and E:c = B:t | C:v).

Figure 2-1 displays also that an FPTN module may record the criticality of the module

(in the right top corner), and whether the module is further decomposed into the other

more simple modules (the shadow).

FPTN is a qualitative technique that can be performed at any stages of the design

process, thus across the lifecycle. Its role is to summarise analyses, thus it is a

descriptive technique. The output is graphical.

38

MODULE NAME

Criticality

Shadow indicates decomposability

D:o = A:t & B:t
E:c = B:t | C:v

HANDLED
 X:Vd by [mechanism]

INTERNAL
 GENERATED by processor failure F:o

Output
failuresInput

failures

D:o

E:c

F:o

A:t

B:t

C:Vu

X:Vd

Figure 2-1: FPTN module

2.2.4 FMEA

Failure Modes and Effects Analysis (FMEA) has been developed since the sixties

[Recht, 1966] for studying aircraft safety, then it was used for space applications

[Bussolini, 1971], for chemical plants [King and Rudd, 1971] [Lees, 1980] and car

manufacturing [Yamada, 1977]. FMEA was recommended for Nuclear installations after

the accident at the Three Mile Island power station [NUREG 2300, 1983]. Many

standards deal with FMEA. Guides were published by the US Department of the Navy

[MIL-STD-1629a, 1980] and the Institute of Electric and Electronic Engineers [IEEE,

1975].

FMEA is an inductive analysis technique used to study the effects of component

failure modes on a system. FMEA starts from knowledge of component failure modes

and considers the effects of each failure on subsystems and the system. It involves the

study of all the components in a system and is often applied also to higher level

assemblies and systems. It checks whether proposed components, with their known

failure modes, fulfil system-level safety requirements. The result of the FMEA may be

to accept the proposed components or, perhaps, to issue recommendations for

maintenance checks, or to ask for components to be substituted. In light of the FMEA,

analysts are able to ensure that all the conceivable failure modes and their effects on the

system operability are taken into account, although this is clearly a very costly process

and, for a complex system might not be practical. It is also common to use FMEA to

determine whether or not a design meets the general requirement that "no single point of

failure" shall give rise to a hazard.

39

A classical FMEA output is shown in Table 2-8. The first column lists basic

components of the system, the second column lists failure modes that apply to each

component. The third and fourth columns respectively list effects on the subsystem and

system. The fifth column classifies effects according to their severity, the sixth column

gives the failure rate associated with the failure mode, and the last column is left for

comments. Thus Table 2-8 tells us that the speed sensor (first column) in a car may fail

in various modes, one of these is delivering No Signal (second column). This failure

produces effects at subsystem level (third column). The subsystem believes that the

vehicle is not moving. The system is indirectly affected by this failure since the speed

indicator shows a null speed, the mileometer is not incremented and the electronic

gearbox selects a wrong gear (fourth column). Obviously the hazard severity for the first

and second failure modes is less severe than the third one which may cause loss of lives

and the vehicle.

FMEA is a qualitative and quantitative technique that proceeds from known causes

to unknown effect thus it is inductive. FMEA needs the knowledge of the full system

design so it is performed later in the lifecycle. The output is tabular.

Component Failure
Mode

Subsystem
Effects Vehicle Effects Haz

Failure
rate
[1/h]

Comments

Vehicle
Speed
Sensor

No signal

Vehicle speed
will always be
calculated as
zero

1. No speed indication
2. Mileometer not

incremented
3. Electronic gearbox

control may select too
low gear, possibly
resulting in wheel lockup
or transmission damage

Min
Min

Maj

5E-5

Effect 3)
requires
simultaneous
failure of
engine load
calculation
and
mechanical
interlocks on
gearbox

Vehicle
Speed
Sensor

Noisy
(too Many

edges)

Calculated
vehicle speed
will be too
high. If edges
arrive at
higher rate
than specified,
they will be
lost

4. Indicated speed greater
than actual

5. Mileometer over-reads
6. Electronic gearbox

control may select too
high gear, possible
resulting in stall

Min

Min
Min

3E-5

Effect 6) is
hard to detect
via engine
load
calculation,
unless noise is
extreme

Vehicle
Speed
Sensor

Intermit-
tent

Calculated
vehicle speed
will be too
low

7. Speed indicated lower
than actual

8. Mileometer under-reads
9. As 3)

Min

Min
Maj

4E-5 See above

Table 2-8: Failure Mode and Effect Analysis table

40

A natural extension of FMEA is Failure Mode, Effects and Criticality Analysis

(FMECA). It was introduced almost immediately after FMEA. It is based on FMEA but

in addition to this, it performs a criticality analysis verifying that failure modes with

severe effects have sufficiently low occurrence probability. An FMECA table has at

least two more columns that record the probability-severity5 pair for each failure mode.

If the likelihood is high or the consequences severe, the more critical is the failure mode

and the need to take corrective measures.

2.2.5 Fault tree and Event tree analyses

Fault Tree

Fault Tree Analysis has developed since the early sixties (1961) when Bell Laboratories

introduced this concept as a method to assess the safety of the launch control system of

the Minuteman missile [Henley and Kumamoto, 1981]. A few years later fault tree

analysis was adopted and improved by engineers working for Boeing [Haasl, 1965]

[Fussell, 1973]. But it was not until the eighties that the fault tree construction process

was formalised under pressure from the United States Nuclear Regulatory Commission

and a handbook was written [Vesely, 1981]. Since then various procedures and tools to

support fault tree analysis have been proposed in [Taylor, 1982] [Poucet et al., 1993 b].

In 1995 there were more than a hundred different tools [Sardella, 1995]. However, only

recently has fault tree analysis extended to software [Leveson, 1983 and 1991].

The aim of fault tree analysis is to determine the possible combinations of causes

that may give rise to some undesired events called top events. A fault tree consists of

several levels of event connected in such a way that each event, at a given level, is a

consequence of events at the level just below, through various logical operators (gates).

Events may be equipment failures, human errors, software errors, etc. that are likely to

cause an undesired outcome. Figure 2-2 represents a simple fault tree. The Top Event D

occurs when both the basic event A and the intermediate E get rise. However E occurs

only when any of the basic events B or C get rise.

5 If we know the mission time for the system considered in Table 2-8, then we can

calculate the likelihood of each component failure mode. Hence we can say that Table
2-8 contains sufficient information to be used also for an FMECA.

41

Top Event
D

AND

Basic Event
A

Intermediate
Event

E

OR

Basic Event
B

Basic Event
C

Figure 2-2: Fault Tree

In a fault tree, basic events must be independent of one another. Fault tree analysis is

extensively used, as its simple graphical style is readily applied and well understood by

practising engineers. In the many years since its introduction, the fault tree technique has

gone through many extensions. One of these is the addition of new gates to represent the

dynamic behaviour in advanced fault tolerant digital-systems. This extension also made

fault trees fully compatible with Markov chains (explained later in this chapter). The

fault tree handbook reports five gates AND, OR, XOR (exclusive OR), Priority-AND and

INHIBIT [Vesely, 1981]. These gates capture the effects of failures that depend only

upon the combination of causal events, but not those that depend on the sequence in

which the events occur. There are three sequences of events for which dedicated gates

were introduced [Dugan et al., 1993]. Figure 2-3 displays these three new gates. The

Functional dependency gate (a) represents the functional dependency of the events

below the gate from the trigger event depicted on the left side of the gate. When the

trigger event happens all the functionally dependent events (below the gate) will happen.

The occurrence of any of the functional dependent events has no effect on the trigger

event. The Cold spare gate (b) models components that are not powered up until they are

needed for backup purpose. When the primary event arises (event 1 in Figure 2-3b), then

a cold spare is powered up and operates until it fails (event 2 in Figure 2-3b) causing

another cold spare to be powered up. The gate is “true” when all the basic events have

arisen, and hence all the spare components used up. The basic hypothesis behind this

gate is that spare components are as good as new until they are powered up for the first

42

time. The Sequence enforcing gate (c) represents events happening in a particular order.

This gate fires “true” if and only if all the events listed below the gate happen from left

to right. For any other sequence of events the gate does not fire.

FDEP

2 n

Trigger event

Non-dependent Output

CSP

Gate-Output

Primary active unit

1st alternate unit
2nt alternate unit

nth alternate unit

SEQ

1 n

Gate Output

2

a) Functional dependency gate. b) Cold spare gate. c) Sequence enforcing gate.

Figure 2-3: Dynamic fault tree gates

Like FMEA and FMEA derived techniques, fault tree analysis can provide quantitative

output, for any state of the system. In fact any fault tree can be reduced to sequences of

events connected by only “AND”, “OR” gates and negation “NOT” [Contini, 1999b],

and eventually be fully represented by a list of minimal cut sets that are the minimum

combination of events which, when they happen simultaneously, can cause the top event.

The probability of the top event is then estimated by adding up the probability of all the

minimal cut sets of the tree. It is not intended in this section to detail how the

quantitative evaluation of fault trees proceeds. For that we refer to the fault tree

handbook [Vesely, 1981].

Although fault tree analysis is extremely powerful in supporting both qualitative and

quantitative analysis, the fault trees technique is very much dependent on the analyst:

different teams draw different fault trees for the same system [Amendola, 1986]. To

avoid this dependence, several tools which draw fault trees automatically, from Plant and

Instrument (P&I) diagrams, have been developed e.g. in [Carpignano & Poucet, 1994].

At present, the weak points of those tools concern mainly the large size of generated fault

tree diagrams when they are compared with hand-produced fault trees [Sardella, 1995].

43

The fault tree technique aims both at a qualitative analysis and a quantitative

assessment. However the quantitative assessment is not always possible. It needs

knowledge of probabilities associated with basic events (leaf events). In the case of

software fault trees it is not possible to associate probabilities with some failure modes,

hence fault tree analysis is used only qualitatively.

In addition, fault tree analysis proceeds from known effects to unknown causes thus

it is a deductive technique.

The fault tree technique can be used at any stage of the design and development

process. Fault tree leaf events may represent functional failures, system failure modes or

component failure modes. Thus fault tree analysis can be used at any stage of the design

process i.e. functional, architectural and component level, that is across the lifecycle.

Finally, the output of the fault tree is a graph (resembling a tree) and, when it is

possible, it also provides the likelihood of the top event. However, since a fault tree can

be represented by the list of its minimal cut sets, this list can also represent the output of

the fault tree analysis, hence we can say that fault trees also have a textual6 output.

Event Tree

The event tree technique is an inductive method that develops the possible consequences

of a generic initiating event, e.g. a failure. The consequences of such an event can be

mitigated, or made worse, by systems dealing with it immediately afterwards. Figure 2-4

shows the event tree that may originate from the initiating event High Pressure in the

vessel of a chemical reactor. Emergency systems are designed to deal with this event,

however they may fail in various ways and, in some circumstances, the vessel may

explode with severe consequence. The event tree in the figure shows that when the

safety sensor detects high pressure in the vessel, emergency systems are triggered. If the

system called into action works, the upper path of each branch (i.e. Y = Yes) is true,

otherwise the lower path (N = No) is taken. In this example, following always the upper

branch, we can see that the initiating event is completely handled and safety is

maintained (although the plant is now unavailable). Following this path we see that the

input flow is cut off (to avoid any further increase of reagent in the reactor), the output

flow is increased to maximum (to facilitate the depressurisation) and the warning lamp lit

(to communicate the abnormal state to the operator). If a system does not work we follow

6 They can be represented also in a tabular form.

44

the lower path. The worst outcome happens when neither the input flow is cut off nor

the output flow is increased to maximum and the safety valve does not open (there are

two paths like this that are highlighted in the picture). Between these two extremes there

is a “grey area” that represents the cases in which some of the safety systems work and

some others fail. Remaining paths represent these outcomes.

Initiating
Event

Front Line
Sensor

detects the
pressure:

emergency
system is
activated

Safety valve
opens

Input flow in
the vessel is

cut off

Output flow is
increased to

maximum

Warning
lamp on

Possible
outcomes

Failure in the
control loop
causes high
pressure in
the vessel

Y

Y
Y

Y

Y

N

N

N

N

N

The system
handles fault.

Warning given.
No accident risk

Responses

Y

N

The system does
not handle the

high pressure in
the vessel. It may
explode. Risk of

accident

Y

N

Figure 2-4: Event tree

When probabilities of mitigating events are known, it is possible to calculate the

likelihood of each path. It is not intended in this review to detail the quantitative

evaluation of event tree paths. For that we refer to the [NUREG 2300, 1983]. Further,

event tree mitigating events may represent functional failures, system failure modes or

component failure modes. Thus event tree analysis can be used at any stage of the design

process i.e. functional, architectural and component level, that is across the lifecycle.

The event tree is a graph and, when it is possible, also the likelihood of each path can be

given. An event tree can be represented by the list of its paths, hence we can say that it

has also a textual (or tabular) output.

45

Drawing some conclusions, the aim of event tree technique is to provide both a

qualitative analysis and a quantitative assessment. Event trees proceed from known

causes to investigate unknown effects hence they are inductive. They can be used at any

stage of the design development i.e. across the lifecycle. The output is both graphical and

textual, although use of the graphical is more common.

Large Fault Tree, Small Fault Tree

Two different approaches can be used for a Probabilistic Safety Assessment of complex

systems, i.e. Nuclear Power Plants, airliners, etc. First, the Large Event Tree – Small

Fault Tree (LET/SFT) approach called also event tree with boundary conditions or, event

tree linking or small fault tree. Second, the Small Event Tree – Large Fault Tree

(SET/LFT) approach called also fault tree linking or large fault tree. Both approaches use

Event trees and Fault Trees to perform the Probabilistic Risk Analysis. The difference

between those approaches lies in the fact that in the LET/SFT support systems (e.g.

power supplies, water supplies etc.), are modelled in event trees, whereas in SET/LFT

support systems are modelled in fault trees. Although LET and SET analysis conducted

with the same level of detail give the same numerical result [Rasmussen, 1992], so far,

the SET approach has always been preferred to the LET. This is because fault tree

construction and analysis (being a deductive process) can be extensively automated while

event tree construction and analysis (being an inductive process) cannot be automated

except by using techniques like Monte Carlo simulation. Hence it is preferable to deal

with big fault trees rather than with big event trees. Software that deals with large fault

trees can be found in [Carpignano & Poucet, 1994; Sardella, 1995].

2.2.6 Markov chains

Markov methods are useful for evaluating components with multiple states i.e. several

good, degraded, and critical states [Norris, 1998]. Let us consider the system in Figure

2-5 with three possible states 0, 1, and 2. In the Markovian model, each transition is

characterised by a transition rate (i.e. failure rate = λ2−1, λ1−0, repair rate = µ1−2, µ0−1). If

we define

()Pri t = probability that the system is in state i at time t.

()ρ ij t = the transition rate (either λ or µ) from state i to state j.

46

And if we assume that ()Pri t is differentiable it can be shown that:

 () () () ()d t
dt

t t t ti
ij

j
i ji j

j

Pr () Pr Pr= −








 • + •









∑ ∑ρ ρ

If a differential equation is written for each state and the resulting set of differential

equation is solved we obtain the time dependent probability of the system being in each

state [Modarres, 1993]. Markov chains are mainly a quantitative technique though the

state and transition diagram also gives qualitative information about the behaviour of the

system.

State
2

State
0

State
1

λ2−1 λ1−0

µ0−1µ1−2

Figure 2-5: Markovian model for a system with three states

2.2.7 Master Plant Logic Diagram

The Master Plant Logic Diagram (MPLD) method was proposed in [Modarres, 1987] as

an outgrowth of the Master Logic Diagram [NUREG 2300, 1983] to represent all the

physical interrelationships among various plant systems and subsystems in a simple logic

diagram. It is used for probabilistic safety assessment to model and integrate the

relationship between all plant functions and equipment, therefore it is suitable for several

safety applications [Modarres, 1992] such as:

• Understanding and propagating effects of equipment failures;

• Generating and quantifying accident sequences;

47

• Determining important elements of plant safety and ranking of major contributors to

unsafe situations;

• Helping designers and analysts in the identification of risk-significant configurations;

• Evaluating safety implications of an actual event occurrence.

The aim of the MPLD method is to make the construction of a system safety model easy,

and to make such a model easy to update. Although fault trees and event trees are well-

established methods, as a matter of fact, they become inscrutable and resource-intensive

when they extend to multiple pages. Their limitations are especially severe when they

are updated following changes that have been made to the system i.e. operation,

procedures, hardware, software, etc. Finally, fault trees and event trees are not easily

traceable and their independent review and quality control is very time consuming. On

the contrary, MPLD is a more intuitive representation of the system and it can be kept up

to date more easily when there are changes in design or configuration of a plant. It can

also be used to update risk estimates.

In success space, MPLD shows the manner in which various functions, sub-

functions, and hardware components interact to achieve the overall system task.

Conversely, a MPLD in failure space displays events, i.e. functional failures and relevant

hardware failures causing system failures, therefore MPLDs can easily map the

propagation of plant hardware failures to the system level [Modarres, 1992].

The hierarchy of an MPLD is shown by a dependency matrix (see Figure 2-6) in

which the dependency is established and shown explicitly by a “•”. The same picture

shows that the failure of each of the functions F1 and F2 causes the system failure. Each

of those functions is supported by two sub-functions, each of which is enough to provide

F1 and F2.

The MPLD shows a clear Single Point of Failure (SPF) of the support system S3 that

directly causes the failure of sub-function F2-1 and indirectly (causing the failure of

support system S2) causes the failure of sub-function F2-2. Moreover, the MPLD shows

that support system S1 is provided by two functions (S1-1 and S1-2) that must fail

simultaneously to cause S1 to fail. Finally, the MPLD shows that the failure of the

support system S2 is not critical because that failure can cause neither F1 nor F2 to fail.

Fault trees would not have allowed the same failure mechanisms to be shown in such an

intuitive and compact way.

48

Like the fault tree and event tree techniques MPLD supports both qualitative

analysis and quantitative assessment [Modarres, 1992]. It can be performed at any stage

of the design process, thus across the lifecycle. The output is both graphical and textual

or tabular. Table 2-9 summarises the graph in Figure 2-6. The likelihood of end state can

be quantified.

F1-1 F1-2 F2-1 F2-2

F1 F2

System
Failure

S2

S1-2

S1-1

S1

S3

Figure 2-6: An example of MPLD in Failure space

49

Combinati-
on number

Failed
support

function (or
equipment)

Support Function (or
Equip.) Failed Because

of dependencies
Likelihood End State

1 S1-1 -- F1-1, F2-1

2 S1-2 -- F1-2, F2-2

3 S2 -- F1-1, F2-2

4 S3 S2 F1-1, F2

5 S1-1, S1-2 -- F1, F2

6 S1-1, S2 -- F1-1, F2

7 S1-1, S3 S2 F1-1, F2

8 S1-2, S2 -- F1, F2-2

9 S1-2, S3 S2 F1, F2

10 S2, S3 -- F1-1, F2

11 S1-1, S1-2, S2 -- F1, F2

12 S1-1, S1-2, S3 S2 F1, F2

13 S1-1, S1-2, S3 -- F1-1, F2

14 S1-1, S1-2, S3 -- F1, F2

15 S1-1, S1-2, S2, S3 -- F1, F2

16 No failure -- No failure

Table 2-9: Combination of support function failure and end states

2.2.8 Taxonomy of Techniques for safety analysis

Techniques for safety analysis discussed so far provide feedback to the design process so

that their output is used either to let the design proceed without modification or to

recommend improvements. However, it is evident that the presented techniques for safety

analysis achieve the feedback to the design in various ways, which the four criteria

presented in the introduction of this chapter highlight to some extent. Table 2-10

summarises the discussion that has been undertaken so far by ranking the presented

techniques against the four criteria.

50

 Classes Techniques

Qualitative analysis Preliminary hazard analysis, Functional Hazard
Analysis, Functional failure analysis, HAZOP

Quantitative assessment Markov chains

Ai
m

Both qualitative analysis
& quantitative
assessment

Fault tree, event trees and FMEA

Relationship among
known causes and
known effects

Descriptive techniques
FPTN, Master Plant Logic Diagram

From known effect to
unknown causes

Inductive techniques
Event tree

Relationship among
unknown causes to
unknown effects

Exploratory techniques
FPTN, Preliminary Hazard Analysis, HAZOP,
SHARD

Re
la

tio
ns

hi
p

Ca
us

es
-E

ff
ec

ts

Relationship among
known causes to known
effects

Deductive techniques
SHARD, HAZOP, Fault tree

Early Preliminary hazard analysis, Functional hazard
analysis, Functional failure analysis

Intermediate HAZOP, SHARD, FPTN
Late FMEA

Po
sit

io
n

in
 th

e
lif

ec
yc

le

Across Fault tree, Event tree, Master plant logic
diagram,

Tabular
Preliminary hazard analysis, Functional hazard
analysis, Functional failure analysis, HAZOP,
FMEA

Graphical FPTN

Cr
ite

rio
n

Pr
es

en
ta

tio
n

of

re
su

lts

Both tabular and
graphical

Event tree, Fault tree, Master Plant Logic
Diagram

Table 2-10: Techniques for safety analysis listed against the four criteria

2.3 Common Cause Failure Analysis
Common cause failure analysis has its own section in this review since it considers

failure events that cannot be dealt with (explicitly) by techniques presented in the

previous section. These failure events are not usually considered as independent events

occurring within a system, but as influences on the system from some source that are

common to redundant components, resulting in some abnormal output states.

The first problem in dealing with common cause failures is the definition of an

unambiguous terminology. This was perceived in the many meetings that we were

involved in during our research. Hence, we begin this section by presenting results of

research into the terminology describing common cause failures by detailing the terms

that we will be using in the development of the thesis.

51

The terminology on common cause failure has changed over the years. In the beginning

only common mode failures were considered [Edwards and Watson, 1979]. Later, the

definition of common cause failure was introduced referring to a slightly wider group of

failures [Bourne et. al., 1981] superseding common mode failures. However, at that time

the idea that common cause failure was synonymous with common mode failure was

widespread. The issue regarding the difference between common cause and mode was

clarified in 1985, when the term dependent failures was introduced to supersede and

encompass common cause, common mode failures and “cascade failures”. Table 2-11

gives the definitions of dependent, common cause, common mode and cascade failures

as given by the safety and reliability directorate of the United Kingdom Atomic Energy

Authority in an official document [Humphreyes and Johnston, 1987]. Cascade includes

all dependent failures that are not common cause failures [EPRI, 1985; Johnston and

Crackett, 1985]. Figure 2-7 summarises what we have said so far. Common mode

failures are a subset of common cause failures, whilst dependent failures encompass both

common cause and cascade failures. We agree with these definitions and we use them in

the rest of the thesis.

Dependent failure (DF)
The likelihood of a set of events, the
probability of which cannot be expressed as
simple product of the unconditional failure
probabilities of the individual events.

 Common cause failure
(CCF)

This is a specific type of dependent failure
that arises in redundant components where
simultaneous (or near simultaneous) multiple
failures result in different channels from a
single shared cause.

 Common mode failure
(CMF)

This term is reserved for common-cause
failures in which multiple items fail in the
same mode.

 Cascade failure (CF)
These are all those dependent failures that
are not Common Cause, i.e. they do not
affect redundant components.

Further:
The term “Dependent failure” as defined above is designed to cover all definitions of
failures that are not independent. From this definition of dependent failure it is clear
that an independent failure is one where the failure of a set of events is expressible as
simple product of individual event unconditional failure probabilities.

Table 2-11: Definitions

52

Common Mode
Failures

Common
Cause failures

Cascade
failure

Dependent
failures

Figure 2-7: Dependent failures

2.3.1 Dependent failure events

The theoretical definition of dependent events can be found in statistics and probability

books. In [McCord and Moroney, 1964; Peyton and Peebles, 1987] we can find that

given two dependent events A and B, the probability that both events A and B happen, is

not equal to the product of the two unconditional probabilities:

P(A and B) = P(A) • P(B|A) = P(B) • P(A|B) ≠ P(A) • P(B) (2-1)

More specifically, in this thesis, we are concerned with the situation in which the

likelihood of two (or more) events is greater than the product of the likelihood of each

single event:

P(A and B) > P(A) • P(B)

2.3.2 Common cause failure events

The reference document for studying common cause failures is NUREG 4780 [Mosleh et

al., 1993]. The author says that to understand the mechanisms leading to dependent

events, and to model them, it is necessary to answer questions like:

53

• Why do components fail or why are they unavailable?

• What is it that can lead to multiple failures?

• Is there anything at a particular facility that could prevent such multiple failures

occurring?

The root cause, the coupling factor and the existence or lack of engineered or

operational defences against unanticipated equipment failures are the answers to such

questions. The root cause explains the mechanism underlying the transition from

available to failed or functionally unavailable. For example, if two components are

located in the same room and they are susceptible to high humidity, a common cause

failure could occur as a result of an event outside the room but causing high humidity in

the room. In this case high humidity is the root cause of failure for the two components.

Given the existence of the root cause, the coupling factor explains why a particular

cause affects several components. It creates linking conditions to cause multiple

components to fail in a correlated fashion. For example, location in the same room is a

coupling factor for those components susceptible to high humidity. Figure 2-8 shows the

mechanism of failure of multiple components, that is whenever there is a coupling factor

(e.g. same location) and a trigger event (e.g. failure of an air conditioning system) occurs,

the root cause (e.g. high humidity) acts causing multiple components to fail.

Root
Cause

Coupling
Factor

Component
b

Component
a

Component
n

..

Figure 2-8: The root cause through the coupling factor affects several components

54

Engineered defences means all those mechanisms that could be adopted to prevent root

causes and couplings from occurring. It is possible to act in two different ways:

preventing root causes and/or reducing coupling factors.

In the first case the susceptibility of components to particular root causes (e.g.

humidity) has to be reduced. In the second case we need to increase diversity. This is

possible with techniques of design control and quality control that help in segregating

equipment and in ensuring high quality construction.

2.3.3 Common mode failure events

Systems using redundancies, and fault tolerant systems in general, are able to continue

operating despite the failure of a limited number of their hardware or software

components. This is so when the failures are of individual components independently,

but these systems are vulnerable to common mode failures. These failures may sometime

endanger safety critical systems, hence they are of interest for safety analysts. It is

generally recognised that there are four different types of common mode failures

[Edwards and Watson, 1979; Humphreyes and Johnston, 1987]:

1) The coincidence of failures of two or more identical components in separate

channels of a redundant system, due to a common cause (the failures will

probably have common failure mode also).

2) The coincidence of failures of two or more different components in separate

channels of a redundant system due to a common cause (the failures will probably

have common failure mode also).

3) The failures of one or more components which result in the coincidence of

failures of one or more other components not necessarily of the same type, as the

consequence of some single initial cause (the primary and secondary failures

might also be coincident, and any coincidental failures might have different

failure modes but all will be in the same category).

N.B. In any of the above cases, the failure can occur at the same instant or at

different times, but at some time the failed states will be coincident.

55

4) The failure of some single component or service which is common to all channels

in an otherwise redundant system (e.g. common maintenance, test). This only

includes component services which are an integral part of the system and on

which system operation is dependent.

On the basis of these types of failure, Edwards and Watson gave their definition of

common mode failure:

“A common-mode failure (CMF) is the result of an event(s) which

because of dependencies, causes a coincidence of failure states of

components in two or more separate channels of a redundancy system,

leading to the defined system failing to perform its intended function”.

Causes of common mode failures

Causes of common mode failures can be depicted as in Figure 2-9 [Edwards and Watson,

1979]. To study common mode failure the boundary of the system has to be explicitly

defined, i.e. what is included and excluded in the system. Hence what is included in the

system has to be dealt with by safety analysis techniques presented in the previous

section and what is excluded by the boundary of the system is the domain of common-

mode failure analysis.

Common
Influences

(Failure cause)

Redundant
system
(Failed)

Input
Abnormal

Output
(Failure mode)

Figure 2-9: Causes of common-mode failure

56

The picture indicates the causes of common mode failure as Common Influences (i.e.

Root Causes + Couplings). In a fault tolerant system they may occur either in the period

prior to operation or during its operating life. In the first case the influences take place in

activities such as specification, design, manufacture, installation and commissioning, in

the second case they happen in maintenance or operation. These include deficiencies of

the system that are due to common influences that happen in the period prior to operation

and become apparent while the system is running. For example, the system might not be

able to perform completely its task or in particular circumstances; or it may be vulnerable

to common influences during operation due to inadequate design, quality control or

commissioning.

However, to define which causes of failure are common influences we have to start

defining what is a system and what is its boundary. Edwards and Watson say that a

system is an “interconnection of components that combine to form a specified functional

relationship between inputs and outputs”. Hence, we can understand that everything that

is not needed by the system to provide the input-output relationship when it is

functioning normally, is not part of the system and therefore it is a possible cause of

common influences. These influences can be a failure cause like fire, explosion, missile

impact, contamination interference etc. Remote sources that can have a significant

common influence on the system are also the weather, earthquakes, floods etc.

Difficulties arise when there is the direct involvement of humans in the system as

for operation, maintenance and test. If the human influence is required for the system to

fulfil the functional relationship between input and output then the human influence has

to be considered inside the boundary otherwise it has to be considered as a common

influence. Thus, test and maintenance are to be considered as common influences, while

operation may or may not according to the system or the application. If operator action

is required for the system to perform its functionality then the operator action has to be

considered part of the system. For instance, in a manually controlled system like an

aircraft, pilots are an essential part of the functionality of the system since they control

the aircraft from the information presented to them. If pilots were only interacting now

and then with the control system of the aircraft like making initial or occasional

adjustments and then the aircraft was completely operated by the auto-pilot then pilots

would not be part of the system. Actually pilots contribute to most of the aircraft

accidents especially with regard to navigation, therefore they have to be considered part

of the system. While in automatic protective systems like in nuclear reactors the operator

57

is only responsible for certain adjustment and supervision. Hence operators have to be

considered as common influence and possible cause of common-mode failure.

We said already that common cause failures supersede common mode failures. That

is because common cause failures cause all the events in a minimal cut set to occur at the

same time7. Whilst common mode failures are a specific type of common cause failure

in which events in the minimal cut set are failure modes of the same type.

2.3.4 Defending against Root Cause

Defending against root causes seems to be quite straightforward, but it is not always

possible to do, and sometimes is not economically viable. There are two main steps to

provide defences against root causes:

• The identification of all possible root causes;

• The definition of affordable improvements for reaching the required system

robustness.

Whereas the second point is purely a technological and economic matter, the first is quite

a difficult issue, as the identification of all the possible root causes (that must be outside

system boundaries to be considered by common cause failure analysis) may require

expert judgement, and so depend on the expertise of the analyst.

A number of different schemes for classifying root causes of dependent events have

been proposed both in the Nuclear and Aerospace domain. They have been developed to

help analysts in identifying root causes. Each classification scheme is expected to be,

ideally, exhaustive and its categories to be mutually exclusive.

2.3.5 Defending against couplings

Defending against couplings is subtler than identifying root causes. It implies the

assessment of a number of types of couplings deriving not only from the positioning of

each item inside the system, but also from the item design and construction phases.

Therefore all the development and maintenance life cycle of the components must be

analysed. Looking at different types of couplings, the nuclear sector has defined three

main categories of dependencies: functional, physical and human [NUREG 2815, 1985].

7 Or in a short time interval.

58

They use the term functional dependencies when an item depends on shared

functions that can be achieved either by shared hardware, or on a process coupling. In

the first case, multiple devices depend on the same equipment (e.g. a support system); in

the second one, the function of one device depends on the function of another device

(e.g. temporal dependence). They use the term physical dependencies when two or more

devices are coupled through the same environment, so that an event affecting the

environment affects also all the components inside that particular area8. They use the

term human-interaction dependencies to address all those couplings caused by human

actions. They analyse both the cognitive behaviour (e.g. failure of diagnosis) and the

procedural behaviour (e.g. multiple maintenance errors).

A checklist helping in the identification of couplings is reported in the NUREG

5801 [Mosleh et al., 1993]. According to this publication the analyst should focus

mainly on the identification of those components of the system which share one or more

of the followings:

• Same design
• Same hardware
• Same function
• Same installation, maintenance, or operation procedures staff
• Same system/component interface
• Same location
• Same environment

Therefore it could be useful to develop checklists of key attributes such as design,

location, operation etc., where the analyst can find most or all of the possible couplings.

An example of such a checklist that helps in the identification of redundant components

in a system and in the identification of the most commonly observed couplings for a

Motor Operated Valve9 is reported in Table 2-12.

8 With the word area we do not mean just the same zone (e.g. a room), but also multiple

volumes linked by a common ventilation duct or inside the same electromagnetic field
are considered as a single area.

9 A checklist to address software components, that we have developed during this work,
is reported in Table: 5.1.

59

Component Type
• Component size
• Material
• Special features

Component Use

• System isolation
• Flow modulation
• Parameter sensing
• Motive force

Component Manufacturer • Brand

Component internal
conditions

• Absolute or differential pressure range
• Temperature range
• Normal flow rate
• Chemistry parameter range
• Power requirements

Component boundaries and
system interfaces

• Common discharge header
• Interlocks

Component location name
and code

• Room
• Area

Component external
environment conditions

• Temperature range
• Humidity range
• Barometric pressure range
• Atmospheric particulate content and

concentration

Component initial conditions
and characteristics

• Normally closed, open
• Energised
• Normally running, standby

Component testing
procedure and characteristics

• Test intervals
• Test configuration
• Effect of maintenance on system operation

Component maintenance
procedures and
characteristics

• Planned
• Preventive maintenance frequency
• Maintenance configuration
• Effect of maintenance on system operation

Table 2-12: Checklist for a Motor Operated Valve

2.3.6 The aerospace industry

Aerospace industries approach dependency analysis in a slightly different way. They do

not talk explicitly about root causes and couplings, and they use the term common cause

analysis to address what the nuclear industries call dependent failure analysis. In

common cause analysis they identify three different issues which they address with zonal

safety analysis, particular risks analysis and common mode analysis [SAE-ARP 4754

and SAE-ARP 4761, 1996].

Zonal Safety Analysis addresses all those concerns regarding equipment

installations, interference between systems, the robustness of the system against possible

maintenance errors and the claimed independence of events in a fault tree. They look for

all the installation aspects of each system and the mutual influence between systems

60

installed in close proximity on the aircraft. The whole aircraft is divided into several

zones and for each of these zones a zonal safety analysis is performed. The objective of

the zonal safety analysis is to ensure that the system design meets the safety objective

with respect to:

• Basic installation;

• Effect of failures on aircraft;

• Implication of maintenance errors;

• Verification that the design meets the FTA independence claims.

Particular Risk Analysis addresses specific events listed by airworthiness regulations

that potentially may cause a failure inside the system itself. For each risk the possible

consequences for the whole aircraft should be evaluated; if one of the risks may affect

safety, proper measures should be taken. Table 2-13 lists particular risks set out in

[SAE-ARP 4761, 1996].

• Fire
• High energy devices (non-containment):

- Engine
- Auxiliary Power Unit
- Fans

• High pressure bottles
• High pressure Air Duct Rupture
• High temperature Air Duct Leakage
• Leaking fluids:

- Fuel
- Hydraulic
- Battery acid
- Water

• Hail, Ice, Snow
• Birds strike
• Tyre burst, flailing tread
• Wheel rim release
• Lighting strike
• High Intensity Radiation Fields
• Flailing Shafts
• Bulkhead rupture

Table 2-13: Subjects of Particular Risks Analysis

61

Common Mode Analysis addresses redundancies. According to ARP 4761, common

mode analysis should be performed in the lifecycle after Functional Hazard Analysis and

Preliminary System Safety Analysis. Its aim is to verify that all the inputs to all AND

gates (both explicit and implicit) in the failure logic analysis (Fault Tree Analysis,

Dependence Diagram, Markov Analysis etc.) are independent. Basically, components

with the same hardware and software could be susceptible to common mode failures due

to couplings arising from particular risks, or other causes. Therefore the principal task of

the analysis is to look for couplings and to evaluate to what extent ‘root causes’ could

affect coupled components. Identifying coupling is the major task and is very much

dependent on the expertise of the analyst; several check lists have been tailored to help in

discovering couplings. Table 2-14 reports different common mode categories and Table

2-15 reports a checklist useful for the qualitative assessment (so far no quantitative

assessment of common mode failure has been done). Both tables are taken from [SAE-

ARP 4761, 1996].

• Software design errors
• Hardware design errors
• Hardware failures
• Production repair/flaw
• Stress related events
• Installation errors
• Requirements errors
• Environmental factors
• Cascading faults
• Common external source faults

Table 2-14: Common Mode Fault categories to be analysed

It is important to point out that whereas common cause failure analysis in the nuclear

industry is both a qualitative and quantitative procedures, common cause failure analysis

in the aerospace industry is purely a qualitative analysis.

62

COMMON
MODE TYPE

COMMON MODE
SUB-TYPE

EXAMPLES OF COMMON
MODE SOURCES

EXAMPLES OF COMMON
MODE FAILURES/ERRORS

Concept and
Design

DESIGN
ARCHITECTURE Common discharge Header Common discharge failure

 Common external sources
(ventilation, electrical, power,..) Failure of common sources

 Equipment Protections Designer failure to predict an
event, ...

 Operating characteristics
(normally running, standby,..)

 Others General design error, ...
 TECHNOLOGICAL New/Sensible technology Hardware error, ...
 MATERIALS Component type (size, material,..)
 EQUIPMENT TYPE Common Software Software error...
 Component Use ...

 Internal Conditions (Temperature,
ranges,..)

usage out of operating ranges (T,
P)

 Initial conditions ...
 Others ...

 SPECIFICATIONS Specification Origin
Origin error (human), lack of
specific protection in equipment
design, ...

 Same Specification Defective specification, ...
 Others ...

Manufacturing MANUFACTURER Common Manufacturer
Common error due to
manufacturer, error due to
inadequately trained personnel, ...

 Others ...
 PROCEDURES Same procedure Incorrectness procedure, ...
 Others

 PROCESS Same process
Incorrect process, Inadequate
manufacturing control, inadequate
inspection, inadequate testing, ...

 Others ...
Installation/ FITTER Common fitter Installation or error due to fitter, ...
Integration Others ...
and Test PROCEDURES Installation phase Common error due to phase, ...
 Others
 LOCATION Same zone Local failure or event, ...
 Others
 ROUTING Same routing Local event, ...
 Others

Operation STAFF Common Staff
Error due to inadequately trained
personnel, overstressed or
disabled operator, ...

 Others ...

 PROCEDURES Same procedure

Faulty operation procedures,
misdiagnosis (following wrong
procedure), Omission of action,
incorrect or inadequate
commission of action, ...

 Others ...

Maintenance STAFF Common Staff Error due to inadequately trained
personnel, Incorrect action, ...

 Others ...

 PROCEDURES Same procedure
Failure to follow repair procedures
defective repair procedure. lack of
repair procedure, ...

 Others ...

Test STAFF Common Staff
Error due to inadequately trained
personnel, Incorrect human
action, ...

 Others ...
 PROCEDURES Same procedure Faulty test procedure, ...
 Others ...

The table continues on the next page.

63

COMMON
MODE TYPE

COMMON MODE
SUB-TYPE

EXAMPLES OF COMMON
MODE SOURCES

EXAMPLES OF COMMON
MODE FAILURES/ERRORS

Calibration STAFF Common Staff Error due to inadequately trained
personnel, ...

 Calibration Tools ...
 Others ...
 PROCEDURES Same procedure Inadequate tools adjustment, ...
 Others ...

Environmental MECHANICAL AND
THERMAL Temperature

Fire, lightning, welding etc.,
cooling system faults, electrical
short circuits, ...

 Grit
Airborne dust, metal fragments
generated by moving parts with
inadequate tolerances, ...

 Impact Pipe whip, water hammer,
missiles, structural failure, ...

 Vibration Machinery in motion,
earthquake, ...

 Pressure
Explosion, out of tolerance
system changes (pump
overspeed, flow, blockage), ...

 Humidity Steam pipe breaks, ...

 Moisture Compensation, pipe rupture,
rainwater, ...

 Stress
Thermal stress at welds of
dissimilar metals, thermal
stresses, ...

 Others ...

 ELECTRICAL AND
CORROSION Electromagnetic

Welding equipment, rotating
electrical machinery, lightning,
interfaces power supplies, ...

 Radiation Gamma radiation, charged
particle radiation, ...

 Conducting Medium Moisture, conductive gases, ...

 Out-of-tolerance Power surge voltage, short
circuit, power surge, current, ...

 Others ...

 CHEMICAL AND
MISCELLANEOUS Corrosion (acid)

Leak of acid used in
maintenance for removing rust
and cleaning, ...

 Corrosion (oxidation)

Failure leading to a water
medium or around high
temperature metals (ex
filaments), ...

 Other chemical reactions
Galvanic corrosion, complex
interactions of fuel cladding,
water, oxide fuel, ...

 Biological
Poisonous gases, animate
causes (mussels in heat
exchanger), ...

 Others ...

Table 2-15: Checklist with Common Mode Types, Sources, and Failures/Errors

2.3.7 Software domain

So far we have surveyed common cause failure analysis in the nuclear and aerospace

fields. Now we move to consider common cause failures in computer based systems. To

our knowledge, no formalised methods exist to study dependencies amongst software

components, even if there are efforts to build software “common mode failure free”. The

Airbus company built the first passenger aircraft with a computer-based flying control

64

system (A320) using several precautions to avoid any kind of coupling [Dorsett &

Mellor, 1993]. They used:

• Computer systems developed by separate companies using 80186 & M68000
processors;

• Separate teams (only the requirements specifications were available for
communication);

• For each computer: the control channel was written in Pascal, and the monitor in
C; or the control channel in assembler and the monitor in Pascal;

• Particular care has been taken to ensure independence in command and monitoring
development teams;

• Each team used different compilers;

• The voting logic was different in each computer.

Even if this is indeed a starting point, we cannot say to what extent such efforts are

appropriate for the task they are asked to deal with, whether designers have been “more”

or “less” effective than might reasonably be expected in avoiding couplings.

Additionally, this comment does not reflect on the A320 per se, it simply indicates a lack

of understanding of root causes and couplings affecting software.

2.3.8 Defences against common cause failures

The policy to prevent common cause failures starts early in the lifecycle. It involves

engineers being aware of sources of common cause failures and possible defences

against them. It is by eliminating sources of common cause failures from early in the

design phase that saves expensive remedies later. However when it is not feasible to

reduce causes of common cause failures, ad hoc defences against them based on specific

features of each plant can usually be set up. Defences against common cause failures are

careful project administration, planning, functional diversity, equipment diversity,

protection and segregation of equipment, barriers, equipment derating and simplicity,

quality control, preventive maintenance, monitoring etc. To check whether plant

defences have been considered for each potential cause of common cause failure, some

techniques have been conceived. The development of one such technique that lists plant

defences against potential causes of common cause failures has been sponsored by the

US Nuclear Regulatory Commission and presented under the name of “Cause Defense

Matrix” in [Paula and Parry, 1990; Mosleh et al., 1993].

65

Table 2-16 displays an example of a cause defence matrix focused on environmental

factors. A cause-defence matrix is a formal way to make sure that in a plant some

defences have been considered for each potential cause of common cause failure. The

first column from the left of the table lists causes of common cause failures, i.e. groups

of failure causes. The remaining columns list the measures that are taken in the plant

against each failure cause mechanism, that is the root cause (i.e. trigger event +

conditioning event) and the coupling factor.

Defence Against
Root Cause Coupling

Failure Cause

Group
Conditioning Event Trigger Event Factor

Internal
environmental effect
(corrosion,
biofouling, etc.)

Ensure internal
environment is “pure”
Preventative maintenance

Surveillance
testing/condition
monitoring (slowly
developing only)

Functional diversity
Equipment diversity
Barrier between inputs
to redundant trains
Staggered maintenance

External
environmental
effects Shock (fast
acting)

Barriers at the component
(equipment hardening)
Equipment qualification

Barrier between source
of shock and component
Inspection of potential
sources of shocks

External barriers
between redundant
trains

Slow acting Barriers at the component
(equipment hardening)

Barrier between source
of shock and component

Functional diversity
Equipment diversity

 Equipment qualification

Surveillance testing/
condition monitoring for
cumulative effects of
environments

External barriers
between redundant
trains

Table 2-16: Cause-Defence matrix for environmental-related causes

2.3.9 Common cause failures quantitative assessment

The contribution of common cause failures to the likelihood of critical events is

estimated by using parametric models. These models were introduced in the late 1960’s

[Marshall, 1967] when the need to evaluate common cause failures arose. The most

widely used parametric models are named from the parameters they use. The Beta factor

model [Marshall and Olkin, 1967; Fleming, 1975] names the parameter it uses with the

second letter of the Greek alphabet. While the Multiple Greek Letter model [Fleming and

Kalinowski, 1983] uses many parameters (the order of redundancy minus one) called

β, γ, δ, etc. In the case of two redundant components the multiple Greek letter model

reduces to the Beta Factor model. Parameters can be thought of as representing the

strength of the coupling among redundant components, but also as conditional

probabilities as will be shown later. They range between 0 and 1. The lower bound

represents complete lack of coupling whereas the upper bound represents complete

coupling. In many cases it is difficult to estimate common cause failure parameters due

66

to lack of statistical data, therefore analysts use conservative values. Experience has

shown that a conservative value for beta is 0.110 [Mosleh, et al., 1988]. Additionally, if

some care is taken to ward off common cause failure, the beta for a redundant system can

easily be reduced by one or two orders.

Parametric models take into account the contribution of common cause failures by

modifying the value for the likelihood of events. They split this up into two or more

contributions of which one is the likelihood of the independent occurrence of the event,

the other(s) are probabilities of the common cause failures. Hence if we wish to

represent common cause failures in a fault tree we have to add some events. To see how

a fault tree is modified to consider common cause failures we produced a simple example

based on a system the function of which is to arise oil from one tank to another. The

system architecture consists of three redundant pumps. However only two of them are

required to run at any one time to assure the system functionality. Figure 2-10 displays

the architecture of the system. The system fails when any two pumps fail. The fault tree

for the system is in Figure 2-11. If failures of the three pumps were completely

independent, the fault tree would consist of only one level that is represented by the

darker part. Since failures of pumps are not considered independent, the failure

probability of each pump is divided into four contributions representing the random

occurrence (i.e. AI, BI and CI), the occurrence because of a shared cause with one other

pump only (i.e. CAB, CAC and CBC) or because of a shared cause with both other pumps

(CABC). Parametric models assign probabilities to all the contributors to the pump failure

probability both independent events (i.e. AI, BI, CI) and dependent events (i.e. CAB, CAC,

CBC, CABC).

10 Up to 0.18 for diesel generator sets.

67

Tank

2/3

A B C

Sump

Figure 2-10: Triple redundant system raising oil from the sump to the tank

All the existing parametric models are based on the Symmetry Hypothesis [Mosleh, et al.,

1988]. This hypothesis relies on the common practice in safety and reliability analysis to

assume that the probabilities of similar events involving similar types of components are

the same. Hence if there are three events, i.e. A, B, and C, the symmetry hypothesis

assumes that the probability of any one of them occurring independently is the same and

is equal to a value called “Q1”. Further it assumes that the probability of any two events

occurring simultaneously is identical and equal to “Q2”. Additionally it assumes that the

probability that all the three events occurring simultaneously is equal to “Q3”. This is

represented by the following equation 2-2.

 Q=)P(C

Q=)P(C=)P(C=)P(C
Q =)P(C =)P(B =)P(A

3ABC

2BCACAB

1III








 (2-2)

The symmetry hypothesis certainly holds in the many cases in which identical

components are used in redundancies, but that cannot be taken for granted when fault

tolerance is achieved by any mixture of software, hardware, or information and timing

redundancy, e.g. for computer based fault tolerant systems. However before discussing

this issue, we continue presenting the different features of the Beta factor and the

Multiple Greek letter parametric models.

68

The Beta-factor model is the simplest of the parametric models. It considers the

independent likelihood of each event in the MCS and the likelihood of all the events

happening simultaneously because of a common cause failure. This is achieved by

assuming the likelihood of common cause failures not affecting all the components to be

zero, see equation 2-3 and 2-4.

 P(Cab) = P(Cac) = P(Cbc) = Q2 = 0 (2-3)

 P(Cabc) = β * P(AI) = Q3 (2-4)

The Beta factor model is normally used with low orders of redundancy (maximum three

channels) since it becomes conservative as the order of the redundancy increases. In

these situations the Multiple Greek Letter method comes into place.

2/3

System A
Independent

Failure Ai

System B
Independent

Falure Bi

System C
Independent

Failure Ci

Basic Event
CAB

Basic Event
CAC

Basic Event
CBC

Basic Event
CABC

(S) System
Failure

XOR

Figure 2-11: Tree for the system in Figure 2-10

The Multiple Greek Letter model [Fleming and Kalinowski, 1983] is an outgrowth of the

Beta factor model that can consider systems with any degree of redundancy. Values for

probabilities are assigned according to equations in 2-5. It is out of the scope of this

thesis to explain how that equation is obtained, the explanation can be found in [Mosleh,

et al., 1988]. We only say that m represents the number of redundant components in the

system, k represents the order of the generic subset of components that can be created

inside the common mode failure component group. It ranges between 1 and m. Qk

69

represents the failure probability of a generic subset of events of the minimal cut set.

Finally, ρi represents these generic parameters (i.e. ρ1=β; ρ2=γ; ρ3=δ; ρ4=φ; etc.).

 ()Q
m
k

Qk i
i

k

k t=
−
−















 −

=
+∏1

1
1

1
1

1ρ ρ (2-5)

If we consider the system in Figure 2-10, i ranges between 1 and 3. Thus:

 m = 3

 ρ1 = 1

 ρ2 = β

 ρ3 = γ

 ρ4 = δ

 Where:

β = Conditional probability that the cause of a component failure will be shared by one

or more additional components, given that a specific component has failed.

γ = Conditional probability that the cause of a component failure that is shared by one or

more components will be shared by two or more additional components, given that

two specific components have failed.

δ = Conditional probability that the cause of a component failure that is shared by two or

more components will be shared by three or more additional components, given that

three specific components have failed.

For the system in Figure 2-10, equations (2-5) becomes:

() ()

() ()

()

Q Q Q

Q Q Q

Q Q Q

t t

t t

t t

1
3

1 2

2
3

1 2 3

3
3

1 2 3 4

1
2
0

1 1

1
2
1

1 1
2

1

1
2
2

1

=





− = −

=





− = −

=





− =

ρ ρ β

ρ ρ ρ β γ

ρ ρ ρ ρ β γ

 (2-6)

70

After a Boolean simplification of the tree in Figure 2-11, MCS are obtained, and the

system failure probability Qs is evaluated by using equation 2-7.

 3
3

3
2

3
1 2 QQQQS ++≡ (2-7)

Giving values to parameters

Methods have been developed to estimate values for parameters used by parametric

models. These methods are partly based on statistics on common cause failure events

recorded in databases, and partly on empirical considerations [Mosleh, et al., 1988].

Most of the time they estimate boundaries, i.e. max. and min. for each parameter. For

instance, if a set of parameters for a plant is known, and a similar plant is reckoned more

robust to common cause failures (but for which no statistics are available as it is a new

plant), it will be assigned a set of parameters of slightly smaller values. An example of

such an empirical method is given in [Humphreys, 1987]. This method is very field

specific and concerns programmable electronic systems. It basically allows the

estimation of the parameter β used in the Beta factor model by giving a weight to eight

sub-factors as Table 2-17 shows.

FACTOR SUB-FACTOR WEIGHT

DESIGN Separation 8

 Similarity 6

 Complexity 6

 Analysis 6

OPERATION Procedures 10

 Training 5

ENVIRONMENT Controls 6

 Tests 4

Table 2-17: Factor, sub-factor and sub-factor weight

Different sets of these sub-factor weights can also be assigned to account for different

degrees of couplings in different plants. In Table 2-18, column ‘a’ and ‘e’ represent

respectively the highest and the lowest possible sub-factor weight, thus the highest and

the lowest possible coupling. One column need not be a multiple of another since the

71

sub-factor might not grow linearly with the strength of the coupling. Since the beta is a

probability and it ranges between 0 and 1 it is obtained by a proper normalisation.

SUB-FACTOR a b c d e

Separation 2400 580 140 35 8

Similarity 1750 425 100 25 6

Complexity 1750 425 100 25 6

Analysis 1750 425 100 25 6

Procedures 3000 720 175 40 10

Training 1500 360 90 20 5

Controls 1750 425 100 25 6

Tests 1200 290 70 15 4

Table 2-18: Possible sub-factor weights

2.4 Discussion
In this chapter we saw that a number of different techniques are used for safety analysis

as the design evolves in the course of the lifecycle. Furthermore we saw that those

techniques are not formally linked to each other and as a consequence the consistency of

the analysis cannot be assured throughout the design development process. In a complex

design it is, therefore, often difficult to trace (using the results of the safety assessment)

the causes of critical malfunctions of the system in the hierarchy of subsystems and

components that compose the design. We have also noted the trade-off between

techniques providing a graphical and tabular representation of results.

The second part of the chapter focused on common cause failures. We discussed the

mechanisms leading to common cause failures, and based on this discussion we showed

that there are two possible ways to avoid common cause failures, either by eliminating

root causes or removing coupling factors. We saw that there are methods that help to

consider defences for each potential cause of common cause failure in a plant. However

there are no methods that measure (or at least map) couplings among redundant

components in a system. We also noticed problems related to the estimation of

parameters for the quantitative evaluation of common cause failures. To address the

limitations and shortcomings of classical techniques that we have highlighted here, this

thesis will attempt to answer the following questions:

72

a) Is it possible to develop a technique that encompasses the different safety analyses

typically performed across the lifecycle?

b) Can the application of this technique result in a meaningful and easy way to perform

a collection of safety analyses which can assist the design of the system?

c) Can we ensure the consistency of the results within the assessment?

d) Can those results be represented both graphically and in tables, so that we can

combine the benefits of both representations?

e) Finally, is it possible to use this technique to systematise the identification of

common cause failures?

73

Chapter Three

3Preliminary work
In Chapter 2 we surveyed techniques for safety analysis. We saw that there are many

techniques for tackling specific needs, however little has been done to integrate those

techniques that are typically used in cascade across the lifecycle. That causes several

problems that were highlighted. In addition, we found a lack of formalised methods to

consider common cause failures in computer based safety critical systems. Causes of

common failures have to be sought across the lifecycle so if a method has to be built to

relate techniques typically used across the lifecycle the issue of common cause failures

must be considered.

 In this chapter we present the work that was done at the beginning of our research

and that brought about (through many refinements) the formulation of the technique,

known as Failure Logic Analysis for System Hierarchies (FLASH), that is presented in

chapters 4 and 5. We think this preliminary work is important because it explores some

original approaches and shows the reasons for developing FLASH.

3.1 Template based approach
The research started looking for a notation capable of showing how hardware and

software elements are dependent and support each other in safety critical computer

based systems. It was thought that this notation was needed to support top-down study of

a system: the functional level first, then the architectural level and finally the component

level. Therefore the functional representation of the system was addressed first.

Functional failures were studied independently from the implementation of the function

(i.e. hardware, software components or both). Malfunctions were represented as top

events in fault trees whose basic events were either software or hardware failures. We

perceived the importance of having formalised trees so we tried to systematise their

construction by proposing mini-trees to represent failures of sub-systems and sub-

functions. Figure 3-1 displays an example of a fault tree built using mini-trees for the

system in Figure 3-2. These, which are very similar to the ones in [Leveson, 1983],

represent the most common causes of failure. Additionally, they have undeveloped

74

events for considering faulty inputs and failures from other functions, sub-systems or

components. The idea was that, once fault trees were built for system malfunctions, they

could be assessed for repeated branches, which clearly are sources of dependent failures.

These repeated branches were shared by both software and hardware components, hence

they were identifying software-hardware dependencies.

S E N S O R S

F U N C T IO N

P 2 fa ilu re

H |W F A IL U R E

O U T 2

F U N C T IO N

O u ts id e
c o m p o n e n t's

b o u n d a ry

E X T . E V E N T S
In s id e

c o m p o n e n t's
b o u n d a ry

IN T . E V E N T S

S o ftw a re
s u p p o r tin g th e

fu n c tio n

S |W F A IL U R E

P 2 fa ilu re

H |W F A IL U R E

M O D IF IE R
A D D IT IO N 2

F U N C T IO N

O u ts id e
co m p o n e n t's

b o u n d a ry

E X T . E V E N T S
F L A W in th e
M O D . A D D

S |W

IN T . E V E N T S

S o ftw a re
s u p p o rtin g th e

M A fu n ctio n

S |W F A IL U R E

P 2 fa ilu re

H |W F A IL U R E

IN 2

F U N C T IO N

O u ts id e
co m p o n e n t's

b o u n d a ry

E X T . E V E N T S

F L A W in th e IN
S |W

IN T . E V E N T S

S o ftw a re
su p p o rtin g th e

IN fu n ctio n

S |W F A IL U R E

P 2 fa ilu re

H |W F A IL U R E

B U S
W A T C H E R 2

F U N C T IO N

O u ts id e
c o m p o n e n t's

b o u n d a ry

E X T . E V E N T S
F L A W in th e

B U S W A T C H E R
S |W

IN T . E V E N T S

S o ftw a re
s u p p o r tin g th e

B W fu n c tio n

S |W F A IL U R E

M O D IF IE R
A D D IT IO N

2

IN 2
 fu n c tio n

B U S
W A T C H E R

2

P 2 fa ilu re

H |W F A IL U R E

M O D IF IE R
S E L E C T IO N 2

F U N C T IO N

O u ts id e
c o m p o n e n t's

b o u n d a ry

E X T . E V E N T S
F L A W in th e
M O D . S E L .

S |W

IN T . E V E N T S

S o ftw a re
su p p o r tin g th e

M S fu n c tio n

S |W F A IL U R E

M O D IF IE R
S E L E C T IO N

2

O U T 2
fu n c tio n

IN 2

F U N C T IO N

P 2 fa ilu re

H |W F A IL U R E

B A S IC 2

F U N C T IO N

O u ts id e
c o m p o n e n t's

b o u n d a ry

E X T . E V E N T S

F L A W in th e
B A S IC S |W

IN T . E V E N T S

S o ftw a re
s u p p o r tin g th e
B A S IC fu n c tio n

S |W F A IL U R E

IN 2

F U N C T IO N

B A S IC 2
fu n c tio n

V O T IN G
L O G IC

2 /3

M O D IF IE R
S E L E C T IO N T 3
V O T E S A ll_ s ig n

F U N C T IO N
M O D IF IE R

S E L E C T IO N T 1
V O T E S A ll_ s ig

F U N C T IO N
M O D IF IE R

S E L E C T IO N T 2
V O T E S A ll_ s ig n

F U N C T IO N

In h ib it
2 o r 3 s e n s o rs

fa il g iv in g S A M E
V O T E S (w ro n g)

P o s sib le ca u s e s :
S a m e :
 - S |W , H |W
 - S e n s o rs
 -

Figure 3-1: Fault tree built using mini-trees

75

From
sensors

Modifier
Selection

Sporadic

Bus
Watcher
Sporadic

VOTES
(All signals)

PROCESSOR 1

PROCESSOR 2

PROCESSOR 3

To output
modules

In 2

Basic 2

Modifier
Selection 2

Modifier
Addition 2 Out 2

Periodic Periodic Periodic

Sporadic

Sporadic

Bus
Watcher 2

Sporadic

Pedal_val

All_sens

Basic_press

Sensor_feedback

All_votes

Final_press

Modifier_values

Modifier
Selection

Sporadic

Bus
Watcher
Sporadic

Sens_in

Pair_1

Pair_2

Figure 3-2: Fragment of a functional block diagram of a Computer Braking System

However, this notation was only deductive and it was not suitable for representing

recovery actions taking place in fault tolerant systems. So it was thought desirable to

represent recovery by using some of the gates used in cause consequence analysis. An

example of such a representation is shown in Figure 3-3. In this notation a function, a

component or a task (e.g. the sub-function OUT in the graph) is represented as a box with

inputs, entering from the bottom, and outputs departing from the top. The ones leaving

from the top left corner of the box are intended outcomes, whilst outputs leaving from the

top right half are fault outcomes. Whilst a component can have only one correct

functional mode11, it can have many failure modes. Hence, it was thought useful to

represent failure modes by using an event tree style graph placed near the top right

11 It is recognised that, in principle, there can be many functional modes. However, for
safety analysis, we can group them together.

76

corner of the gate and connected to its failure outcome. Then, each path through the

“event tree” would represent a failure outcome of the function/component/task in the

box. However, this notation posed additional problems: for instance it was not clear

where to put the many fault trees representing failure modes of the component

represented by the box. We decided to put them underneath the event tree so we ended

up with the Event Tree Output notation that is presented next.

IN

OUT_1

Sensor_feedback
&& Final_press

Pair_1 | Pair_2

Pair_2

Good

Pair_1

Pair_1 & Pair_2

P1 failure

OUT_1
Pair_1

Outside
component's

boundary

Inside
component's

boundary

Software
supporting the

function

MODIFIER
ADDITION 1
Final_press

IN 1
Sensor_
feedback

MODIFIER
ADDITION

CAN 1 CAN 2 Succes Logic

Failure Logic

P1 failure

OUT_1
Pair_2

Outside
component's

boundary

Inside
component's

boundary

Software
supporting the

function

MODIFIER
ADDITION 1
Final_press

IN 1
Sensor_
feedback

Legend

Legend

Figure 3-3: Cause and consequence analysis style notation

3.2 Event Tree Output Notation
Fault trees representing causes of system malfunctions were gathered below a sort of

event tree providing a different path for each failure mode or combination of failures.

Figure 3-4 shows an example of such a representation. The upper part of the graph

77

shows the outputs provided by the box, either good (i.e. YES) or faulty (i.e. NO).

However, whilst at any time there can be only one good output (i.e. path on the top of the

event tree), there can be many non-straight paths representing the presence of faults (i.e.

when mitigation or recovery took place) or failures (i.e. where mitigation or recovery

failed). Out of these outputs, some may compromise the safety of the system, hence be

critical, whereas others may produce less serious consequences. Fault trees showing

causes of each functional failure are represented below the event tree. Repeated

branches in fault-trees identified couplings among functions.

Outside
component's

boundary

EXT. EVENTS
Inside

component's
boundary

INT. EVENTS

Equipment
supporting the

function

H|W FAILURE

Outside
component's

boundary

INT. EVENTS

Software
supporting the

function

S|W FAILURE

FUNCTION
Failure Mode

#

1) Memories
2) Processors
3) Peripheral
Interfaces
4)

Physical dependencies:
1) Power Supply
2) Environment
Humidity,Temperature,
Particular Risks (Fire,
Radiation Fields, etc...)
3)

Dedicated Software
&/OR
Logic

FUNCTION's FM #
TEMPLATE

Success Outcome

Algorithm
supporting the

function

FUNCTION INTERFACE
(Good & Degraded Input FLOWS)

Success Logic

Failure Logic

Degraded or
Failure Outcomes

YES NO

FUNCTION INTERFACE
(Good & Degraded Output FLOWS)

FUNCTION
Failure Mode

One

N.B.
A function has to run only one
time to provide all its outputs
otherwise it is not a minimal
function and should be minimized.

OUTPUTS TREE (Function's Event Tree)

Possible Outcomes

Failure_modes(O, C, E, L, Vd, Vu)
FM one FM #

NOTES

- Type: MATRIX

-Type: Vector

Income -Type: Vector
(G-Good, D-Degraded, F-Fault)

Figure 3-4: Fault trees are shown below an event tree

This notation provides a graphical representation of dependencies between software and

hardware components, however it has some limitations. First of all it provides a huge

number of outputs for each component. Hence a sort of filtering mechanism on the

output to avoid propagating non-critical outputs should have been developed, but that

would have complicated further the method. Additionally shared fault tree branches and

shared components are represented in different places in fault trees and, in some cases, it

is not easy to identify repeated branches. At this point it was thought practical to try to

improve the representation by exploiting a variant of another notation: the Master Plant

Logic Diagram.

78

3.3 Master Plant Logic Diagram approach
The next attempt to provide a notation able to merge the analysis of software and

hardware components, considering common cause failures in complex computer based

safety critical systems, was an extension of the Master Plant Logic Diagram notation in

[Modarres, 1992]. As we said in the second chapter, the MPLD notation effectively

represents the interrelationships amongst various components, and can model

relationships between functions and systems, so it already has some of the characteristics

that we were aiming for in our method. But MPLD as it is defined in [Modarres, 1992]

does not allow the mapping of couplings which originate common cause failures.

Consequently we extended this notation to include this additional category of couplings.

The extended notation was called MPLD*.

MPLD* is a logic diagram that shows how functional, equipment and component

failures combine to cause a system malfunction. An MPLD* diagram is constructed for

each failure mode of the system that is represented as top event in the MPLD* graph.

Combinations of function, sub-system and component failures, which cause the top

event, are represented in a fault-tree-like structure. However, an MPLD* graph differs

from a fault tree since basic events are not represented as leaf events in the tree, but they

are listed in the lower left part of the graph and connected to gates through a sort of

matrix. Lines that originate at basic events and those that end at each gate make this

matrix. Small blobs mark active intersections of those lines. Therefore AND or OR

gates can be connected to a number of primary events through a vertical line that

intersects horizontal lines originating from events. Figure 3-5 shows the MPLD* for a

functional failure (i.e. complete lack of braking) in the computerised braking system

described in 6.2 and represented in Figures 6-9 and 6-10. It is possible to see that this

failure (top event in the MPLD*) is caused by failures of both actuators (i.e. output

modules 1 and 2). The failure of any of these components can be caused either by an

internal failure (hardware failure) that is represented in the list at the bottom left, or by

failures in both the redundant busses i.e. Bus 1 and Bus 2 (see the AND gate on the left

immediately below the OR gate). Similarly, the failure of anyone of the busses is caused

either by internal failures (i.e. hardware wear out or software implementation) or by the

simultaneous failure of all of the three output tasks (i.e. output 1, output 2 and output 3).

Failure of these tasks can be caused by other functional or hardware failures (e.g.

Modifier addition, Bus Watcher, Modifier Selection, Basic, In, etc.) and ultimately, by

wrong inputs from sensors (i.e. fault data from sensors) or supports (e.g. processors).

79

Basic 1

Output
1

Modifier Addition Code -

Out Code - S|W

Bus Watcher Code - S|W

Basic Code - S|W

Modifier Selection Code -

Data from Sensors

In Code - S|W

Processor 1 & related

Processor 2 & related

Processor 3 & related

Modifier
Select. 2

Basic 2

Output
2

In 2

Modifier
Select. 3

Basic 3

Output
3

Bus
Watcher 2

Bus
Watcher 1 Bus

Watcher 3

2/32/3 2/3

Busses Scheduling Code

Modifier
Addition 1

Modifier
Addition 2

Modifier
Addition 3

Modifier
Select.

Output
Module 1

Output
Module 2

Complete
lack of
braking

Bus 1

Bus 2

Output module 1 H|W

Output module 2 H|W

Bus 1 wire - H|W

Bus 2 wire - H|W

Processors 1 & 2 - CCF

Processors 1 & 3 - CCF

Processors 2 & 3 - CCF

Busses 1 & 2 - CCF

Output Modules 1 & 2 -

Processors 1 & 2 & 3 -

In 1

In 3

Common Cause
Event Analysis Area

Supports & Inputs (SA)
Analysis Area

Critical Failure Modes A: Complete lack of braking

Figure 3-5: MPLD* for complete lack of braking in a braking system

80

However, what we have described so far is, actually, nothing other then the failure logic

underneath a functional failure in a different format than a fault tree or an MPLD. We

now show how, additionally, the MPLD* notation represents couplings among different

sub-functions, sub-systems and components that may give rise to common cause failures.

For this purpose the MPLD* notation reserves the common cause events area

immediately below the input and support area. This area lists common cause events

affecting two or more sub-functions, sub-systems, tasks or components. As for basic

events, common cause events are graphical linked to intermediate events that are arisen

by them and represented into the upper part of the graph. The dependency matrix at the

right side of the list of common cause events identifies couplings.

It has to be noticed that in the MPLD* graph there is not a clear distinction between

the functional, architectural, and component level, and there are sub-function failures as

well as subsystem and component failures. This is because the analysis is not

hierarchically represented, but flat. It is performed deductively moving backward from

unwanted effects to causes. In addition, the MPLD* has two other limitations. It does

not clearly represent the mapping of software to hardware (or vice versa) and does not

allow recording of detailed information for basic components, for example component

failure rates, mean time to failure, mission time, etc. Hence we had to define two other

notations to apply at higher and lower levels of detail.

At the higher level of detail, we proposed a sort of block diagram notation

displaying the mapping of functions to hardware and software components. An example

is in Figure 3-6a that shows a cascade of two functions (i.e. boxes A and B) that are

mapped onto three processors (i.e. boxes P1, P2 and P3). Figure 3-7a displays the

breakdown of function A and its redundant architecture. Function A is actually achieved

by three sub-functions (A1, A2 and A3) each mapped to a different processor. A

breakdown of sub-function A1 is displayed in Figure 3-8a. It shows that this sub-function

is achieved by three tasks called A1.1, A1.2 and A1.3 all running on processor P1.

Master plant logic diagrams associated with these architectures are represented in Figure

3-6b, Figure 3-7b and Figure 3-8b.

81

A BINPUT OUTPUT

P1

P3
P2

System Boundary

a) Mapping of functions upon hardware

B

A

External
Couplings

P1

P2

P3

OUTPUT

INPUT

2/3 2/3

 b) MPLD* representation

Figure 3-6: High functional level

Figure 3-6b shows how functions A and B are supported by processors P1, P2 and P3 and

that function B has one only input that is from function A. At this representation level

nothing is shown about their failure modes. Figure 3-7b shows the relationship among

the three tasks, A1, A2 and A3 constituting function A and similarly for function B. The

two functions are apparently independent, since they run on different processors and

have different failure modes (i.e. A1.x, A2.x and A3.x) but they all share the same

software. The coupling matrix shows that the three tasks are not coupled except for the

software that is common to all of them.

A1

A2

A3

B1

B2

B3

INPUT

A Element
Boundary

P1

P3

P2

a)Mapping of functions upon hardware

A1

A2

A3

A S|W

External Couplings

P1

P2

P3

Internal Couplings

Element A Boundary

A2.1

Locally generated FM

A1.1

A1.2

A2.2

A2.n

A3.1

A3.2

A3.n

A1.n

Handled

B1

B2

B3

INPUT

b) MPLD* representation

Figure 3-7: Medium functional level

82

A1.3

A1.2

A1.1

Element A1 Boundary

B1
INPUT

Processor 1

a) Mapping of functions upon hardware

A1.3

A1.2

A1.1

Element A1 Boundary

B1
INPUT

Processor 1

External Couplings
P1

Locally generated FM
A1.1

A1.2

A1.3

Handled
INPUT

b) MPLD* representation

Figure 3-8: Detailed functional level

At lower levels of detail we defined a table-based notation placed along side the

graphical ones. The tables record the information needed for a probabilistic analysis.

This notation requires association of a table with each component in the design, contour

information describing internal and external failures influencing the component’s output,

whether correct or faulty. In these tables there are various areas describing, for example,

locally generated failure modes and couplings, externally generated failure modes and

couplings, and the mechanism underneath the transformation and propagation of failures.

Figure 3-9 shows the table that is associated with component A1 represented in Figure

3-7. The table is divided into five areas (i.e. Laws, Handled Couplings, Internal

Couplings, Locally Generated Failure Modes and External Couplings); the Laws area is

further divided into sub-areas. Failures that arise inside the component may appear either

in the internal coupling or in the locally generated failure mode area. That depends on

whether they are shared by one or more elements at the component level architecture. In

a similar way, failures that happen outside the component boundary may appear either in

the external coupling area or in the input area. This depends on whether they come from

support systems shared by one or more other components or they are actually the input of

the component i.e. data (or analog variables) that have to be processed by the function.

The Laws area shows the failure logic describing how failure modes and couplings,

listed in the previously mentioned areas, combine to provide either faulty or good

outputs. This area is further divided into three headings that are Failure Conditions

describing faulty outputs; Normal Output describing the (results of the) process that

recovers recoverable failures and the Conservative/Default outputs describing when the

83

system handles failures and goes into a safe state. These are the cases in which full

recovery is not possible, but the system can still deliver a safe output. A similar table can

be written for the MPLD* in Figure 3-8b. It can be seen that the laws area in a table

contains the information needed to draw part of the MPLD* diagram for the system.

The information in the laws area of the table is also the causes-effect relationships

explaining the deviation of output flows (propagated by the component) from their

expected values. This information is also the same that is needed to conduct a fault tree

analysis. Hence, it can be used to draw the upper part of the MPLD* that is actually

nothing else than a fault tree, as we have already said. Further, the information about

couplings and support systems in the table is used to visually connect intermediate events

representing component failures in MPLD* graph. Hence it can be used to draw the

lower part of the MPLD*. Joining together the information in tables for all the

component of the system it is possible to construct MPLD*s for each system failure

modes. Ultimately, block diagrams mapping the software upon the hardware can be

drawn with the information about software-hardware dependencies that can also be

stored in the tables.

Drawing some conclusions, the MPLD* notation with the associated tables and

Block Diagram notations are intended to fill the gap existing in the analysis of safety

critical computer based system to account for the interactions of software and hardware

components. They can be used in place of fault tree analysis but they do not substitute

for Preliminary Hazard Analysis, HAZOP and FMEA. Table 3-1 compares the analysis

of a safety critical computer based system from three different viewpoints: the hardware,

the software and the integrated software-hardware viewpoints. The table shows that the

MPLD* notation can be used at functional as well as at architectural and component

level during the decomposition and design of safety critical computer based systems.

84

LAWS (TO THE OUTPUT POOL)

FAILURE CONDITION (END EFFECTS)
Value (2/3 Channels) :== A1.1 (V) AND A2.1 (V) OR A1.1 (V) AND A3.1 (V) OR A2.1 (V) AND A3.1 (V)
OR O_Input OR V_Input
Omission (2/3 Channels) :== A1.2 (Late) AND A2.2 (Late) OR A1.2 (Late) AND A3.2 (Late) OR A2.2 (Late)
AND A3.2 (Late)

NORMAL OUTPUT (GOOD INPUT TO NEXT DOWNSTREAM COMPONENT(S))
A1 & A2 AND INPUT OR A1 & A3 AND INPUT OR A2 & A3 AND INPUT

CONSERVATIVE DEFAULT OUTPUT (NEXT HIGHER LEVEL EFFECT)
(Not in this example)

INPUTS

Input Description
O_Input:== Input (Pool) gives Omission failure then A1 & A2 & A3 read the previous value
V_Input:== Input (Pool) gives Value failure then A1 & A2 & A3 read a wrong value

INTERNAL COUPLINGS

Internal S|W A is shared by A1 & A2 & A3 => Need Expert Justification
Note: Expert may say that in this circumstances S|W does not constitute a coupling to be further analysed

LOCALLY GENERATED FAILURE MODES

A1.1 = Value;
A1.2 = Late (Scheduler failure in A1)
A2.1 = Value;
A2.2 = Late (Scheduler failure in A2)
A3.1 = Value;
A3.2 = Late (Scheduler failure in A3)

EXTERNAL COUPLINGS

Processor P1 support A1
Processor P2 support A2
Processor P3 support A3

Note: Although A1, A2, A3 are not coupled by the same hardware, they might share the same life cycle (i.e.
same type, same manufacturer, etc.) => Need further analysis

Figure 3-9: Table associated with component A1 represented in Figure 3-7

 Viewpoint

 Hardware Software Hardware-Software

Functional
PHA or FFA +

FTA

PHA or FFA +

FTA
PHA or FFA + MPLD*

Architectural HAZOP + FTA
SHARD +

software FTA
SHARD + MPLD*

Le
ve

ls

Component FMEA + FTA
FMEA +

software FTA
FMEA + MPLD* ⇐⇐ ⇐⇐

 In
cr

ea
sin

g
de

ta
ils

Table 3-1: Overview of the Safety analysis used to assess critical systems

85

3.4 Discussion
Our aim was to address some shortcomings and limitations of classical safety analysis

techniques for the study of complex computer based safety critical systems. After

endeavouring to use some existing template based notations and what we called “Event

tree output notation” we came out proposing a variant of another technique, the Master

Plant Logic Diagram. This notation was able to solve some inefficiencies of the classical

techniques like the visual representation of dependencies between hardware and

software, but it also left us with some unresolved problems. For instance, it was not

possible to represent clearly the mapping of software to hardware and it was not feasible

to store in an MPLD* graph all the information that is needed to calculate the likelihood

of its top event. Hence we proposed a graphical notation to represent the mapping of

software to hardware and a table based notation to store the detailed information that

could not be stored into an MPLD*. Further the table notation was enriched to contain

information to encompass both MPLD* and the representation of the mapping of

hardware upon software (i.e. the table and block diagram notations).

However these techniques alone were not enough to achieve the targets we were

aiming for in the thesis. In fact, though they were applicable at any stage of the

development phase, they were not integrated with other analyses (i.e. FHA, HAZOP and

FMEA) that are performed in parallel. Additionally, they did not solve the problem of

ensuring the consistency of results of analyses performed during the lifecycle by

common safety analysis techniques, hence we decided to take a new approach in the rest

of our research.

Out of these techniques, the table-based notation was the one that solved most of the

problems we wanted to address. Such an approach allows information to be stored in a

format which is easy to access. Hence we tried to extend further this notation to

encompass other classical safety analysis techniques such as HAZOP, Functional Hazard

Analysis and FMEA. We found that that was feasible. The starting point was the fact

that flows and flow deviations propagated by a component to another contain

information about the hypothetical deviations of flows from their expected value that are

used to drive HAZOP. Hence we thought about a possible way to modify the table used

to record specific information in the MPLD* notation to encompass also HAZOP

analysis. This was the starting point that brought us additional further enhancements and

finally to formalise the Failure Logic Analysis for System Hierarchies that is presented in

the next chapter.

86

This page is intentionally left blank

 87

Chapter Four

4Failure Logic Analysis for System
Hierarchies

This chapter presents the FLASH method, which enables the integrated assessment of

complex hierarchical designs by helping analysts to identify potential functional failures

of the system at the application level and then to systematically determine the causes of

those failures in progressively lower levels of the design. The result of the assessment is

a consistent collection of safety analyses which provides a meaningful picture of how

low-level failures are stopped at intermediate levels of the design, or propagate and give

rise to hazardous malfunctions.

FLASH is applied at two different stages of the lifecycle: a) system decomposition

& design and b) integration & verification. In the first stage it checks the evolving

design against higher-level safety requirements and supports the establishment of derived

safety requirements for each sub-system and component. In the second stage it verifies

whether the product as implemented and integrated meets its concept level and derived

safety requirements.

The chapter begins giving a broad overview of the FLASH method, continues

describing details of FLASH tables that are the core of the method, the process of

conducting a FLASH analysis by compiling FLASH tables, presents the software tool

that was developed to aid the analysis and finishes discussing some limitations.

4.1 FLASH Overview
FLASH enables the assessment of a hierarchically described system from the functional

level down to the low levels of its hardware and software implementation. To ensure

consistency of results, in FLASH, all safety analysis are performed on the same

consistent hierarchical model of the system. The method places constraints on the

notations used, and introduces some additional notation for describing levels of design.

The notation allows complex systems to be modelled as system hierarchies (see Figure

4-1, left side). At each level of the hierarchy, flow diagrams are used to describe the

architecture of subsystems or components. At plant level these flow diagrams can be, for

example, piping and instrumentation diagrams. At lower levels they can be derived from

88

any form of structured design notation used for the architectural design of software or

hardware components, for example Data-flow diagrams [Yourdon and Constantine,

1985] or MASCOT diagrams [Budgen, 1985].

S
Design Hierarchy Hierarchy of Safety

Analyses (FLASH tables)
S 1

C 1

S 2
C 2

Figure 4-1: The design hierarchy and the hierarchy of safety analyses

The system hierarchy is created during the decomposition and design phase. The process

involves the decomposition of the system into modules, and then further decomposition

of each module into several more basic modules.

In the course of safety analysis, each module of the architecture (i.e. sub-system or

basic component) is systematically examined for potential failure modes. One of the

aims, here, is to identify the failure modes that the module propagates to other modules

and the causes of those failures in lower levels of the design. The specific failure modes

of each module are identified as the outputs of the module (functions, material flows,

energy flows, data) are systematically examined for potential deviations from the

expected normal behaviour. At the highest level of the design, failure modes represent

functional failures. At lower levels they represent failures of subsystems as these can be

observed at the outputs of those subsystems. Finally at the lowest level, they represent

root failures of the basic components of the architecture.

 89

The results from the analysis of each module are recorded in a separate table, and

the analysis is completed when we have created a table for each module in the design

hierarchy. At the end of the assessment process, the results from the analysis of the

system and its constituent parts form a hierarchy of FLASH tables (see Figure 4-1, right

side). Table 4-1 illustrates a fragment from an example FLASH table for sub-system S1

in the architectural decomposition depicted in Figure 4-1. The table records the analysis

for one of the output failure modes of sub-system S1 (Output_Deviation_of_S1). It can

be seen that the analysis of a module is presented in six columns.

Sub-system S1

Failure
events Description Causes Contribut-

ing factors
Criticality, Handling
Recommendations

Summary of
FMEA Results

Output_
Deviation
_ of_S1

The output of
sub-system S1
deviates from
the design
intention.
No effect on
the system S

Failure_Mo
de_of_C1
AND
Failure_Mo
de_of_C2

Excessively
high
temperature
(T>max)

Criticality: Critical
Handling: The failure is
handled. The system detects
the failure event and
replaces the malfunctioning
S1 with S2
Recommendations:
a) Ensure that the failure
detection mechanism is
reliable
b) The acceptable failure
rate for this effect should be
λ<1e-4 (f/h)
Action required:
Analyse the error detection
mechanism for potential
failure modes

The failure
detection
mechanism is
reliable (pointer to
the relevant
analysis)

The failure rate for
this effect was
calculated to be
λ=1e-5 (i.e. within
the acceptable limit)

Thus, the
architecture of
sub-system S1 is
accepted

Table 4-1: A fragment of an example FLASH table for sub-system S1

The first column (Failure events) lists the failure events generated by the module and

propagated to other modules of the architecture. For each such output failure event, the

second column (Description) provides in natural language a description of the event and

its effect on the system. The third column (Causes) records a logical combination of

lower level failure events that occur in the subordinate level of the architectural

decomposition and cause the output failure event under examination. Table 4-1, for

example, shows that the event Output_Deviation_of_S1 can be caused by a simultaneous

failure of components C1 and C2.

The next column (Contributing factors) contains a set of qualifying conditions that

are necessary for the given output failure event to occur. Such conditions typically

represent adverse environmental conditions (temperature > max, for example) or

particular states that the system is in. The fifth column (Criticality-Handling-

90

Recommendations) contains qualitative results from the analysis of the given event.

Those results include the criticality of the event, information on whether it is handled or

not, and requirements for ensuring that the event occurs with an acceptable frequency as

well as that the system responds well to the occurrence of the event. During the

development of the design this information can be used for a preliminary assessment of

the architecture against qualitative safety requirements. Once the decomposition process

has reached the lower possible level and we know the precise implementation of the

system, we can use the reliability data contained in the FMEAs of basic (non-

decomposed) components to calculate the frequency of each output failure event in the

hierarchy. This information is recorded in the Summary FMEA results column and can be

used to take a final decision on the suitability of the proposed architecture for the system

or its constituent parts.

It is beyond the scope of this introduction to explain the precise role of the FLASH

table in the development lifecycle. Here, we will just focus on the two most significant

columns of the table, that listing the output failure events propagated by the module and

that listing the causes of those failure events. Our aim is to illustrate how it is possible to

achieve consistent linking of safety analyses within the framework of the proposed

method. Figure 4-2 illustrates fragments of the analyses for our hypothetical system S at

three successive levels of its architectural decomposition. It can be noticed that the

causes considered at a certain level of the analysis become the failure events considered

in subsequent levels. We can notice, for instance, that the output deviation of sub-system

S1 (Output_ Deviation_of_S1) appears as a cause of a functional failure at the highest

level of the analysis. At the same time, this event also appears in the intermediate level

of the analysis where it becomes the failure event under investigation. That consistent

linking between the causes and effects of failure which occurs in the vertical axis of the

hierarchy is a significant property of the proposed method. This property allows:

a) The implementation of automated checks that can verify the consistency of the

analyses;

b) The implementation of hyperlinks between tables which would allow navigation

from functional failure modes down to basic events;

c) The mechanical construction of fault trees from FLASH tables.

 91

Failure modes Causes

Functional_Failure_of_S Output_Deviation_of_S1 AND
Output_Deviation_of_S2 …

Failure modes Causes

Output_Deviation_of_S1 Failure_Mode_of_C1 AND
Failure_Mode_of_C2 …

Failure modes Failure rate (λ[1/h])

Failure_Mode_of_C1 6.3e-7

S

Design Hierarchy Hierarchy of Safety
Analyses (FLASH tables)

S 1
C 1

S 2
C 2

Figure 4-2: Relationship between design hierarchy and hierarchy of FLASH tables

Figure 4-3 illustrates the fault tree that can be constructed for the high level functional

failure of S from the information contained in the FLASH tables of Figure 4-2. It is

apparent that this fault tree can be mechanically generated by simply traversing the

FLASH tables and by progressively substituting the causes of failure at one level of the

design with the corresponding failure modes at lower levels. To enable the automatic

construction of fault trees in the framework of FLASH, we currently extend an existing

algorithm for the mechanical synthesis of fault trees [Papadopoulos and McDermid,

1999b] which already operates on structural models of the system and tabular

representations of failure behaviour. This algorithm is at the moment implemented in an

experimental tool that supports hierarchical modelling of systems and the synthesis of

fault trees for those systems. Figure 4-4 provides a distant view of an example fault tree

that has been mechanically synthesised using this tool.

Output_
Deviation_of_S1

AND

Functional_
failure_of_S

AND

Failure_Mode_
of_C2

Output_
Deviation_of_S2

Failure_Mode_
of_C1

Figure 4-3: The top-level fault tree for the event “Functional_failure_of_S”

92

Figure 4-4: An example of a mechanically generated fault tree

It is important to point out that the synthesis algorithm would not be able to generate

such fault trees if there are any inconsistencies among the safety analyses. In that case,

the algorithm would simply point out the inconsistencies. The resultant fault trees,

therefore, effectively link in a consistent manner the results from the various analyses to

each other and back to the high level FLASH table for the overall system, and hence

guarantee the consistency of results. At the end of the assessment process, those results

(FLASH tables and synthesised fault trees) form an integrated collection of safety

analyses which provides a consistent and meaningful representation of anticipated

scenarios of the propagation or mitigation of failure in the system.

4.2 FLASH method: tables
FLASH analysis follows the decomposition and design of the system and produces a

hierarchy of tables alongside the hierarchy of modules (see Figure 4-5). These tables

contain the assessments of peer modules (i.e. functions, systems or components) in the

system hierarchy. Whilst modules propagate flows, tables propagate events which may

represent different entities according to whether the module bears the analysis of a

function, a system or a component. Before we reach the lowest level of decomposition,

events are failures as they appear at the output of the module propagating them, that is

flow deviations on outgoing flows. At the lowest level of decomposition they represent

internal malfunctions of basic components in the design.

 The table for a function focuses on functional failure modes (i.e. loss of function,

provision of function when not required, incorrect operation), associates with them a

criticality level, lists their causes and where risk reduction is required. On the basis of

the risk reduction needed, recommendations and derived safety requirements for the

 93

architecture that achieves the function are given. Figure 4-6 a) summarises fields in a

FLASH table used to assess a function.

The table for a system focuses on system failure modes. For each failure mode that

can potentially be propagated by the system, it identifies causes and where risk reduction

is required. On the basis of this risk reduction, derived safety requirements for each

component are recorded. Figure 4-6 b) summarises fields in a FLASH table used to

assess a system.

The table for a component focuses on component failure modes propagated to other

components or systems. Causes are identified and for those that are failure modes of that

component, reliability data (i.e. failure rates, repair rates, failure probability on demand

etc.) and information about the lifecycle to be used for common cause failures analysis

are recorded. For the causes that are external events, i.e. input or primary events, the

module originating them is identified in the last part of the name of the failure mode

itself, the tag. Figure 4-6 c) summarises fields in a FLASH table used to assess a

component.

fun
cti

on

sy
ste

m 1

co
mpo

ne
nt

3

co
mpo

ne
nt

2

co
mpo

ne
nt

1

co
mpo

ne
nt

4
co

mpo
ne

nt
5

tab
le

1.1

tab
le

2.1

tab
le

2.
3tab

le
2.2

tab
le

3.
3

tab
le

3.1 tab
le

3.2

hierarchy of modules hierarchy of tables

Figure 4-5: Hierarchy12 of modules and tables

12 This is a very generic decomposition. We do not mean this decomposition to

accommodate any sort of systems

94

A single generic table template is proposed for these three analyses. The information

recorded inside the table identifies whether it refers to a function, a system or a

component.

Functional
Failure Modes

Inputs and
Secondary events
(functional failures)

Fu
nc

tio
n

a)

Fields used for the analysis of a function
1) Effects (i.e. Functional failure modes)

2) Causes

3) Criticality

4) Description

5) Justification, design recommendation and

derived safety requirements

6) FMEA results

System
Failure Modes

Inputs and
Secondary events

(System or
Component failures) Sys

tem

b)

Fields used for the analysis of a system
1) Effects (i.e. Failure modes propagated)

2) Causes

3) Description

4) Justification, design recommendation and

derived safety requirements

5) FMEA results

Com
po

ne
nt Component

Failure Modes
Inputs and

Secondary events
(System or

Component failures)

c)

Fields used for the analysis of a

component
1) Effects (i.e. Failure modes propagated)

2) Causes

3) Description

4) Justification, design recommendation and

derived safety requirements

5) Component’s failure modes & reliability

data (given by the manufacturer)

Figure 4-6: Fields in a FLASH table for a function, a system and a component

4.2.1 Events

The term event is used to designate a generic failure mode (or a success mode) that is

propagated by a module (i.e. function, system or component) to another and any of its

causes, either internal or external. Events are unique entities inside a FLASH analysis,

consequently two failure modes of the same type propagated by two identical modules

 95

are actually two different events. Events may represent malfunctions, module failure

modes, the intended flow delivered by the module, its deviations from the correct value

or tell whether data are delivered on time (i.e. early or late), not delivered at all or

delivered when they were not supposed to be delivered. Events are used to link tables

across the hierarchy. At the functional level events propagated by a table are functional

failure modes. At the architectural level events propagated by a table are system failure

modes. At the component level events propagated by a table are component failure

modes. Events have their own syntax illustrated in Figure 4-7.

Event syntax

Events are identified by two pieces of information: an entity and a tag. The syntax is:

<Event>:= < Entity>.<Tag>

The tag identifies the module propagating the event (e.g. the name of the component or

an acronym). The entity characterises the event. The entity may assume various

meanings. In the FHA, it represents functional failure modes:

< Entity>:= <Functional failure Mode> (e.g.: OMISSION OF FUNCTION X)

In HAZOP, an entity consists of two pieces of information: a flow and a deviation that

can be associated with that flow.

<Entity>:= <Deviation>.<Flow> (e.g.: LESS.OUTPUT PRESSURE)

In FMEA, an entity represents a component failure mode.

<Entity>:= <Component failure mode> (e.g.: SENSOR SHORT TO GROUND)

Figure 4-7: Syntax for events

Whether events represent functional, system, component failure modes or the intended

value at the right time, they can be ranked using the taxonomy in Figure 4-8. Events are

classified into three classes: events that are propagated by modules i.e. Outgoing Events

96

and are also called Effects; the ones that enter the component, i.e. Incoming Events; and

the ones that are generated inside a module, i.e. Generated Events.

Outgoing events can be propagated either towards modules at the same hierarchical

level, (i.e. to the same level) or to modules at a higher hierarchical level, (i.e. enclosing

level).

Incoming events can either be input or secondary events. Input events are

differentiated from secondary events since they represent deviations of the variables (e.g.

flows, data etc.) that are processed by the module which the table refers to (i.e. the

module was designed to process those variables). Secondary events represent deviations

of flows supporting the function the module has to achieve. They provide what the

module needs to carry out its task, e.g. power supply. Both input and secondary events

may come from tables of the same hierarchical level, i.e. from same level13, or from

tables belonging to the higher hierarchical level, i.e. enclosing level.

Events

Input

Primary

Secondary

Effects

from the same level

from the enclosing level

from the enclosing level

from the same level

basic

further developed

to the same level

to the enclosing level

O
ut

go
in

g
In

co
m

in
g

G
en

er
at

ed

Figure 4-8: Taxonomy of events

13 We found that the distinction between Input (and Secondary) events from the same

level and from the enclosing level helps when parsing tables for the construction of
fault trees. The algorithm may either follow, at first, links that come from the same
level and then from the enclosing (or the other way round).

 97

Events generated inside a module boundary are called Primary events. When the module

represent a basic component (i.e. not further decomposed) they are called Basic events.

For a basic event it is generally possible to give reliability data. When the module

represents a system that is further decomposed into sub-modules or components they are

called Primary event further developed. Causes of primary events further developed are

investigated by analysing enclosed modules. Figure 4-9 summarises how effects,

primary, secondary and input events relate each other. They refer to the highlighted

module.

Effects to the same Level

Incoming Events:
Outgoing Events:

Generated Events:

Input & Secondary events
from the enclosing Level

Input & Secondary events
from the same Level

Effects to the enclosing level

Primary Events further
developed

Basic Events

Figure 4-9: Incoming, Outgoing and Generated

98

4.2.2 Areas inside a table

FLASH tables are divided into three main areas that are used: to analyse outgoing events,

to list incoming events and generated events (see Figure 4-10). The Outgoing event area

is for the analysis of events propagated towards modules of the same or the enclosing

level. The Incoming event area lists input and secondary events. The Generated event

area lists primary events and records information about basic events.

Outgoing event area

Incoming event area

Generated event area

Table header

Figure 4-10: Main areas of a FLASH table

4.2.3 Outgoing event area: Effects

When referring to a module, events leaving the boundary are called Effects. A module

transforms primary, secondary and input events into other events that are propagated.

This may happen, for instance, when a timing error enters from an input and a value error

is delivered by the output, or when a value error enters a module, but it is detected by a

voting logic mechanism that allows the module to deliver a “good” event. The relation

that models the transformation of events inside a module is written into the Causes

Column of the FLASH table and (if it is made by only AND and OR gates) obeys the

syntax in Figure 4-11. In the case additional gates are required to model the

 99

transformation (e.g. XOR, N out of M or dynamic fault tree gates), more composition

rules have to be added to the ones listed here. When an event leaves a module, it inherits

the tag that identifies the father. The tag can be either the full name of the module or an

acronym.

<expression> :: = <term> | <composition>

<composition> :: = <conjunction> | <disjunction>

<conjunction> :: = <term> "AND" <expression>

<disjunction> :: = <term> "OR" <expression>

<term> :: = <event> | "(" <expression> ")"

<event> :: = see Figure 4-7

Figure 4-11: Syntax of the Causes column of a FLASH table

For the construction of the hierarchy of tables, we found it useful to divide effects into

two tables. Effects that are propagated directly towards the boundary of the enclosing

module (i.e. to the higher hierarchical level) that are analysed in the table in which the

first column is Event to a higher level; and effects that are propagated towards other

enclosed modules, which appear in the table in which the first column is Event to the

same level. Both these tables have six columns (see Table 4-2).

 From left to right, the Effects column lists events propagated that have to be

analysed. The Causes column records the logical combination of events (i.e. incoming

and generated events) which cause the Effect. The Description column gives details of

consequences of the event propagated. The Criticality column contains the criticality of

the Effects, however it is used only at the functional level. The 5th column

(Justifications, recommendations, derived safety requirements …etc) contains the result

of the safety assessment of the proposed model of the module (i.e. against safety

requirements). If the design satisfies such constraints, then the system decomposition

proceeds, i.e. each sub-module is further decomposed. If the design is not satisfactory, a

decision is taken on whether to modify the model of this module or the model of the

enclosing module. In addition the table contains recommendations and derived safety

requirements to develop enclosed modules. The FMEA results column is used in the

integration and verification phase, that is when the decomposition process has reached

100

the lower possible level and rates becomes available for most of the basic events. At this

stage, fault trees can be constructed for events propagated by parsing causes columns in

FLASH tables. Summarised results from the probabilistic calculations of these fault trees

are recorded in the FMEA results column. This information is then used to take a final

decision on the suitability of the proposed model for the module.

Effects
Events to the same
level

Causes Description Criti-
cality

5th column
Justification,
Recommendations
Derived Safety
Requirements

Verifica-
tion
(FMEA
results)

Event_10

Event_1 AND/OR
Event_2
AND/OR Event_5
AND (Event_6 OR
Event_7) {AND/OR
…}

Description
of the
Event_10 and
its
consequences

Analysis of the
Event_10 and
derived safety
requirements for
the modules
causing this event

Event_10
likelihood,
as calculated
from
comp.’s data
sheets

Event_20

Event_1 AND/OR
Event_3 AND
(Event_6 OR
Event_7 OR
Event_11) AND
(Event_6 OR
Event_7 AND
Event_11) {AND/OR
...}

Description
of the
Event_20 and
its
consequences

Analysis of the
Event_20 and
derived safety
requirements for
the modules
causing this event

Event_20
likelihood,
as calculated
from
comp.’s data
sheets

…

Effects
Events to the
enclosing level

Causes Description Criti-
cality

5th column
Justification,
Design
Recommendations
Derived Safety
Requirements

Verifica-
tion
(FMEA
results)

Event_30

Event_2 AND/OR
Event_4 OR
Event_6 OR
Event_7 AND/OR
Event_11 AND/OR
Event_14 {AND/OR
…}

Description
of the
Event_30 and
its
consequences

Analysis of the
Event_30 and
derived safety
requirements for
the modules
causing this event

Event_30
likelihood,
as calculated
from
comp.’s data
sheets

Event_40

Event_6 AND/OR
Event_7 AND/OR
(Event_6 OR
Event_7AND
Event_11) AND/OR
Event_12 AND/OR
Event_15 {AND/OR
…}

Description
of the
Event_40 and
its
consequences

Analysis of the
Event_40 and
derived safety
requirements for
the modules
causing this event

Event_40
likelihood,
as calculated
from
comp.’s data
sheets

…
Table 4-2: Effects to the same and enclosing level

 101

Table for groups of events

Sometimes the expression in the Causes column of a FLASH table is quite complicated.

To simplify it we found it useful to take out of that column those groups of events that

repeat in different rows (or that may have particular meanings). See, for example, groups

of events that are highlighted in bold italic characters in Table 4-2: they can be taken out.

The group of events “Event_6 OR Event_7” appears in rows for events: Event_10,

Event_20 and Event_30. In similar cases to make the table more neat and tidy, we

suggest the substitution of repeated groups of events with one single event in this case it

is called GOE_1. This new event and its causes are described into another table that is

called Group of events table. Table 4-3 is an example, it has an identical structure to the

effects table. A similar thing is done for the other group of events in Table 4-2 i.e.

“Event_6 OR Event_7 AND Event_11”, which is called GOE_2. After substituting

groups of events that we have identified, Table 4-2 appears as in Table 4-4.

Group of events Causes Description Critica
lity

5th column,
Justification, Design
Recommendations,
Derived Safety
Requirements

FMEA

GOE_1 Event_6 OR
Event_7

Description of the
GOE_1 and its
consequences

Analysis of the
GOE_1 and derived
safety requirements
for the modules
causing this event

GOE_2
Event_6 OR
Event_7AND
Event_11

Description of the
GOE_2 and its
consequences

Analysis of the
GOE_2 and derived
safety requirements
for the modules
causing this event

…
Table 4-3: Groups of events written for Table 4-2

4.2.4 Incoming event area: Input and Secondary events

Input and Secondary events are the only events that enter the module boundary. Each of

them represents a flow with one of its deviations. Input events are differentiated from

secondary events. Whilst Input events are processed by the module, Secondary events

provide the module with what it needs to process input events. For example, take an

Electronic Controller that receives signals from sensors, sends signals to actuators and

needs a power supply to operate. Signals coming from sensors with any of the deviations

that applies to them (i.e. omission, commission, early late, etc.) represent Input Events,

102

whilst the power supply with deviations from its expected value is a secondary event.

Input and Secondary events are listed into two tables differentiating whether they come

from modules on the same or the enclosing level.

Effects Causes Description Criti-
cality

5th column,
Justification, Design
Recommendations,
Derived Safety
Requirements

Verifica-
tion

(FMEA
results)

Event_10
Event_1 AND/OR
Event_2
AND/OR Event_5 AND
GOE_1) {AND/OR …}

Description
of the
Event_10 and
its
consequences

Analysis of the
Event_10 and derived
safety requirements
for the modules
causing this event

Event_10
likelihood,
as
calculated
from
comp.’s
data sheets

Event_20

Event_1 AND/OR
Event_3 AND (GOE_1
OR Event_11) AND
GOE_2 {AND/OR ...}

Description
of the
Event_20 and
its
consequences

Analysis of the
Event_20 and derived
safety requirements
for the modules
causing this event

Event_20
likelihood,
as
calculated
from
comp.’s
data sheets

…

Effects Causes Description Criti-
cality

5th column,
Justification, Design
Recommendations,
Derived Safety
Requirements

FMEA

Event_30

Event_2 AND/OR
Event_4 AND/OR
GOE_1 AND/OR
Event_11 AND/OR
Event_14 {AND/OR …}

Description
of the
Event_30 and
its
consequences

Analysis of the
Event_30 and derived
safety requirements
for the modules
causing this event

Event_30
likelihood,
as
calculated
from
comp.’s
data sheets

Event_40

Event_6 AND/OR
Event_7 AND/OR
GOE_2 AND/OR
Event_12 AND/OR
Event_15 {AND/OR …}

Description
of the
Event_40 and
its
consequences

Analysis of the
Event_40 and derived
safety requirements
for the modules
causing this event

Event_40
likelihood,
as
calculated
from
comp.’s
data sheets

…
Table 4-4: Effects written using Groups of Event, defined in Table 4-3

4.2.5 Generated Events area: Primary events

Events generated inside the module boundary are called Primary events. There are two

types of primary events: Basic events which are not developed any further, and Primary

events further developed which are propagated by enclosed modules. When the module

is a basic component, it is often possible to provide failure rates for its basic events.

 103

When the module is further decomposed into other modules, its failure modes are the

results of failures in its enclosed sub-modules or components, hence the analysis has to

go further, investigating lower levels.

Basic Events

Basic events are component failure modes for which causes are not investigated any

further. Often it is possible to collect reliability data for these events from the

manufacturer of the component, but in some other cases (e.g. some software) it is not

possible. The table for basic events is divided into two sub-areas. The upper part is used

to collect Reliability data, the lower part to collect Lifecycle information, see Table 4-5.

Reliability data (i.e. failure and repair rates, mean time to failure, failure probability on

demand etc.) are calculated from manufacturer’s data sheets and adapted to the

environment where the component operates (i.e. temperature, vibrations, magnetic fields,

humidity etc.). Lifecycle information is additional data regarding the component

generating the event. It records information about the whole life of the component, going

from the design, through the production, installation, testing, maintenance, and the

environment where the component operates. It is collected from various sources

including manufacturer, designers, experienced people working in maintenance and

testing of similar installations and weighted using a multiple criteria decision analysis

methods such as that in [Prasad, 1998]. Lifecycle information is actually a list of defects

or errors that may occur during the component lifecycle that are likely to cause the

component to fail in one of its failure modes. Defects can occur in the manufacturing

process, in the materials employed or in the assembly line; errors can be in

specifications, architecture, design, choice of materials, installation, test, operation,

maintenance, etc. The list of defects and errors is supposed to be exhaustive14, span the

whole lifecycle and divide it into mutually independent categories called Lifecycle

Categories. Lists in Table 2-12, Table 4-5 (taken from [SAE-ARP 4754, 1996]) and

Table 5-1 obey such constraints. Lifecycle information is used to identify couplings

among events and to estimate common cause failure probabilities15. For each ith

Category of the lifecycle two data are given: the Percentage %i and the Coupling Code.

The Percentage “%i” represents the contribution of the ith lifecycle Category to the

likelihood of the basic event X. For example, take a generic component, manufacturer’s

14 In practice it can never be exhaustive, but it should be as extensive as practical.
15 The issue of Common Cause Failure analysis is dealt in details in Chapter 5.

104

data show that the likelihood of one of its failure mode to be due to errors during

maintenance is low e.g. below 1%. They justify this by saying that there is a very simple

procedure that operators rarely get wrong. However the environment where the

maintenance take place is quite harsh, according to experienced people working in

maintenance of similar equipment and they say that this increases the likelihood of errors

if compared with normal situations. Similar considerations are made for all other

lifecycle categories. The safety analyst after hearing all the different viewpoints

associates numbers to each of the lifecycle categories. Obviously the sum of all the

Percentage “%i” has to be 100. It is not our intention to explain any formal method to

arrive to those numbers, we just say that there are methods for the evaluation and

consideration of the expert judgement that can be employed for this task [Prasad, 1998].

 The Coupling Code specifies the actual source of the coupling. For example, take a

group of valves of the same type. Several lifecycle categories may be responsible for

failure modes in these valves, maintenance procedures is one of these. If it is known

(i.e. from specifications) that the same maintenance procedure is used for the

maintenance of all these valves, then failure modes of these valves will have the same

coupling code for the Lifecycle Category “Maintenance Procedures”. That coupling code

is the identifier of that specific maintenance procedure.

 Chapter 5 explains in details how FLASH uses coupling codes and lifecycle

categories for common cause failure analysis.

Primary events further developed

Primary events further developed are generated by components or sub-modules of the

module under examination, i.e. this module is decomposed into more units which

generate these events. Reliability data for these events become available only when the

system hierarchy has been decomposed into sufficient detail that there are sufficient data

to build and evaluate fault trees with these events at the top.

4.2.6 Table template

In the FLASH method the same table template is used for the analysis of any module at

any level in the system hierarchy. The template we propose for such analysis is

presented in Table 4-6. The header identifies the module’s instance, type, periodicity (in

case it represents a real time software function), and the acronym that is used to identify

the module in the hierarchy (i.e. tag). Areas for Outgoing events, Incoming events and

Primary events follow below the header. However not all the fields of the table are

 105

always used. The criticality column, in the outgoing event area, is considered only when

the module represents a high level function, and incoming and generated events areas

may not be used for some components.

Having said that, we add that the layout of a FLASH table is not strict, it can be

modified to suit needs that may arise in the analysis of some systems. For instance, an

additional column in the area for outgoing events may be necessary when causes of an

event, which is propagated by the module, are function of a state (or mode) of the

system. The additional column will made it possible to distinguish among different

failure mechanisms that propagate the same failure mode but in different states of the

system. If we do not have an additional column, which identifies the state in which the

failure mechanism applies, the state has to be considered somewhere else, for instance in

the causes column e.g. by using conditional or dynamic gates, however complicating the

expressions.

Basic Events

 Event_1 Event_2 Event_3 …
Failure Rate λ[1/h] 10-4 - - …
Repair Rate µ[1/h] - - - …

Mean Time to Failure MTTF [h] - - - …
Failure Probability on demand - 10-3 10-4 … R

el
ia

bi
lit

y
 D

at
a

Mission time for the system [h] 50 50 50 …

 Coupl.
Code

% Coupl.
Code

% Coupl.
Code

% Coupl.
Code

%

 Design Architecture DCA1 2 DCA1 8 DCA2 4 … …

Concept and
Design

Technological
Materials Equipment
Type

 DTM1 3 DTM1 7 DTM2 2 … …

 Specifications DS1 1 DS1 6 DS2 7 … …
 Manufacturer MM1 3 MM2 5 MM2 3 … …

Manufacturing Procedures MPD 1 5 MPD 2 4 MPD 2 6 … …
 Process MPP 1 1 MPP 2 8 MPP 2 4 … …

Installation/ Fitter IIF1 3 IIF1 5 IIF1 7 … …
Integration Procedures IIP1 6 IIP2 4 IIP3 6 … …
And Test Location IIL1 2 IIL2 6 IIL3 5 … …

 Routing IIR1 5 IIR2 7 IIR3 4 … …
Operation Staff OS1 4 OS1 8 OS2 7 … …

 Procedures OP1 6 OP1 6 OP2 4 … …
Maintenance Staff MS1 7 MS1 2 MS2 2 … …

 Procedures MP1 8 MP1 3 MP2 6 … …
Test Staff TS1 6 TS2 1 TS3 5 … …

 Procedures TP1 8 TP2 3 TP3 4 … …
Calibration Staff CS1 7 CS2 5 CS3 5 … …

 Procedures CP1 6 CP2 1 CP3 5 … …
 Mechanical and

Thermal
 EMT1 5 EMT2 3 EMT3 4 … …

Environmental Electrical and
Corrosion

 EEC1 4 EEC2 6 EEC3 5 … …

Li
fe

cy
cl

e
C

at
eg

or
ie

s

 Chemical and
miscellaneous

 ECM1 8 ECM2 2 ECM3 5 … …

Table 4-5: Basic Events in a FLASH table

106

4.2.7 Programmable electronic modules

TABLE HEADER
Instance = <Name> Component Type = <Name> Periodicity = <Periodicity> Tag = <Name>

OUTGOING EVENTS
EFFECTS

Same level Causes Description Criticality
5th Column

Justification, Design
Recommendations, Derived

Safety Requirements

Verification
(FMEA results)

NA | <Event> NA | <expression> NA | <description> NA | <description> NA | <description>
{ <Event>} {<expression>} {<description>} {<description>} {<description>}

Enclosing Level Causes Consequences Criticality
5th Column

Justification, Design
Recommendations, Derived

Safety Requirements

Verification
(FMEA results)

NA | <Event> NA | <expression> NA | <description> NA | <description> NA | <description>
{ <Event>} {<expression>} {<description>} {<description>} {<description>}

GROUPS of Events

Group of Events Causes Consequences Criticality
5th Column

Justification, Design
Recommendations, Derived

Safety Requirements

Verification
(FMEA results)

NA | <Event> NA | <expression> NA | <description> NA | <description> NA | <description>
{ <Event>} {<expression>} {<description>} {<description>} {<description>}

INCOMING EVENTS
INPUTS
Same level Enclosing level
NA | <Event>
{ < Event>}

NA | <Event>
{ < Event>}

SECONDARY EVENTS
From the Enclosing Level From Modules of the same level
NA | <Event> NA | <Event>
{ < Event>} { < Event>}

GENERATED EVENTS
PRIMARY EVENTS
Primary Events Further developed
NA | <Event>
{ <Event>}
Basic Events

 Reliability data <Event> <Event> <Event> { <Event>}
 Failure Rate λ[1/h] - - -
 Repair Rate µ[1/h] - - -
 Mean Time to Failure MTTF

[h]
- - -

 Mission time [h] - - -

Lifecycle
Category

Coupl.
Code

% Coupl.
Code

% Coupl.
Code

% Coupl.
Code

%

 Design Architecture … … … … … … … …
Concept and Design Technological Materials

Equipment Type
 … … … … … … … …

 Specifications … … … … … … … …
 Manufacturer … … … … … … … …

Manufacturing Procedures … … … … … … … …
 Process … … … … … … … …
 Fitter … … … … … … … …

Installation/ Integration Procedures … … … … … … … …
And Test Location … … … … … … … …

 Routing … … … … … … … …
Operation Staff … … … … … … … …

 Procedures … … … … … … … …
Maintenance Staff … … … … … … … …

 Procedures … … … … … … … …
Test Staff … … … … … … … …

 Procedures … … … … … … … …
Calibration Staff … … … … … … … …

 Procedures … … … … … … … …
 Mechanical and Thermal … … … … … … … …

Environmental Electrical and Corrosion … … … … … … … …
 Chemical and

miscellaneous
 … … … … … … … …

Table 4-6: Template for a FLASH table of a generic module

 107

Programmable electronic modules are those modules that contain software. They may

represent control units (made up of processors, memories, input and output circuits),

Programmable Logic Controllers (PLC), smart sensors and smart actuators. In addition

to hardware failures, these modules can suffer from software failures. Software failures

are caused either by failure of the hardware upon which the software runs (e.g. memory

and processor errors) or by flaws in software. The problem with the analysis of

programmable electronic modules is due to the complexity of the hardware and the

difficulty of mapping the software onto the hardware. The mapping depends on many

factors, amongst these the compiler used to create the binary executable file and the

chipset on which the binary file runs. In some cases the software dynamically allocates

processes and variables to various hardware resources e.g. often variables are

dynamically allocated in memories. Hence, a detailed mapping of the software onto

hardware can be very complex.

 The study of a system with both software and hardware components is usually

performed considering all interdependencies. The analysis of programmable electronic

modules in the FLASH method has a similar approach. A system is hierarchically

decomposed regardless of the fact that functions are achieved by software, hardware, or

by a mix of both of them. The decomposition proceeds until failure events propagated by

a component are modelled as a combination of hardware and software basic events.

Figure 4-12 shows the model of a programmable electronic module of such a kind. It

encloses several sub-modules: input, output, processor, and the software. Input includes

primary events that describe the failure and success of input circuits and registers.

Output includes primary events that describe the failure and success of output circuits

and registers. Processor contains primary events that describe the failure and success of

processors and memories. Software contains primary events that account for

requirements, specifications and implementation flaws of the executable file. Arrows

that connect input, output and processor to the software module in Figure 4-12, represent

success and failure events that can be transformed inside the programmable electronic

module by the software. For example, the failure of one out of n redundant processors

can be recovered by suitable software voting logic. Arrows that connect the software

module to the output module represent success and failure events that can be transformed

inside the output module by a suitable hardware. For instance the output module may

have implemented hardware voting logic able to recover from some software failures.

Arrows that connect input, output, software and processor straight to effects, represent

108

success and failure events that cannot be transformed any further inside the

programmable logic module, e.g. undetectable software flaws, some requirements and

specification errors, or register failures in the output module. They result in the

propagation of failure events. All the events and combination of events that cause the

same effect are linked by “OR” gates in the cause column of the relevant FLASH table.

A full understanding of the system and how it works is necessary to build the model of

the module and the corresponding FLASH table.

Input

(Input
Circuits and
registers)

Output
module

(Output
Circuits and
registers)

Processor

(Processors and
Memories)

Software

(Requirements,
Specifications
and Software)

Detectable or
Recoverable

events

Undetectable and
Unrecoverable events

Input
events Effects

Secondary events
(Power Supply)

Figure 4-12: Propagation of events in a programmable electronic component

4.3 FLASH method: process
The previous section explained the statics of the FLASH method, that is the system

hierarchy, the hierarchy of the safety analysis, and the FLASH table with all its entries.

This section explains the dynamics of the FLASH method, that is the process of

conducting a FLASH analysis by completing FLASH tables. First of all we explain how

FLASH supports and drives the development of the system design. Then, we consider

the ways in which FLASH supports the integration of different analysis and makes

 109

possible overall system verification. A simple case study is used to show the process in

practice.

4.3.1 Decomposition and Design

The FLASH process in the decomposition and design stage of the lifecycle is split into

two phases, the first comes before the design of the internal model of the module takes

place, the second comes after the design stage. During the first phase (see Figure 4-13),

the analyst identifies events that are propagated by the module and consequences of such

events on the whole system and environment. This information is stored in the Effects

and the Description columns of the FLASH table. This preliminary part of the process

makes safety analysts to focus on the severity of events propagated so that they can issue

safety-related recommendations to designers for the development of the internal

architecture of the model. These recommendations are written into the upper part of the

5th column. Once designers have produced the design of the module, safety analysts

assess it by checking whether it meets the recommendations they gave before. For such

analysis they consider hypothetical failure modes that may be propagated by components

and sub-modules and write the mechanism underneath the propagation of failures in the

causes column, in terms of generated, inputs, primary events and logical operators. The

equation in the causes column is similar to the ones in FPTN [Fenelon et al., 1994], but

in addition to the FPTN notation, in FLASH, the equation is later analysed and results

recorded into the 5th column. Such analysis may bring safety analysts to accept the

design proposal or to refuse it, giving some justifications. To help analysts in their

decision making, the 5th column has been divided into sub headings: Detection,

Recovery, Maximum accepted likelihood for critical events in the causes column, and

Recommendations. Basically, the 5th column reports information on whether it is

possible to detect or recover from the event propagated, the maximum accepted

likelihood for critical events in the causes column and recommendations, either for

choosing suitable components to place inside the module or for developing sub-modules.

Table 4-7 shows how the 5th column is partitioned.

 One of the concerns with FLASH is about the amount of information stored in the

5th column. Such information could be spread on multiple columns simply by changing

the layout of the table. However, we prefer to keep this arrangement since during the

integration and verification stage it is easier to compare recommendations and derived

110

safety requirements with what is actually achieved in the real system and recorded into

the FMEA results column that is the 6th column.

Events propagated
(Effects) and description

columns are written

Incoming and Generated
Events for the module

are written

The model for the module is
proposed

The Causes column of
the FLASH table for the

module is written

The 5th column is
completed

(i.e. Justification,
Reccomandation,

Derived safety
requirements)

Recommendations for the
model of the module
are written in the 5th

column of the FLASH table

Before the
design of

the internal
model of the

module

After the
design of

the internal
model
of the

module

Figure 4-13: Process of creating a FLASH table

Effects … 5th Column (Justifications, Recommendations,
derived safety requirements,)

Verification
(FMEA
results)

Event
propagated …

Before design
Recommendations
…
Effect max accepted likelihood
…
After design
Detection
…
Recovery
…
Recommendation
…
Max accepted likelihood for critical causes.
…

… … … …
Table 4-7: The 5th column is divided into many areas

 111

The causes column

The expression modelling the transformation of events that goes into the Causes column

of a FLASH table is constructed from the knowledge of the internal design of the

module, of flows exchanged among its components and sub-modules, and their failure

modes. Two approaches exist to write that equation. In the first approach, the fault tree

for each effect is first constructed, then reduced to a logical expression, and finally this

expression is written in the Causes column. The knowledge of the layout of the module,

its components and sub-modules is used to draw the fault tree as suggested in [Vesely,

1981]. This approach is suitable for any modules of the system hierarchy. In the second

approach, the correlation among causes and effects is written without the previous

construction of the fault tree. This requires more effort from analysts since they have to

make the effort to do all the steps for the construction of the fault tree before writing the

actual expression. However this second approach can be much faster for experienced

analysts than the first, and we recommend it for simple modules. These two approaches

are shown for the system in Figure 4-14, which is made by four components and a

control unit. These four components are divided into two groups. Components A1 and

B1 make Line 1, components A2 and B2 make Line 2. Only one line is needed for the

system to work. The task of the system is to regulate a flow going from left to right.

 In the first approach the tree with the effect No.Flow.Module as top event is defined

first, see Figure 4-15. Then it is reduced to a logical expression made up of events,

logical operators (e.g. “AND”, “OR”) and parentheses, finally it is written into the

Causes column like in Table 4-8 and Table 4-9.

In the second approach, causes of the critical effect “No.Flow.Module” are written

as combinations of four incoming events (i.e. No.Flow.Tank, C_.Stop_Signal.Stop,

O_.Start_Signal.Start, No.Power.Busbar) and two Groups of Events (GOE)

(No.Flow_Line_1.GOE and No.Flow_Line_2.GOE) see Table 4-8. Incoming events

describe the lack of incoming flow from the tank i.e. No.Flow.Tank, the omission or

commission of start and stop signals i.e. O_.Start_Signal.Start, C_.Stop_Signal.Stop and

the lack of power from the bus bar i.e. No.Power.Busbar. Groups of events describe the

failure of line one (i.e. valves A1 and B1) and line two (i.e. valves A2 and B2). Table

4-9 shows that Causes of No.Flow_Line_1.GOE are component B1 generated events i.e.

No.Flow.B1, or input events from the controller i.e. No.Signal_B1.Ctr. Similarly,

component A1 may fail because of its generated events i.e. No.Flow.A1 or because of the

112

lack of the signal from the controller i.e. No.Signal_A1.Ctr. In conclusion causes of

No.Flow_Line_1.GOE can be written as:

(No.Flow.B1 OR No.Signal_B1.Ctr) OR (No.Flow.A1 OR No.Signal_A1.Ctr)

With similar reasoning it is possible to write causes for the second group of event,

No.Flow_Line_2.GOE:

(No.Flow.B2 OR No.Signal_B2.Ctr) OR (No.Flow.A2 OR No.Signal_A2.Ctr)

These expressions are then written into the Causes column of the Group of Events table,

see Table 4-9.

Redundancy of information

The hierarchy of FLASH tables may contain redundant information. For instance,

incoming events for a module may appear both as causes in the table of that module and

as causes in the table for the enclosing module. Once the hierarchy of tables is parsed for

the fault tree construction these events are likely to originate two identical branches in

the same fault tree. However, this is not a problem since cut set analysis will eliminate

the duplication, additionally the algorithm for fault tree construction can be made

sophisticated enough to draw fault trees avoiding repeating branches.

B1A1

B2A2

Control

Module

No.Flow.ModuleNo.Flow.Tank

O.Start_Signal.Start

No.Power.BusBar

No.Flow.A1

No.Flow.A2

No.Flow.B1

No.Flow.B2

N
o.Signal_A2.C

tr

N
o.Signal_A1.C

tr

N
o.Signal_B1.C

tr

N
o.Signal_B2.C

tr

Line 1

Line 2

No.Flow_Line_1.GOE

No.Flow_Line_2.GOE

C.Stop_Signal.Stop

Figure 4-14: Model of fault tolerant flow controller

 113

OUTGOING EVENTS
Effects
Events to
the same
level

Causes Description Critica-
lity

5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Verifica-
tion
(FMEA)

No.Flow.M
odule

No.Flow.Ta
nk
OR
O_.Start_S
ignal.Start
OR
C_.Stop_Si
gnal.Stop
OR
No.Power.
Busbar
OR
No.Flow_Li
ne_1.GOE
AND
No.Flow_Li
ne_2.GOE

No flow of
fuel from
the flow
controller
to the
engine.
The engine
cannot
start. No
electric
power is
provided

It can be
caused by
an
omission of
the start
signal, a
commissio
n of the
stop signal,
lack of fuel
from the
tank or
because
there is no
flow in the
two
possible
paths that
can be
activated
by the
Controller

Cat.

Before design

Recommendations
The failure of the module cannot be
handled. A fault tolerant architecture
is needed to prevent that single
failures in any of the valves cause a
system failure
The module has to be built with
redundant components.

Effect max accepted likelihood
10-4 on demand

After design

Detection
A flow sensor after and external the
module

Recovery
Possible for failure of one line

Recommendation
The second flow line has to be
uncoupled with the first.
CCF analysis is required.

Max accepted likelihood for
critical events in the Causes
column.
λ (No.Flow.Tank) < 10-7 h-1
P(No.Signal.Sensor) < 10-5
demand
P(O_.Start_Signal.Start) < 10-5
demand
P(C_.Stop_Signal.Start) < 10-5
demand
λ (No.Power.Busbar) < 10-7 h–1

It will
be
used
during
the
verifica
-tion
stage

Table 4-8: Causes of the critical effects No.Flow.Module

114

Group of events Causes Description Critica-lity
5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Verifica-
tion
(FMEA)

No.Flow_Line
_1.GOE

(No.flow.B1
 OR
No.Signal_B1
.Ctr)
OR
(No.flow.A1
OR
No.Signal_A1
.Ctr)

Line 1 is out
of work, but
flow may go
through line 2.

Action is
needed to
operate line 2

N/A

Before design
Recommendations
The failure can be handled. The system
detects the failure event and replaces Line1
with Line 2
Ensure that the failure detection mechanism is
reliable

Effect max accepted likelihood
The acceptable failure rate for this effect
should be λ<10-3 (1/h)

After design
Detection
A flow sensor after and external the module

Recovery
Line 2 is activated upon failure of line 1

Recommendation
The second flow line has to be uncoupled with
the first.
CCF analysis is required.

Max accepted likelihood for critical events
in the Causes column.
P(No.Signal_A1.Ctr) < 10-5 on demand
P(No.Signal_B1.Ctr) < 10-5 on demand
P(No.flow.A1) < 10-5 on demand
P(No.flow.B1) < 10-5 on demand

It will be
used
during
the
verifica-
tion
stage

No.Flow_Line
_2.GOE

(No.flow.B2
OR
No.Signal_B2
.Ctr)
OR
(No.flow.A2
OR
No.Signal_A2
.Ctr)

Line 2 is out
of work.
Since line 2 is
operated
upon failure of
line 1, which
is already
lost, then the
whole system
is lost.

N/A

Before design
The failure cannot be handled. Line1 has
already failed. Failure of line 2 causes the top
event

Recommendations
Ensure that the failure detection mechanism is
reliable

Effect max accepted likelihood
5*10-5 on demand

After design
Detection
Not possible

Recovery
Not possible

Recommendation
Minimise couplings with line 1, perform a
common cause failure analysis

Max accepted likelihood for critical events
in the Causes column.
P(No.Signal_A2.Ctr) < 10-5 on demand
P(No.Signal_B2.Ctr) < 10-5 on demand
P(No.flow.A2) < 10-5 on demand
P(No.flow.B2) < 10-5 on demand

It will be
used
during
the
verifica-
tion
stage

Table 4-9: Group of Events for table in Table 4-8

 115

No Flow from Line
1 and 2

No.Flow_
Line_2.GOE

AND

No.Power.Busbar

O_.Start_Signal.
Start

No.Flow.Tank

No.Flow.B1

No.Signal_B1.Ctr

No.Flow.A2No.Flow.A1

No.Signal_A1.Ctr No.Signal_B2.CtrNo.Signal_A2.Ctr

No.Flow.B2

C_.Stop_Signal.
Stop

No.Flow.module

OR

OR

No.Flow_
Line1.GOE

OR

Figure 4-15: Tree for the event No.Flow.Module for the module in Figure 4-14

Analysis of basic components

Basic components are modules that are not further decomposed in the system hierarchy.

They may represent hardware equipment, software functions or tasks. Causes of their

failure modes can only be incoming events or basic events. The writing of relationships

in the Causes column of FLASH tables for basic components proceeds in a similar way

as for other modules. Figure 4-16 shows the failure model propagating the event

No.Flow.A1 (i.e. out of component A1) for the system in Figure 4-14. The corresponding

FLASH table is Table 4-10. Causes of No.Flow.A1 can be two primary events (i.e. Fail

to Open, Plugged) and two incoming events (i.e. No.Signal_A1.ctr and No.Flow.Tank).

116

The tree built for the top event No.Flow.A1 is in Figure 4-17. Given the simplicity of the

failure model the tree comprises only one OR gate. As already said, the tree and the table

are equivalent and the construction of the tree is not necessary for the construction of the

table. Figure 4-18 shows the full model for component B1, which actually is a different

instance of component A1. It has two incoming flows (i.e. Flow.A1 and Signal_B1.Ctr)

and one outgoing flow (i.e. Flow.B1). The outgoing event area in Table 4-11 considers

all the events that can potentially be propagated by the module and their relations with

Incoming and Generated events. Reliability data for generated events (taken from

[OREDA, 1984]) are recorded into the Basic Events area. GOE are not used for the

analysis of this component since relations between effects and causes do not need to be

further simplified.

A1

No.Flow.A1No.Flow.Tank

Fail to close

Fail to open Plugged

Significant internal
leackage

No.Signal_A1.Ctr

Partially plugged

Figure 4-16: Failure model for component “A1”16

16 For the completeness of the drawing all basic events of the component A are shown.

However Fail to Close, Significant Internal Leakage and Partially Plugged are not
causes of the effect No.Flow.A1, they contribute to other effects propagated by the
module that are not analysed here.

 117

OUTGOING EVENTS
Effects
Events to
the same
level

Causes Description Critica-
lity

5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Verification
(FMEA
results)

No.
Flow.A1

No.Flow.Ta
nk
OR
No.Signal_
A1.Ctr
OR
Fail to
Open.A1
OR
Plugged.A1

The output of
component
A1 deviates
from the
design
intention.
There are no
effects on the
system if the
failure is
detected and
recovered

Line 1 is out
of work, but
flow can go
through line
2.

Action is
needed to
open line2

N/A

Before design
Recommendations
The failure have to be handled by
detecting the failure event and activating
Line 2
Effect max accepted likelihood
10-4 on demand
After design
Detection
A flow sensor after and external the
module
Recovery
Possible switching to line 2
Recommendation
The line2 has to be uncoupled with the
line 1
Ensure that the failure detection
mechanism is reliable
Analyse the error detection mechanism
for potential failure modes
Max accepted likelihood for critical
events in the Causes column.
Failure rate for Fail to Open.A1 should
be < 10-3 h-1
Failure rate for Plugged.A1 should be
< 10-3 h-1

It will be
used during
the
verification
stage

Table 4-10: FLASH table for the model in Figure 4-16

Plugged.A1 Fail to open.A1No.Signal_A1.Ctr No.FLow.Tank

No.Flow.A1

OR

Figure 4-17: This tree for the effect No.Flow.A1 in Figure 4-11

118

B1

Flow.B1Flow.A1

Fail to close

Fail to open Plugged

Significant internal
leackage

Signal_B1.Ctr

Partially plugged

Figure 4-18: Model for Component B1

Analysis of sub-modules

The analysis of sub-modules proceeds in a similar way as the analysis of modules. Here

we will see the analysis of the programmable electronic module Control in Figure 4-14.

This sub-module has both software and hardware components. Events propagated can be

caused either by incoming events, generated events that are further developed into lower

level modules (i.e. Input, Output, Hardware and Software modules) and combinations of

those. In fact this module has fault tolerant capabilities, hence the ability to recover

from some single hardware or software failures. However, the recovery action may fail,

either because of random failures or couplings, and cause failure events still to be

propagated. The simultaneous occurrence of failure events with the redundant failure of

the recovery action is represented by AND gates in the Causes column of the FLASH

table. Figure 4-20 and Table 4-12 report the tree and the table for the effect

No.Signal_B1.Ctr that is propagated by the Controller in Figure 4-19, the failure of any

recovery function is represented by AND gates.

 119

OUTGOING EVENTS
Effects
Events to the same
level

Causes
Effects &
Consequences
description

Criticality
5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Verification
(FMEA
results)

No.Flow.B1

No.Flow.A1
OR
No.Signal_B1.Ctr
OR
Fail to Open.B1
OR
Plugged.B1

The output of component
B1 deviates from the
expected behaviour.
There are no effects on the
system if the failure is
detected and recovered

Line 1 is out of work, but
flow can go through line 2.

Action is needed to open
line2

N/A

Before design
Recommendations
The failure have to be handled by detecting
the failure event and activating Line 2
Effect max accepted likelihood
10-4 on demand
After design
Detection
A flow sensor after and external the module
Recovery
Possible switching to line 2
Recommendation
Line2 has to be uncoupled with line 1, CCF
analysis is needed.
Max accepted likelihood for critical
events in the Causes column.
λ (Fail to Open.B1)< 10-4 h-1
λ (Plugged.B1) < 10-4 h-1

It will be used
during the
verification
stage

More.Flow.B1

More.Flow.A1
AND
(C_.Signal_B1.Ctr
OR
Fail to Close.B1
OR
Significant Internal
Leakage.B1)

The output of component
B1 deviates from the
design intention.
There are no effects on the
system if the failure is
detected and recovered

Too much flow is delivered
by the B1. A1 has already
failed.

The system is lost

N/A

Before design
Recommendations
The failure cannot be handled since A1 has
already failed
Effect max accepted likelihood
10-4 on demand
After design
Detection
A flow sensor after B1
Recovery
Not possible
Recommendation
Valve A1 has to be uncoupled with Valve
B1, CCF analysis is needed.
Max accepted likelihood for critical
events in the Causes column.
λ (Significant Internal Leakage.B1)<10-3h-1
λ (Fail to Close.B1) <10-3h-1

It will be used
during the
verification
stage

Less.Flow.B1
Less.Flow.A1
OR
Partially Plugged.B1

The output of component
B1 deviates from the
design intention.
There are no effects on the
system if the failure is
detected and recovered

Less flow than required is
delivered by the
component. Line 2 is likely
to compensate.

Action is needed to
operate line2

N/A

Before design
Recommendations
The failure have to be handled by detecting
the failure event, closing line 1 and activating
Line 2
Effect max accepted likelihood
10-4 on demand
After design
Detection
A flow sensor after and external valve B1
Recovery
Possible switching to line 2
Recommendation
Line2 has to be uncoupled with the line 1,
CCF analysis is needed.
Max accepted likelihood for critical
events in the Causes column.
λ (Partially_Plugged.B1) < 10-4 h-1

It will be used
during the
verification
stage

Normal.Flow.B1
Normal.Flow.A1
AND
Normal.Signal_B1.Ctr

Line 1 is working fine N/A Reliability must be > 0.999998

It will be used
during the
verification
stage

Tagged.Flow.B1
Normal.Flow.A1
AND
Tagged.Signal_B1.Ctr

A recovery action took
place in the controller.

The module is still
working, however the
system will be lost for any
additional failure

N/A

Before design
Recommendations
The system has fault tolerant capabilities,
hence it is likely it is working though some
failures has occurred
Effect max accepted likelihood
λ (Partially_Plugged.B1) < 10-3 h-1
After design
Detection
Already detected
Recovery
Already done
Recommendation
Correct the problem as soon as possible and
not later than two hours after detection.
Max accepted likelihood for critical
events in the Causes column.
N/A

It will be used
during the
verification
stage

Basic Events

Reliability data Fail to Open.B1 Plugged.B1 Significant Internal
Leakage.B1 Fail to Close.B1 Partially

Plugged.B1
Failure Rate λ[1/h] 1e-5 1e-5 1e-6 1e-5 1e-5
Repair Rate µ[1/h] .25 .25 .25 .25 .25

Mean Time to Failure MTTF [h] … … … … …
Mission time (of the system)[h] 8740 8740 8740 8740 8740

Table 4-11: FLASH table for B1

120

Input
module

(Input
Circuits and
registers)

Output
module

(Output
Circuits and
registers)

Processor module

(Processors and
Memories)

Software module

(Requirements,
Specifications
and Software)

No.Signal.Sensor No.Signal_B1.Ctr

No.Power.BusBar

Software Module Failure

Hardware Module Failure

Input Module Failure

Output
Module
Failure

Controller
Input failures
recoverable
by Software

Hardware failures
recoverable
by Software

Output failures
recoverable
by Software

Software failures
recoverable by the

Output module

Hardawe failures
recoverable by the

Output module

Figure 4-19: Controller with included modules

No.Signal_B1.Ctr

OR

No.Signal.Sensor No.Power.BusBar L_.Value.InputO_.Value.InputL_.Value.Output

No.Value.Output
Processor failure
recoverable by

software

The software fails to
recover a recoverable

hardware failure
propagates no signal

Hardware failure
and software

recovery function
failure

AND

Input failure
recoverable by

processor

The processor fails to
recover a input failure

and propagates no
signal

Input failure and
hardware recovery

function failure

AND

Input failure
recoverable by

software

The software fails to
recover a input failure

and propagates no
signal

Input failure and
software recovery

function failure

AND

Software failure
recoverable by the

output

Output fails to
recover a software
failure propagating

no signal

Software failure
and output

recovery function
failure

AND

Processor failure
recoverable by

output

Output fails to recover
a recoverable

hardware failure and
propagates no signal

Hardware failure
and output

recovery function
failure

AND

No.Value.Input

O_.Value.Output

Figure 4-20: Tree for the event No.Signal_B1.Ctr for the Controller in Figure 4-19

 121

OUTGOING EVENTS
Events to the same
level (Effects) Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived Safety

Requirements
Verification

(FMEA results)

No.Signal_B1.Ctr

L.Value.Output OR
No.Signal.Sensor
OR O.Value.Output OR
No.Power.Busbar
OR No.Value.Input OR
No.Value.Output
OR O.Value.Input OR
L.Value.Input OR
Hardware_failure_and_Softw
are_rec_funct_failure.GOE
OR
Software_failure_and_Hardw
are_rec_funct_failure.GOE
OR
Input_failure_and_Software_
rec_funct_failure.GOE OR
Input_failure_and_Software_
rec_funct_failure.GOE OR
Hardware_Failure_and_Outp
ut_rec_funct_failure.GOE

Line 1 is out of
work, but flow
can go through
line 2.

The control
should activate
line2

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-5 on demand

After design
Some fault tolerance has been achieved, however some single failures of
the Output and Input module cannot be recovered.
Detection
Not possible
Recovery
Not possible
Recommendation
Software must be developed to comply with safety integrity level four
Max accepted likelihood for critical events in the Causes column.
λ (L.Value.Output) < 10-6 h-1
λ (No.Signal.Sensor) < 10-6 h-1
λ (O.Value.Output) < 10-6 h-1
λ (No.Power.Bus bar) < 10-6 h-1
λ (No.Value.Input) < 10-6 h-1
λ (No.Value.Input) < 10-6 h-1
λ (No.Value.Output) < 10-6 h-1
λ (L.Value.Input) < 10-6 h-1

It will be used
during the
verification stage

Group of events Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived Safety
Requirements

Verification
(FMEA results)

Hardware_failure_an
d_Software_rec_func
t_failure.GOE

Processor failure recoverable
by software
AND
Software fails to recover a
recoverable Hardware failure
and propagates no signal

Software fails to
recover a
recoverable
hardware failure
and propagates
no signal

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-7 on demand

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Ensure that evens in the causes column are uncoupled. Make a Common
Cause failure analysis
Max accepted likelihood for critical events in the Causes column.
10-4 on demand for each of them

It will be used
during the
verification stage

Software_failure_and
_Output_rec_funct_f
ailure.GOE

Software failure recoverable
by the output
AND
Output fails to recover a
recoverable software failure
and propagates no signal

Output fails to
recover a
recoverable
software failure
and propagates
no signal

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-7 on demand

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Ensure that evens in the causes column are uncoupled. Make a Common
Cause failure analysis. Software must be developed to comply with safety
integrity level four.
Max accepted likelihood for critical events in the Causes column.
10-4 on demand for each of them

It will be used
during the
verification stage

Input_failure_and_So
ftware_rec_funct_fail
ure.GOE

Input failure recoverable by
software
AND
Software fails to recover a
recoverable input failure and
propagates no signal

Software fails to
recover a
recoverable
hardware failure
and propagates
no signal

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-7 on demand

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Ensure that evens in the causes column are uncoupled. Make a Common
Cause failure analysis. Software must be developed to comply with safety
integrity level four.
Max accepted likelihood for critical events in the Causes column.
10-4 on demand for each of them

It will be used
during the
verification stage

Input_failure_and_Ha
rdware_rec_funct_fai
lure.GOE

Input failure recoverable by
processor
AND
The processor fails to
recover a input failure and
propagates no signal

The processor
fails to recover a
input failure and
propagates no
signal

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-7 on demand

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Ensure that evens in the causes column are uncoupled. Make a Common
Cause failure analysis. Software must be developed to comply with safety
integrity level four.
Max accepted likelihood for critical events in the Causes column.
10-4 on demand for each of them

It will be used
during the
verification stage

Hardware_Failure_a
nd_Output_rec_funct
_failure.GOE

Processor failure recoverable
by output
AND
Output fails to recover a
processor failure and
propagates no signal

Output fails to
recover a
processor failure
and propagates
no signal

N/A

Before design
Recommendations
The failure cannot be handled. It has to be extremely unlikely
Effect max accepted likelihood
10-7 on demand

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Ensure that evens in the causes column are uncoupled. Make a Common
Cause failure analysis. Software must be developed to comply with safety
integrity level four.
Max accepted likelihood for critical events in the Causes column.
10-4 on demand for each of them

It will be used
during the
verification stage

Continue in the next page …

122

Basic Events

Reliability data

Processor
failure

recoverable
by the

software

Software fails to
recover a

recoverable
hardware failure

Software failure
recoverable by

the output

Output fails to
recover a

recoverable
hardware failure and
propagates no signal

Input
failure

recovera-
ble by

software

Software fails to
recover a

recoverable
hardware failure
and propagates

no signal

 …

Failure Rate λλλλ[1/h] 10E-5 … … 10E-5 10E-5 … …
Repair Rate µµµµ[1/h] … … … … … … …

Mean Time to Failure MTTF [h] … … … … … … …
Mission time [h] 8740 … … 8740 8740 … …

Table 4-12: Piece of the FLASH table for the effect No.Signal_B1.Ctr

4.3.2 Integration and Verification

The aim of the FLASH analysis in the integration and verification phase is to confirm

that the system with its real components meets requirements, specifications and

recommendations produced during the decomposition and design. This verification

cannot be done earlier, since the detailed information about components is not available

until the end of the design process, which is when basic components are chosen. After

this stage, we have the most detailed knowledge about the system and all the information

we need to assess how good the system will be with real components. During the

verification process, each component, sub-module and module in the hierarchy is

individually verified to confirm that they meet requirements, specifications and

recommendations. The process starts from basic components and proceeds towards

higher levels of integration finishing at the top level. All the tables are considered and

the likelihood of propagated events is evaluated by using fault tree analysis.

Probabilities of these events (which are top events in fault trees) are recorded in the

“FMEA results” column. Additionally, in this column evidence is given to show that the

requirements and constraints defined during the decomposition and design are met. If

some of the recommendations are not met they are reviewed or the system design

enhanced. In the latter case, the architecture of the module that does not meet

recommendations is modified. In some instances it may be sufficient to replace only one

component, in others, a whole module may have to be re-engineered. Following those

modifications, FLASH analysis has to be re-run for all new components and all the ones

interfacing with them. Figure 4-21 shows the entire process of verification with the

feedback given to the decomposition and design. In this figure nmax represents the

number of levels in the hierarchy, n the current level, m the current module under

analysis and E the effect for which the tree is built.

 123

Feedback to
Decomposition

and Design

Set n = nmax-1
Set m = 0
Set E = 0

Evaluate the FT for the E effect,
m module, n level.

Compare the FT's top event
probability with the maximum
probability given for the same

event in the 5th column.

Justify whether recommendations
recorded in the 5th column are

met.

Is the
E top event

probability less than
the one given in the

5th column?

Set E = E +1

Have all
 Effects belonging

to the m component
been analysed?

YES

NO

Set m = m + 1
Set E=0

Have all the
 m components

belonging to
the n level be

analysed?

NO

YES

YES

NO

Is n = 1?
NO

YES

Set n=n+1
Set m=0
Set E=0

The System
meets

requirements

Figure 4-21: Feedback to decomposition and design

Trees for effects are constructed by parsing the hierarchy of tables. These trees link in a

consistent manner results from the functional level analysis to low level FMEAs. The

process of fault tree synthesis is mechanical. It is a simple parsing of tables, from the

124

current level down to the bottom. Figure 4-22 shows the tree drawn from the top event

No.Flow.Module that is obtained by parsing tables for Module, A1, B1 and Controller.

This tree can also be obtained linking trees represented in Figure 4-15, Figure 4-17,

Figure 4-20. Intermediate events No.Signal_A2.Ctr, No.Signal_B2.Ctr, No.Flow.A2 and

No.Flow.B2 are not developed. Dashed branches represent incoming events of the

Module. Table 4-13 is the FLASH table for the Module as it should be after the

verification (i.e. the FMEA results column is completed).

No.Signal_A1.
Ctr

Plugged.A
1

Fail to
open.A1

No.Flow_ A1

OR

No.Signal_B1.
Ctr

Plugged.B
1

Fail to
open.B1

No.Flow_ B1

OR

No.Signal_A2.
Ctr

Plugged.A
2

Fail to
open.A2

No.Flow_ A2

OR

No.Signal_B2.
Ctr

Plugged.B
2

Fail to
open.B2

No.Flow_ B2

OR

No.Flow_
Line_2

OR

No.Flow_
Line1

OR

No.Signal_B1.Ctr

OR

No.Signal.Sensor No.Power.BusBar L_.Value.InputO_.Value.InputL_.Value.Output

No.Value.Output
Processor failure
recoverable by

software

The software fails to
recover a

recoverable
hardware failure

propagates no signal

Hardware failure
and software

recovery function
failure

AND

Input failure
recoverable by

processor

The processor fails to
recover a input

failure
and propagates no

signal

Input failure and
hardware

recovery function
failure

AND

Input failure
recoverable by

software

The software fails to
recover a input

failure
and propagates no

signal

Input failure and
software recovery

function failure

AND

Software failure
recoverable by

the output

Output fails to
recover a

software failure
propagating no

signal

Software failure
and output

recovery function
failure

AND

Processor failure
recoverable by

output

Output fails to
recover a

recoverable
hardware failure and
propagates no signal

Hardware failure
and output

recovery function
failure

AND

No.Value.Input

O_.Value.Output

No.Flow.Ta
nk

No.Signal.S
ensor

No.Power.B
usbar

No Flow
from

Both lines

AND

No.Flow.module

OR

Figure 4-22: Tree for the top event No.Flow.Module

 125

OUTGOING EVENTS
Events to the
same level
(Effects)

Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived
Safety Requirements Verification (FMEA results)

No.Flow.Module

O_.Start_Signal.Start
OR
C_.Stop_Signal.Stop
OR
No.Flow.Tank
OR
No.Power.Busbar
OR
No.Flow_Line_1.GOE
AND
No.Flow_Line_2.GOE

No flow of fuel from
the flow controller to
the engine. The
engine cannot start.
No electric power is
provided

It can be caused by an
omission of the start
signal, a commission
of the stop signal, lack
of fuel from the tank or
because there is no
flow in the two
possible paths that can
be activated by the
Controller

Catastrophic

Before design
Recommendations
The failure of the module cannot be handled. A fault tolerant
architecture is needed to prevent that single failures in any of
the valves cause a system failure
The module has to be built with redundant components.
Effect max accepted likelihood
10-4 on demand

After design
Detection
A flow sensor after and external the module
Recovery
Possible for failure of one line
Recommendation
The second flow line has to be uncoupled with the first CCF
analysis is required
Max accepted likelihood for critical events in the Causes
column.
λ (No.Flow.Tank) < 10-7 h-1
P (No.Signal.Sensor) < 10-5demand (during the mission)
P (O_.Start_Signal.Start) < 10-5demand (during the mission)
P (C_.Stop_Signal.Start) < 10-5demand (during the mission)
λ (No.Power.Busbar) < 10-7 h-1

Likelihood of the event
propagated
5*10-5 on demand

Likelihood of critical causes
P(No.Flow.Tank) = 5*10-6
P(No.Signal.Sensor = 4*10-6
P(No.Power.Busbar)= 10-8

Justification
The module is built with
redundant components. No
single points to failure for
mechanical components are
present. At least two valves
must fail to cause the event.
Recovery is possible for single
mechanical failure. Flow lines
are sufficiently uncoupled to
meet requirements.
Programmable Logic Controller
and software meet safety
requirements for their integrity
level.

Group of events Causes Description Criticality 5th Column: Justification, Design Recommendations, Derived
Safety Requirements Verification (FMEA results)

No.Flow_Line_1
.GOE

(No.flow.B1
 OR
No.Signal_B1.Ctr)
OR
(No.flow.A1
OR
No.Signal_A1.Ctr)

Line 1 is out of work,
but flow may go
through line 2.

Action is needed to
operate line 2

N/A

Before design
Recommendations
The failure can be handled. The system detects the failure
event and replaces Line1 with Line 2
Ensure that the failure detection mechanism is reliable
Effect max accepted likelihood
The acceptable likelihood for this effect should be <10-3 on
demand (during the mission)

After design
Detection
A flow sensor after and external the module
Recovery
Line 2 is activated upon failure of line 1
Recommendation
The second flow line has to be uncoupled with the first.
CCF analysis is required.
Max accepted likelihood for critical events in the Causes
column.
P(No.Signal_A1.Ctr) < 10-5on demand (during the mission)
P(No.Signal_B1.Ctr) < 10-5on demand (during the mission)
P(No.flow.A1) < 10-5 on demand (during the mission)
P(No.flow.B1) < 10-5 on demand (during the mission)

Likelihood of the event
propagated
4*10-4 on demand

Likelihood of critical causes
P(No.Signal_A1.Ctr)= 5*10-7
on demand
P(No.Signal_B1.Ctr)=5* 10-7
on demand
P(No.flow.B1) = 5* 10-4 on
demand
P(No.flow.B1) = 5* 10-4 on
demand

Justification
The software activates Line 2
upon failure of line 1. Flow
lines are sufficiently uncoupled
to meet requirements.
Couplings have been
minimised. The likelihood for
the event propagated include
the contribution from CCF.

No.Flow_Line_2
.GOE

(No.flow.B2
OR
No.Signal_B2.Ctr)
OR
(No.flow.A2
OR
No.Signal_A2.Ctr)

Line 2 is out of work.
Since line 2 is
operated upon failure
of line 1, which is
already lost, then the
whole system is lost.

N/A

Before design
The failure cannot be handled. Line1 has already failed.
Failure of line 2 causes the top event
Recommendations
Ensure that the failure detection mechanism is reliable
Effect max accepted likelihood
5*10-4 on demand (during the mission)

After design
Detection
Not possible
Recovery
Not possible
Recommendation
Minimise couplings with line 1, perform a common cause
failure analysis
Max accepted likelihood for critical events in the Causes
column.
P(No.Signal_A2.Ctr)< 10-5on demand (during the mission)
P(No.Signal_B2.Ctr)< 10-5on demand (during the mission)
P(No.flow.A2) < 10-5 on demand (during the mission)
P(No.flow.B2) < 10-5 on demand (during the mission)

Likelihood of the event
propagated
4*10-4 on demand

Likelihood of critical causes
P(No.Signal_A2.Ctr)= 5*10-7
on demand
P(No.Signal_B2.Ctr)=5* 10-7
on demand
P(No.flow.A1) = 5* 10-4 on
demand
P(No.flow.A1) = 5* 10-4 on
demand

Justification
The software activates Line 2
upon failure of line 1. Flow
lines are sufficiently uncoupled
to meet requirements.
Couplings have been
minimised. The likelihood for
the event propagated include
the contribution from CCF.

Table 4-13: Complete FLASH table for Module

4.4 Tool support
The FLASH method presented so far appears to be quite complex. However, it can be

supported by a software tool that automates the most tedious and errors prone

procedures. A software tool may help to navigate through the hierarchy of tables,

generate trees, to calculate the likelihood of events propagated and to make consistency

checks on the whole hierarchy. The navigation through tables is useful to trace the

propagation and transformation of events from high level functional failures to low level

component failure modes. The automatic fault trees generation and evaluation, allows

126

drawing trees for hazardous events and updating them any time the design is modified.

Consistency checks are related to the FLASH hierarchy. Hierarchies, like the one

produced by FLASH need to be consistent to be useful. It may happen that while writing

tables for FLASH modules or modifying them, that consistency among tables in the

hierarchy is lost. Hence consistency has to be checked following changes.

During our research, an existing software tool, the Safety Argument Manage

(SAM), developed at the University of York [McDermid, 1994], has been adapted to

support some phases of the FLASH method. At present, a new SAM module supports

writing and updating of FLASH tables. In addition, it has been shown how generation of

fault trees from FLASH tables is possible. Until now the automatic tree generation has

not been implemented in the FLASH module of the SAM software. Here are two

reasons: 1) lack of time; 2) it is believed to be possible to reuse part of existing code for

the automatic fault tree generation already developed in [Papadopoulos and McDermid,

1999a] within the HiP-HOPS module of SAM.

FLASH tables are written using an editor very similar to widely used commercial

table editors. When the table hierarchy is completed, the editor makes possible

navigating from any table to lower or higher level tables by selecting an event and

choosing to Explore causes or Navigate back. Causes of any event in the hierarchy can

be traced to component failure modes. Events are chosen from the Causes column of a

table. The tag of the event identifies the table that contains causes of this event. Events

are sought in the Effects column of the table propagating them. Causes are in the

corresponding box of the Causes column. Figure 4-23 displays the Outgoing area of the

table for the top level of a fuel system. This table propagates three effects No_.Fuel.fc,

More_.Fuel.fc and Less_.Fuel.fc. Causes of the event No_.Fuel.fc are:

O_.Fuel.bva AND O_.Fuel.bvb OR No_.PowerSupply.PS

 127

Figure 4-23: Outgoing area of the table for the top level

If the analyst requires to search for causes of the event O_.Fuel.bva, the software takes

the bva table and seeks that event in output columns of this table (i.e. Output events to

the “Same” or “Enclosing” level). As the Figure 4-24 shows causes of this event are the

following:

Fail_to_open.bva OR O_.BVAi.ec OR Plugged.bva

Figure 4-24: Causes of the effect O_.Fuel.bva

Once analysts have found causes of the event O_.Fuel.bva they may want to seek more

details or the causes of the causes. For instance, they may want to investigate the event

Fail_to_open.bva, that is one of the causes of the event O_.Fuel.bva. This event has the

128

tag bva therefore it has to be sought in the same table. In fact it is a basic event for the

component bva. Reliability information for this basic event is shown in Figure 4-25.

The function Navigate back that is highlighted at the right of the SAM window for the

component bva leads back to the previous table i.e. Figure 4-24. This makes it possible

to select another event and investigate its causes or find out its reliability information.

Figure 4-25: Basic events table for component bva

The FLASH module of SAM also supports the writing of expressions in the Causes

column of the FLASH table by providing the analyst with the set of events and gates to

form the expression in the Causes column. Once the analyst has chosen the function

“write causes” and points on the Causes column, a menu appears. This menu shows the

only set of incoming and generated events, AND and OR gates, and parentheses that can

be used to build expressions in that table. Any expression is built only by selecting

entries from that “pop-up” menu.

For the reasons already mentioned, we did not develop the software for automatic

fault tree construction. That prevented us from running complex case studies. It has

been discovered that manual construction of fault trees from the FLASH table is quite

tedious, and prone to mistakes. This is particularly evident when designs are reviewed

during an advanced stage of the lifecycle, i.e. in the integration and verification stage,

and many trees are to be modified and re-evaluated. In those cases the automatic fault

tree generation would be very helpful. Once an effect is selected in a FLASH table, the

function Fault Tree should draw a tree with that event at the top. When sufficient

reliability data are available also the top event likelihood should be given. Figure 4-26

 129

displays the tree for the top event No_.Fuel.fc presented in previous tables as it should

appears for the event in our example. Additionally the automatic fault tree generation

can potentially be used to check the consistency of the whole hierarchy. Building all the

possible fault trees in the hierarchy would not be possible if there are inconsistencies in

tables.

Figure 4-26: Fault tree for the top event No_.Fuel.fc

130

4.5 Discussion
This chapter presented the FLASH method, which aims to support the decomposition and

design of a system and the integration and verification process. FLASH is performed in

parallel to the design in a hierarchical fashion. It uses a common syntax that formalises

the causal relationship that underlies traditional safety analysis techniques like FHA,

HAZOP and FMEA information. Within the FLASH framework, causes in the (n-1)

level tables become effects in the (n) level tables. Fault trees are built from FLASH

tables by parsing the relations between causes and effects. In the integration and

verification, tables produced during the decomposition and design are reviewed and

checked to see whether specifications and derived safety requirements are met. FTA is

used to estimate the likelihood of each hazard. The aim is to calculate the probability for

all the critical functional failure modes.

FLASH can generate results that traditionally have been generated by FHA, HAZOP

and FMEA, link these results and relate them back to the functional hazard assessment.

This makes possible the feedback from the integration and verification phase to the

decomposition and design phase in the lifecycle. FLASH also enables automated

consistency checks on the results from the analysis and the mechanical generation of

fault trees.

The major benefits expected from the application of the method are to improve

industrial practice concerning the safety analysis of safety critical systems. Whilst we

have not shown that FLASH does work effectively in industries, there is evidence that it

will be useful. In particular we have found that FLASH can be a way to comply with

guidelines that are going to be released for the certification of PLCs for safety critical

applications by the Italian Institute for Safety and Health at the Work, [ISPESL/CEI,

2000; Picciolo, 2000, Minichino et al. 2000]. PLCs are now taking the place of relay

logic in safety critical applications and certification bodies require that PLCs meet at

least the standard that was guaranteed by the relay logic that is Safety Integrity Level 2.

In this context, ISPESL (Instituto Superiore per la Prevenzione E la Sicurezza sul

Lavoro) which is responsible for the implementation of European directives, is issuing

guidelines for the assessment of Safety Critical PLCs on behalf of the European Agency

for Health and Safety and the Italian Ministry of Heath. These guidelines will be a

national standard and will recommend a hierarchical decomposition and study of systems

according to the SADT notation [Ross, 1985] that was considered by us prior developing

 131

our method and is very similar to the FLASH hierarchical decomposition. In this context

the FLASH method can potentially be seen as a way to meet those guidelines.

FLASH has been successfully applied to the analysis of small high integrity

systems, among them a PLC and a computerised braking system, but it is a complex

technique that can be heavy to apply without the assistance of suitable software to take

charge of repetitive and error prone tasks. It is unclear that it will be applicable to

support the design and verification of a very large system such as an aircraft, a

helicopter, a chemical or nuclear installation. The design of those systems, though they

appear to be hierarchically decomposable, is not usually approached hierarchically. Each

subsystem is designed separately from given specifications and then they are assembled.

Frequently it happens that significant changes have to be made later to put all the

subsystems together. A real hierarchical top down design like the one proposed by

FLASH is actually not done because it would take too much time, although it would save

expensive modifications when the artefact is already in an advanced stage of

construction. In this context FLASH could still be used to develop each sub-system.

However we believe that if a FLASH analysis is available for each sub-systems then it

may be possible to link all these FLASH analyses to produce the FLASH model for the

full system. This might be possible if the technique were sufficiently highly automated.

The next chapter extends the FLASH formalism to Common Cause Failure analysis.

The information about modules’ lifecycle recorded into FLASH tables during the

developing phases is used for a qualitative and a quantitative evaluation of common

cause and the others dependent failures.

132

This page is intentionally left blank

 133

Chapter Five

5Common Cause Failure
This chapter extends the FLASH formalism presented in chapter four to treat common

cause failures. Here we show how the hierarchy of FLASH tables can be used to identify

those minimal cut sets that need to be analysed for common cause failures. Additionally,

we provide a novel method for quantitative estimation of the likelihood of minimal cut

sets with coupled events that uses lifecycle information recorded in FLASH tables.

5.1 Overview
Common cause failures were extensively introduced in the second chapter. They are a

particular kind of failure that occur within redundant devices and endanger fault tolerant

systems by causing their redundant channels to fail at the same time or in a short time

interval. They act like a single point of failure for these systems. If it were possible to

have fault tolerant systems with uncoupled channels, there would be no need to

investigate common cause failures in these systems since no single cause could give rise

to system failure. However it is practically impossible to construct, maintain and operate

completely independent redundant systems so there is always the need for common cause

failure analysis in fault tolerant systems.

The easiest way to consider common cause failures is to study minimal cut sets of

fault trees drawn for critical events of the fault tolerant system. Minimal cut sets

exhaustively represent all the combinations of failures that, when occurring

simultaneously, cause the system failure. In the case of common cause failures, it

happens that the root cause17 through the coupling factor causes all the events in the

minimal cut set to occur within a very short time span. Consequently the fault tolerant

system fails as if all the events in the minimal cut set had arisen randomly.

Typically, the likelihood of a minimal cut set occurring because of common cause

failures is extremely small, at least one or two orders smaller than the smallest likelihood

of events in the minimal cut set. However, it is always greater than the likelihood of the

whole minimal cut set if the events occur randomly, consequently it is the most important

contribution to the total likelihood of the minimal cut set. Hence analysts have to

17 See chapter 2

134

consider common cause failures any time they want to use redundancies to pursue failure

rates smaller than those of any component employed in the redundant configuration.

One purpose of common cause failure analysis is to evaluate the actual likelihood of

minimal cut sets with coupled events. Without considering common cause failures, fault

trees for fault tolerant systems underestimate, often by many orders, the likelihood of the

top event.

FLASH supports the studies of common cause failures after fault trees have been

drawn for critical failures and minimal cut sets obtained18. The process consists, first, in

the identification of minimal cut sets that have to be analysed for common cause failures

(i.e. with coupled events), then in the estimation of the likelihood of these minimal cut

sets.

5.2 Identification of MCS with coupled events
The identification of minimal cut sets with coupled events is the first step for considering

common cause failures in the FLASH method. In the second chapter we saw that

common cause failures arise when there are couplings among redundant components.

These couplings may be generated anywhere in the lifecycle of components making up

redundant channels. Coupling may be the same person producing the design, the way

components are manufactured, installed, tested, maintained etc. To formalise the

identification of couplings, many checklists have been proposed, two of these are in

[Mosleh et al., 1993] and [SAE-ARP 4754, 1996]. However, these are very general so we

have developed a new checklist (reported in Table 5-1) to address software components.

These checklists aim to be a reference for designers who try to construct fault tolerant

systems with coupling-free redundant channels, but also to help safety analysts to unveil

hidden couplings overseen by designers.

In addition to these two uses, we believe, checklists can be employed for an

additional purpose, which is to collect information about potential couplings that may

occur during the lifetime of components. The idea is that, in correspondence with each

heading of a checklist, we can record information specific to each component, e.g. a code

that identifies potential couplings. For example, in correspondence with the entry

component manufacturer, the code may identify the company producing the component;

in correspondence with the entry component procedure, it may identify the procedure

18 It is not intended in this chapter to show how minimal cut set can be obtained by

reducing a Fault Tree. That can be found in [Vesely, 1981].

 135

adopted for manufacturing; and so on, for all the entries in the list. In this way we have

unequivocally identified all19 the potential couplings in which a component may be

affected.

Development (Process) • Requirements
• Requirements team
• Specifications
• Specifications team
• Implementation strategy
• Implementation team
• Design strategy
• Design team

Test (Process) • Criteria
• Objectives
• Requirement test specification
• Integration test specification
• Unit test specification
• Test team

Tools (for Development
and Test)

• Compiler
• Link/Loaders
• Code Generator
• Design & Requirements Tools
• Operating System
• Test Stubs and Drivers
• Test Monitoring
• Test Management

Installation Procedure • Production of PROMS
• Loading a FLASH memory

Operating Environment • Operating System
• Device Drivers

Table 5-1: Checklist of potential couplings in Generic Software Modules

The list20 of potential couplings is, then, inherited by basic events originating within the

component. This makes it feasible to compare basic events on the same ground. For

example, if two apparently different valves, a stop and a control valve, produced by two

different manufacturers, are maintained by the same person21, basic events22 for both

19 We aim to identify all the couplings of the component by using a list of attributes that

spans the whole lifecycle and that is as exhaustive as practical.
20 The list of potential couplings is what, in chapter 4, was called lifecycle information,

or lists of lifecycle categories.
21 It can be also the same team or the subcontractor.
22 In FLASH terminology: all their generated events.

136

valves will record the name of that person in their corresponding lifecycle category. That

person makes them coupled, so a minimal cut set in which there are basic events

generated in those valves (e.g. fail to control for the control valve and fail stuck for the

stop valve) is vulnerable to common cause failures, hence the analysts have to undertake

common cause failure analysis.

To show a practical example of how the FLASH method works, we will analyse the

minimal cut set in Figure 5-1. This figure provides a graphical representation of

couplings that may exist in a minimal cut set of the third order. It shows that events A, B,

and C share a number of couplings. First we see that all of the three events share code

IIF1 which represents the fact that the same people have installed components in which

these events may arise. Then we see that events A and B are coupled by coupling codes

i.e. DCA1, DTM1, DS1, OS1, OP1, MS1, and MP1 which are the potential couplings

generated during the Concept and Design, the Operation and the Maintenance stages.

Additionally we see that events B and C share coupling codes MM2, MDP2, and MPP2,

which are the couplings generated during manufacturing. Therefore this minimal cut set

has to undergo common cause failure analysis.

When a minimal cut set like this is found there are actually three possibilities. The

first and most obvious, is to try to remove couplings. For instance, if only we eliminate

the couplings IIF1 (i.e. Installation - Fitter) we prevent a potential root cause which

could affect all the events in the minimal cut set. This can be done employing different

staff23 to fit components where A, B and C arise.

The second possibility is to assume that no root causes will spread through those

couplings, then evidence has to be given. For instance it can be said that experience

from similar systems has shown it to be extremely unlikely that conceivable root causes

will spread through such coupling. Additionally, we can say that the remaining

couplings (i.e. those coupled events AB and BC) do not endanger the system since they

only reduce the degree of fault tolerance from three to two failures, and they alone

cannot cause the minimal cut set.

The third option is to quantify the likelihood of the coupled minimal cut set with the

method that we propose in the next section.

23A practical example is an accident that happened to a British Aerospace aircraft (BAE

146) with four engines which had a four-engine failure due to common maintenance
errors. Now they have changed the procedure: rules say that two teams have to be
appointed for the maintenance of the four engines (i.e. they have reduced the coupling).

 137

Design Architecture

Concept and Design Technological Materials Equipment Type

Specifications

Manufacturer

Manufacturing Procedures

Process

Fitter

Installation/ Integration Procedures

And Test Location

Routing

Operation Staff

Procedures

Maintenance Staff

Procedures

Test Staff

Procedures

Calibration Staff

Procedures

Mechanical and Thermal

Environmental Electrical and Corrosion

Li
fe

cy
cl

e
C

at
eg

or
ie

s

Chemical and miscellaneous

A CB

DCA1 DCA2DCA1

DTM1 DTM2DTM1

DS1 DS2DS1

MM1 MM2MM2

MDP1 MDP2MDP2

MPP1 MPP2MPP2

IIF1 IIF1IIF1

IIP1 IIP3IIP2
IIL1 IIF3IIF2

IIR1 IIR3IIR2
OS1 OS2OS1

OP1 OP2OP1

MS1 MS2MS1

MP1 MP2MP1

TS1 TS3TS2

TP1 TP3TP2

CS1 CS3CS2

CP1 CP3CP2

EMT1 EMT3EMT2

EEC1 EEC3EEC2
ECM1 ECM3ECM2

Figure 5-1: Couplings in minimal cut set ABC

5.3 Likelihood of MCS with coupled events
The likelihood of a minimal cut set with coupled events is always evaluated by using

parametric methods. These methods adopt parameters to represent conditional

probabilities of an event arising in some circumstances. As was said in the second

chapter, all parametric methods developed, so far, assume the symmetry hypothesis

[Mosleh et al., 1988], which is based on the common practice in safety and reliability

analysis to use the same likelihood for events involving similar types of components.

Experience has actually shown that this is appropriate for systems where common cause

failures have been studied in the last thirty years (i.e. nuclear power and chemical

plants). What happens is that failure rates for similar types of valves, pumps, diesel

engines etc. (i.e. same size, activation etc.) operating in comparable environmental

138

conditions are very similar, regardless of the manufacturer and the designer [T-Book,

1992; OREDA, 1984].

However we are addressing a different area. Fault tolerant computer based systems

are usually not constructed using similar hardware components, but by using a mixture of

different hardware, software, information and time redundancies. Consequently events

representing misbehaviours of their redundant channels are always bound to have very

different probabilities. Therefore the symmetry hypothesis cannot be accepted when

evaluating the likelihood of coupled minimal cut set for these systems.

 Hence in this section we propose a novel method for the quantitative estimation of

probabilities of minimal cut set with coupled events that does not assume the symmetry

hypothesis. First, we present a new perspective to look at the likelihood of a generic

event. Then we show how to calculate the probability of a minimal cut set with coupled

events considering only actual couplings.

5.3.1 Likelihood of a generic event

The likelihood of an event is the probability that it occurs within certain conditions that

are described by some parameters. Among these parameters there are the failure

probability on demand, and the frequency that the event occurs, which are functions of

other parameters describing, for instance, environmental conditions in which the

component originating the event is operating (e.g. environmental dependencies, etc.),

maintenance, testing, etc. For our studies we assume that the probability of each event is

already known. That is equivalent to say that contributions previously mentioned are

already considered in the total likelihood of the event.

 What we aim to do is partitioning the total likelihood of the event and associate each

share to a lifecycle category. This is like assuming that basic events in components arise

because of something that was not properly considered or that could have been done

better in the lifecycle of the component, i.e. an error or a defect. The portion of the

likelihood of each event that is associated with each lifecycle category is “the

Percentage %I” that was introduced in chapter four.

 In mathematical terms, the total likelihood of an event X can be written as P(X). If

event X is made up of n independent events ix , we can write P(X) as in the following

expression:

 139

() 





 ∑

=
=

n

i
ixPXP

1

This is a very complex expression to expand24. For example, for n = 3 (which is

equivalent to a minimal cut set of the third order) it can be written as:

()

()
() () ()()
() () () () ()312132321

321321

321

3

1

xxxxPxxPxPxPxP
xxxPxxPxP

xxxP

xPXP
i

i

+−−++=
+−++=

++=








= ∑
=

However, since in our study we are considering probabilities extremely small (i.e. almost

always smaller that 10-3, terms of the second (or greater) order, i.e.

() ()312132 , xxxxPxxP + , are extremely small if compared with term of the first order,

i.e. () () ()321 ,, xPxPxP . Therefore they can be neglected and we can write the

likelihood P(X), for n = 3, as:

()

()
() () ()321

321

3

1

xPxPxP
xxxP

xPXP
i

i

++≅
++=








= ∑
=

P(X) can be generalized for n generic causes as in equation 5.1 that represents P(X) as

the arithmetical sum of ith terms, each of them representing the likelihood ()ixP of the

cause ix occurring and giving rise to event X.

24 Except in the case events ix are mutually exclusive, in which P(X) can be written as

() ()∑
=

=
n

i
ixPXP

1

140

 () ()∑
=

≅
n

i
iXPXP

1

 (5.1)

When event X is part of a minimal cut set, the cause ix can be a potential coupling,

consequently ()ixP will be the likelihood that the potential coupling ix will give rise

to event X.

()ixP is obtained by multiplying the total likelihood P(X) of the event X times

the Percentage %I.

 ()ixP = %I * ()XP (5.2)

5.3.2 Likelihood of coupled events

In this section we see how to estimate the likelihood of a minimal cut set with coupled

events by using expression 5.1. First we consider a very simple example, a minimal cut

set made up of two events, for which the lifecycle is decomposed into two categories

only. Then we will examine a minimal cut set with three events, finally we will

extrapolate an expression for a minimal cut set of order n with l lifecycle categories.

We know that the likelihood of an uncoupled minimal cut set of the second order is

the product of the likelihood of each event in the minimal cut set occurring randomly.

That likelihood can be written for l lifecycle categories by using equation 5.1. It appears

as in 5.3.

P (XY) = () () () ()∑∑
==

≅
l

i

l

i
ii YPXPYPXP

11

 (5.3)

However, as we said in the second chapter, when the minimal cut set is coupled this

expression does not hold, so we have to consider the product of the likelihood of every

single potential cause of each event with the likelihood of every single potential cause of

all the other events. Therefore, the likelihood of a minimal cut set of the second order

(n=2) with two lifecycle categories (l = 2) has to be written as in 5.4.

 141

P (XY) = P [(x1+x2) (y1+y2)] (5.4)

 = P [x1y1 + x1y2 + x2y1 + x2y2]

To further expand 5.4 we must know whether or not potential causes are mutually

exclusive. Actually they are not mutually exclusive. A potential cause that gives rise to

an event does not exclude another potential cause of that event. For example, the fact

that an actuator fails because it was wrongly manufactured (i.e. it wears out too quickly),

does not exclude the same actuator failing, at exactly the same time, because it was also

wrongly tested during maintenance. However, the likelihood of both events happening

simultaneously is quite small. Therefore, since potential causes are not mutually

exclusive, expression 5.4 can be expanded as follows in 5.5.

P (XY) = P [(x1+x2) (y1+y2)]

 = P [x1y1 + x1y2 + x2y1 + x2y2]

 = P (x1y1) + P (x1y2) + P (x2y1) + P (x2y2) (5.5)

 – P (x1y1y2) – P (x2y1y2) – P (x1x2y1) – P (x1x2y2)

 +P (x1x2y1y2)

This expression appears quite complex, however we can make some considerations to

simplify it. Since we deal with probabilities which are extremely small, terms of the

third and fourth order (i.e. P(x1y1y2), P(x2y1y2), P(x1x2y1), P(x1x2y2) and P(x1x2y1y2)) are

negligible when compared to terms of the second order (i.e. P(x1y1), P(x1y2), P(x2y1) and

P(x2y2)), therefore they can be safely ignored. Hence the probability of the same minimal

cut set can be written as:

P (XY) ≅ P (x1y1) + P (x1y2) + P (x2y1) + P (x2y2) (5.6)

142

or in a more compact form as:

P (XY) ≅ ()∑∑
= =

2

1

2

1
,

i j
ji YXP (5.7)

Now, if we suppose that events X and Y are coupled for the first of the two lifecycle

categories (see the Figure 5-2), we know that P(x1y1) has to be evaluated with methods

for common cause failure analysis, whilst the remaining probabilities, i.e. P(x1y2), P(x2y1)

and P(x2y2), can be simply calculated as products of independent terms. Hence, if we use

subscript letters I and C to indicate Independent and Coupled likelihood (i.e. PI and PC)

of a generic event we can represent the value of each of the terms in 5.6 as in equation

5.8.

P (x1y1) = PI (x1) PI (y1) + PC(x1 y1)

P (x1y2) = P (x1) P (y2) (5.8)

P (x2y1) = P (x2) P (y1)

P (x2y2) = P(x2) P(y2)

X

x1

x2

Y

y1

y2

Category 1
(Potential Coupling)

Category 2
(Potential Coupling)

β1xy

LIFECYCLE
INFORMATION

Figure 5-2: Minimal cut set of the second order with two lifecycle categories

Therefore, estimation of the likelihood of a minimal cut set of the second order, with two

lifecycle categories can be handled quite easily, as we have seen. However, if we

increase the order of the minimal cut set and the number of lifecycle categories, the

 143

complexity scales up. Actually, the number of terms in the expression for the likelihood

of a minimal cut set of the third order with five lifecycle categories (like the one

represented in Figure 5-3) has 125 terms that can be compactly represented by expression

5.9.

 P(XYZ) ≅ ()∑∑∑
= = =

5

1

5

1

5

1

,,
i j k

kji ZYXP (5.9)

Now, if we look at Figure 5-3, we see that some of the couplings related to only a sub-

group of events in the minimal cut set. For instance, the first potential coupling concerns

events X and Y, while the second concerns events Y and Z; the third involves events X

and Z; and only the last one touches all the three events in the minimal cut set. Therefore

if we highlight in bold coupled events in equation 5.9 we will have mixed likelihood

terms like P(x1, y1, z1), P(x2, y2, z2), P(x3, y3, z3), P(x1, y1, z2), P(x1, y2, z2), etc.

Probabilities of these terms can be evaluated as products of an independent likelihood

times a common cause failure likelihood. For example P(x1, y1, z1) can be seen as

product of common cause failure term P(x1, y1) times the independent term P(z1).

P(x1, y1, z1) = P(x1, y1) * P(z1) (5.10)

Where:

P(x1y1) = PI(x1)PI(y1) + PC(x1y2)

144

x3

X

x1

x2

x4

x5

Y

y1

y2

y3

y4

y5

Z

z1

z2

z3

z4

z5

Category 1

Category 2

Category 3

Category 4

Category 5

β2yz

β3xz

β1xy

β4xy β4yz

β4xz

LIFECYCLE
INFORMATION

β4xyz

Figure 5-3: Minimal cut set of the third order with five lifecycle categories

Probabilities for the other mixed terms with two coupled events i.e. P(x1, y1, z2) P(x1, y1,

z3), …,P(x1, y1, z5); P(x1, y2, z2) P(x2, y2, z2), …, P(x5, y2, z2) and P(x3, y1, z3), P(x3, y2,

z3),…, P(x3, y5, z3) can be similarly evaluated. While the likelihood for the term P(x4, y4,

z4) is calculated on the basis that x4, y4 and z4 are fully coupled. Therefore it will be as in

expression 5.11.

 P(x4 y4 z4) = PI(x4) PI(y4) PI(z4)

+ PI(x4) PC(y4 z4) (5.11)

+ PI(y4) PC(x4 z4)

+ PI(z4) PC(x4 y4)

+ PC(x4 y4 z4)

Table 5-2 reports all the terms that have to be substituted in expression 5.9 to consider

common cause failures in the minimal cut set in our example. The right column has

 145

terms that consider common cause failures which are used to replace terms in the left

column for the calculation of the likelihood of the minimal cut set in Figure 5-3.

Terms to be replaced Likelihood of coupled terms

P(x1 y1) PI (x1) PI (y1) + PC (x1 y1)

P(y2 z2) PI (y2) PI (z2) + PC (y2 z2)

P(x3 z3) PI (x3) PI (z3) + PC(x3 z3)

P(x4 y4 z4) PI (x4) PI (y4) PI(z4) + PI (x4) PC(y4 z4)

 + PI (y4) PC (x4 z4) + PI(z4) PC(x4 y4)

 + PC (x4 y4 z4)

Table 5-2: Likelihood of coupled terms

Now we go back to expressions 5.6 and 5.9. They were written for a minimal cut set of

the second order with two lifecycle categories, and for a minimal cut set of the third

order with five lifecycle categories respectively. They can be extended to a generic

minimal cut sets of order n with l lifecycle categories. The extended expression is given

in 5.12. We can easily see that the number of terms in that expression is equivalent to

the order n of the minimal cut set raised to the number l of lifecycle categories.

P(X1, X2, …Xn) ≅ ()∑∑ ∑
= = =

l

i

l

j

l

z

n
zji xxxP

1 1 1

21 ,...,,... (5.12)

This expression may have terms representing coupled probabilities up to order n. We

have already seen expressions for coupled probabilities of second and third order (i.e.

P(x1y1) and P(x4y4z4) in 5.8 and 5.11). Similar expressions can also be written for greater

order minimal cut sets, however it is not the aim of this thesis to show the form of these

terms.

Drawing some conclusions, in this section we have seen that it is theoretically

possible to analyse common cause failures at the level of potential couplings. Hence, we

have transferred the problem of common cause failure analysis from the minimal cut set

level to a lower, more detailed, level. Additionally, we have proposed a systematic way

to identify minimal cut sets with coupled events and showed how common cause

likelihood can be evaluated considering only contributions from real couplings and not

with a summary analysis at minimal cut set level, as it is usually done. We have actually

146

approached the problem of common cause failure analysis the other way round. Instead

of leaving common cause failure analysis as a final analysis we propose to start

collecting data already at the beginning of the lifecycle then to use these data for a

systematic identification of potential couplings hence for the evaluation of the common

cause likelihood.

 However we have not yet seen how, practically, we can estimate Independent and

Coupled probabilities that are in the expression of the likelihood of a coupled minimal

cut set.

5.3.3 Independent and coupled probabilities

In this section we show a way to estimate the independent and coupled probabilities that

are in the expression of the likelihood of a coupled minimal cut set. The method we

propose is based on the β factor parametric model that was introduced in the second

chapter. However, instead of applying this model at minimal cut set level, we apply it at

the level of potential couplings. This way to proceed can be laborious since it should use

as many β parameters as the number of actual couplings, however some considerations

based on the experience gained in the past thirty years of studying common cause failures

will help us in setting reasonable values for these parameters.

The β factor parametric model was introduced in the second chapter. It is the

simplest of all the parametric methods, since it considers only the independent likelihood

of each event in the minimal cut set and the likelihood of all the events happening

simultaneously because of a common cause failure. For a minimal cut set of the second

order it is equivalent to more complicated methods, like the multiple Greek letter model.

It becomes more and more conservative with the increasing of the order of the minimal

cut set, however it is the model used the most to consider common cause failures.

The β factor parametric model is quite simple to apply. The coupled likelihood for

a minimal cut set is obtained by multiplying the likelihood of any of the events in the

minimal cut set (that for the symmetry hypothesis have the same likelihood) times the

β parameter. The independent likelihood is then obtained by subtracting the coupled

likelihood from the total. Therefore, if we could use the symmetry hypothesis we would

need to know only two terms: the total likelihood, that is the likelihood of the event as if

 147

it was a common, isolated basic event25, and the β parameter, that is related only to the

degree of coupling existing among events in the minimal cut set.

In case of a minimal cut set of the second order the study proceeds as follow. The

likelihood of each event in the minimal cut set (that for the symmetry hypothesis is the

same) is given to the term QT (total likelihood).

P(X) = P(Y) = QT (5.13)

(Symmetry hypothesis)

Then, the coupled likelihood is obtained multiplying QT times the parameter β. The

coupled likelihood of two events PC(X, Y) is indicated by Q2. The subscript “2”

represents the number of events that are coupled in the minimal cut set.

PC(XY) = βQT = Q2 (5.14)

The independent likelihood is, then, calculated by subtracting the coupled contribution

Q2 from the total likelihood QT. Since the independent likelihood refers to one event, it

has subscript “1” i.e. Q1.

 PI(X) = PI (Y) = (1-β) QT = Q1 (5.15)

Therefore the common cause failure probability for a minimal cut set of the second order

is written as in 5.16.

P(X Y) = PI (X) PI (Y) + PC(XY) = Q1
 2+ Q2 (5.16)

Or as function of β and QT:

P(X Y) = Q1
 2+ Q2 = [(1-β)QT]2+ βQT (5.17)

25 The likelihood obtained from the manufacturer data sheets adapted to the condition

where the component operates.

148

This expression shows also that for β → 0 the likelihood of the minimal cut set tends to

the likelihood of the two events happening independently. That is an important property,

that we have to maintain in the expression of the likelihood of a coupled minimal cut set

that we are going to propose.

0→β
Lim { })-(1

2

QT
QQ = +] Τ

2
Τ ββ

0→β
Lim P(X Y) = P(X) P(Y) (5.18)

The proper way to proceed is to write the coupled likelihood of two events as in 5.19,

which says that the PC for a minimal cut set XY can be thought as the fraction βxy of the

total likelihood of event X, or as a fraction βyx of the total likelihood of event Y:

PC(X Y) = βxy P(X) = βyx P(Y) (5.19)

In this way, we would write independent probabilities PI(X) and PI(Y) as follow:

 PI(X) = [P(X) - βxy P(X)] = P(X) (1-βxy)

 = [P(Y) - βyx P(Y)] = P(Y) (1-βyx)

 PI (Y) = [P(Y) - βyx P(Y)] = P(Y) (1-βyx)

 = [P(X) - βxy P(X)] = P(X) (1-βxy)

and we would obtain the likelihood for a coupled MCS of the second order as in 5.20:

 P (XY)= [P(X)(1-βxy)] [P(Y)(1-βyx)] +βxy P(X) (5.20)

However, this expression is quite complex and, additionally, we would have to estimate a

lot of β parameters. In case of a minimal cut set of greater order this expression would

become even more complex. For a third order minimal cut set it involves the estimation

of twelve betas i.e. βxy, βxz, βyx, βyz, βzx, βzy, βxyz, βxzy, βyxz, βyzx,βzxy, βzyx. That is not

practical, therefore we propose another way to proceed. We still believe that using

 149

expressions like 5.14 to calculate the likelihood of a group of coupled events is a good

choice, therefore in following sections we will propose to put all our β parameters equal

to a very conservative value (i.e. β=1). Additionally we propose to assign to the term

QT, the smallest of the probabilities of events in the minimal cut set, as explained in the

next section.

The β β β β parameter

In the β factor parametric method the β parameter represents the conditional probability

that the cause of a component failure will be shared by one or more additional

components, given that a component has already failed. As β is a probability, it may

range between 0 and 1, though, practically, it usually ranges between 10-4 and 2x10-1,

where the first value is for extremely weakly coupled systems and the second one is for

highly coupled ones. Additionally, β can also be seen as the strength of the coupling

among events, the greater the β factor, the greater is the coupling.
In our approach, the strength of the coupling among events is represented by the

existence or not of shared coupling codes in corresponding (peer) lifecycle categories

weighted with their Percentage %I. The greater the number of shared coupling codes and

the higher the Percentage %I associated with each lifecycle category, the greater is the

coupling among events. Basically, what in the β factor parametric method is considered

in the β parameter is, in our approach, considered in the combination of the Percentage

%I and the existence of shared coupling codes for corresponding lifecycle categories.

This is actually what we wanted to achieve since we have introduced lifecycle categories,

coupling codes and the Percentage %I to model explicitly the strength of couplings (i.e.

the β parameter in the β factor parametric method) among events. Therefore the β that

appears in our method, does not represent the same conditional probability as it does in

the β factor parametric method. In our method we expect β to be very near to one. To

be conservative, we propose to put β = 1 for the analysis of any unknown or new

systems. However, if there are sufficient data, β should be statistically estimated with

methods similar to those proposed in [Mosleh, et al., 1988], but we won’t discuss this

argument any further. Examples that follow in this and the next chapter will show that

the failure probability for the same coupled minimal cut set evaluated with the β factor

parametric method and the approach proposed in this thesis (with β=1) are very similar

(at least within the same order).

150

Value for the total likelihood QT

As far as QT is concerned, since we cannot assume the symmetry hypothesis (equation

5.13) and we wish to use expression 5.14 to calculate PC, we have to find another way to

assign a value to QT. We have at least three alternatives. We could either put QT equal to

the average, the smallest or the biggest value among probabilities of events in the

minimal cut set. However, since probabilities involved span various orders of

magnitude, the average value will coincide with the likelihood of the most likely event.

Additionally, if QT is equal to the most likely event, we may come to the absurd

conclusion that the coupled likelihood is bigger than the most unlikely event in the

minimal cut set, which is absolutely unrealistic. Let us see an example. We have two

events X and Y, the likelihood of X is P(X)=10-3, the likelihood of Y is P(Y)=10-5. If they

were independent the likelihood of them occurring simultaneously would be their

product i.e. 10-8. Since they are coupled, the likelihood that they occur simultaneously

should be bigger than the likelihood of the theoretically uncoupled minimal cut set (i.e.

10-8), but smaller than the likelihood of the most unlikely single event (i.e. P(Y)=10-5). If

we have β=.1 and we put QT equal to the average likelihood among the two events in our

minimal cut set, we would have the value QT≅10-3, which practically coincides with the

likelihood of the most likely event (i.e. X). After applying 5.14, we would have that

PC(X,Y) ≅ 10-4, which is absurd, since this figure is bigger than the upper bound of the

likelihood that can realistically be associated with the coupled minimal cut set that we

said is P(Y)=10-5. Hence, if we cannot use the average or the biggest value among

probabilities of events in the minimal cut set, we are left with the smallest one. Coming

back to our example. If we put QT equal to the smallest likelihood (i.e. 10-5) we would

have that PC(XY)=10-6, that is inside the boundary we were expecting. Hence we propose

to put the coupled probability for a minimal cut set of the second order equal to the

smallest among the probabilities of events in the minimal cut set. For a second order

minimal cut set we indicate that as in the following 5.21.

PC(X Y) = β min [P(X); P(Y)] (5.21)

Consequently, independent probabilities are written as in 5.22:

 PI(X) = P(X) - β min [P(X); P(Y)] (5.22)

 PI(Y) = P(Y) - β min [P(Y); P(Y)]

 151

The complete formula for the likelihood of the coupled minimal cut set of the second

order obtained under these conditions, is stated in 5.23. This expression satisfies limit

5.18 that says that, for β → 0, the likelihood of the minimal cut set tends to the

likelihood of the two events to occur independently, as shown by the 5.24.

P(X Y) = PI(X) PI(Y) + PC(X Y) =

 ={P(X)-β min[P(X); P(Y)]}{P(Y)-β min[P(X); P(Y)]}

 + β min[P(X); P(Y)] (5.23)

0→β
Lim {P(X)-β min[P(X); P(Y)]}{P(Y)-β min[P(X);P(Y)]}

 + β min[P(X); P(Y)] = P(X)P(Y) (5.24)

It can be demonstrated that the expression for the likelihood of a coupled minimal cut set

of the third order is represented by the following expression:

P(X,Y,Z) = Pi(X)Pi(Y)Pi(Z)+Pi(X)[Pc(Y; Z)-Pc(X; Y; Z)]+Pi(Y)[Pc(X; Z)

 -Pc(X; Y; Z)]+Pi(Z)[Pc(X; Y)-Pc(X; Y; Z)]+Pc(X; Y; Z)

and, within our hypotheses about β and QT, it can be reduced to the following:

P(X,Y,Z) ={P(X)-β min[P(X);P(Y);P(Z)]}{P(Y)-β min[P(X); P(Y);P(Z)]}{P(Z)-

β min[P(X);P(Y);P(Z)]} + β Min[P(X);P(Y);P(Z)]

Expressions for greater order minimal cut sets can also be written, but it is not intended

in this thesis to investigate all the statistics related to this matter.

Final considerations

Using expressions for the likelihood of coupled events obtained in previous sections at

the level of lifecycle categories, produces better, more realistic results than applying

them at minimal cut set level. At the level of lifecycle categories, we individually

152

consider each cause of coupling. Then, we perform the analysis only on the causes that

are shared among events in the minimal cut set by applying proposed formula for

estimating the coupled likelihood. Since each cause is responsible for only a fraction of

the total likelihood of each event (i.e. the Percentage %I which refers to the

corresponding lifecycle category), the use of a conservative value for β does not produce

too conservative a figure for the likelihood of the minimal cut set as a whole. Let us see

an example.

If we take the minimal cut set in Figure 5-2 and we suppose that:

• The first lifecycle category is responsible for a 5 percent share of the total

likelihood of each event (i.e. percentage %1=5);

• The second lifecycle category is responsible for the remaining 95 percent (i.e.

percentage %2=95);

• The total likelihood of event X is P(X)=10-3;

• The total likelihood of event Y is P(Y)=10-5.

After applying 5.2 and 5.23 to equation 5.8, we obtain probabilities in expression 5.6.

These are the passages:

P(x1) = %1*P(X) = .5 *10-4

P(x2) = %2*P(X) = .95 *10-3

P(y1) = %1*P(Y) = .5 *10-6

P(y2) = %2*P(Y) = .95 *10-5

β = 1

P(x1y1) ={ P(x1)-βmin[P(x1);P(y1)]}{P(x1)-βmin[P(x1);PT(y1)]}+βmin[P(x1);P(y1)]

≅ .25*10-9 + .5*10-6 ≅ .5 * 10-6

P(x1y2) = P(x1) P(y2) = .25 * 10-9

P(x2y1) = P(x2) P(y1) = .475 * 10-8

P(x2y2) = P(x2) P(y2) = .9025 * 10-7

P(XY) ≅ P(x1y1) + P(x1y2) + P(x2y1) + P(x2y2) ≅ .5 * 10-6 (5.25)

 153

If we wanted to obtain the same value for that likelihood by applying the same study at

minimal cut set level, we would have had to put β = .5*10-1 as shown in the 5.26. Being

that a low value for β, we would have to introduce arguments to justify it. That would

have required using expert judgement.

P(X,Y) = PI(X) PI(Y) + PC(X,Y) ≅

 ≅ 10-8 + .5*10-1 * 10-5 ≅ .5 * 10-6 (5.26)

What we have actually done is to screen individual causes that may give rise to events

and be responsible for couplings in a minimal cut set. This has been done on the basis of

a checklist that spans the whole lifecycle of each component in the system. This assumes

that lifecycle information was collected during the decomposition and design stages,

when this procedure is more economic and practical. In addition to the screening of

couplings, we have assigned a share of the likelihood of each event to causes of events.

Then we have provided mathematical support for evaluating the likelihood of coupled

minimal cut sets that considers individually the contribution of each single cause of each

event. As the weight of each cause we took the share of the total likelihood of each event

that is associated to the correspondent lifecycle category.

5.4 Discussion
In this chapter we have extended the FLASH formalism to consider common cause

failures. We have used some of the information stored into FLASH tables for two

purposes: investigation of minimal cut sets to find ones with coupled events and

estimation of their likelihood.

 The identification of minimal cut sets with coupled events was achieved by

analysing all minimal cut sets responsible for critical failures in the system under

investigation. Events in each minimal cut set were scanned to see whether they were

sharing one or more causes of coupling (i.e. coupling codes defined in Chapter four). If

any sharing was found, the minimal cut set was considered coupled. Since the method

identifies exactly those categories of the lifecycle responsible for actual couplings, it

makes it easy to investigate feasible remedies for those couplings. The analysts can then

give evidence why those couplings cannot give rise to common cause failures or, in the

last resort, calculate the likelihood of minimal cut sets considering only contributions

154

from those couplings that were identified. The innovative contribution of the method lies

in the systematic identification of the actual couplings. They come out of a mechanical

process that is the comparison of lifecycle information of events in the minimal cut set.

This process can also be easily automated. Therefore the liability for the identification

of couplings is transferred from expert judgement summarily estimating the likelihood at

minimal cut set level, to choosing the most convenient lists to use as base for the

identification of couplings among events.

 The estimation of the likelihood of minimal cut sets with coupled events, is the

natural step forward, after the identification of actual couplings. We provided a

mathematical framework to calculating the likelihood of minimal cut sets considering the

contribution of each actual coupling. Since the expression for that likelihood was quite

complex we made some approximations by eliminating terms which influence was

negligible for the final results.

Drawing some conclusion, we have shown that common cause likelihood can be

evaluated considering only contributions from real couplings and not with a summary

analysis at minimal cut set level, as is usually done. We have transferred the problem of

common cause failure analysis from the minimal cut set level to a lower (more detailed)

level, systematised the identification of couplings, and obtained more realistic results.

The next chapter presents two case studies to illustrate the overall FLASH process

as described in this and the previous chapter. The first case study is a Fuel System

adapted from [Vesely, 1981], the second case study is a computerised braking system.

 155

Chapter Six

6Case studies
This Chapter presents two case studies illustrating the FLASH process during the

decomposition and design, and during the integration and verification stages of the

lifecycle. The first case study is based on a Fuel System adapted from an example in the

fault tree handbook [Vesely, 1981], the second case study is based on a computerised

braking system developed at the University of York, but based on realistic industrial

data.

6.1 The Fuel System
The system that we examine in this section is a (hypothetical) fuel system (FS) whose

task is to provide emergency supply of fuel to an engine (a generator of electrical power,

for example) when the main supply to that engine is out of order. The system is

automatically activated when the primary supply fails, however, it can also be manually

activated and interrupted. As Figure 6-1 shows, the fuel system draws fuel resources

from a tank and provides fuel supplies to the engine.

Tank (Tk)

Fuel System (Fs)

Engine (Eg)

Fuel.Tk Fuel.Fs

Ω

S Engine

F Output

Button

Start.Button
Stop.Button

PowerSupply.PS

Figure 6-1: The Fuel System

Safety specifications for the fuel system require single point failures, which can give rise

to hazards, to be avoided. Real-time specifications require that the engine speed Ω be

limited at Ω=Ω0=constant. Moreover, the engine speed cannot deviate from the nominal

value Ω0 for more than 5 seconds. Only a failure may cause such a deviation for a longer

156

period. Figure 6-2 illustrates the hierarchical decomposition of the Fuel System. At the

first level of the decomposition (functional), we can see the whole equipment

encapsulated in a box that receives fuel from the tank, electrical power, start/stop

command signals and delivers the fuel to the engine. At the second level, we can see the

architecture of the system, in other words basic components and their connections. The

diagram shows three block valves (BVA, BVB and BVX), two control valves (CVA and

CVB) and an Electronic Controller (PLC) which sets the position of those valves to

regulate the path and rate of flow between the tank and the engine. Finally at the lowest

level of the decomposition, we see a high level representation (GRAFCET) of the control

sequence executed by the controller.

The control sequence shows that, in normal conditions of operation, the controller

sets valve BVX to the closed position and lets the fuel flow through the path that connects

valves BVA and CVA. While the system is in this state (Path1), the controller manages

the position of valve CVA and ensures that the flow of fuel through the valve always

equals the current demand by the engine. When the controller detects a disturbance of

that flow (caused, for example, by a failure or blockage of a valve) it activates a new path

in the system to restore the flow of fuel at the output. The new path (Path2) is the one

connecting valves BVB and CVB. Finally, the control sequence shows that a failure (or

blockage) of valve BVB while the system is in that state will trigger further action by the

controller, namely the activation of a third path (Path3) in the system, that between

valves BVA and CVB26.

However, there are two cases in which Path3 is not available. The first case is when

CVA fails open (i.e. Stuck Open or Significant Internal Leakage), BVA closes and the

flow goes through Path2 (i.e. Path3 is not available since BVA has to stay closed to avoid

the fuel going through CVA that is failed open). The second case arises when BVA fails

open (i.e. Fail to close or Significant Internal Leakage), CVA reduces the flow to a

minimum, but the supply is not completely shut off. Both of them are critical incidents

and the likelihood has to be less than 10-3 during the mission. To activate the remaining

possible path (i.e. Path4, through valve BVB, BVX and CVA), CVB must be plugged and

BVB, BVX and CVA must be still operating. This is an extremely unlikely circumstance

therefore Path4 was not implemented.

26 There is actually a fourth possible path, that connecting valves BVB and CVA, which

for simplicity we do not consider in this discussion.

 157

(PLC Output commands)

DPBVA = Desired position BVA
DPBVB = Desired position BVB
DPCVB = Desired position CVB
DPCVA = Desired position CVA

Path1 = through valves BVA, CVA
Path2 = through valves BVB, CVB
Path3 = through valves BVA, BVX, CVB

Fuel System
(FS)Fuel from tank

S Engine

F Output
Start/Stop (Signals)

PowerSupply

BV
X

CVABVA

BVB CVB

Fuel System = FS

PLC

Path2
State: BVB_CVB

Flow through
valves

BVB and CVB

IDLE
BVAi = 0
BVBi = 0

Path3
State: BVA_CVB

Flow through
valves

BVA, BVX and CVB

Path1:
State: BVA_CVA

Flow through
valves

BVA and CVA

stop

Valve BVA closed/plugged

Valve CVA plugged OR valve
BVA closed/plugged

stop

stop

start

= Flow delivered by the FS (Sensor)

= Speed of the engine (Sensor)

Fuel to the engine

Fuel from tank Fuel to the engine

P BVA

P BVB

P BVA = Position Sensor valve BVA
P CVB = Position Sensor valve CVB
P BVX = Position Sensor valve BVX

Start
Stop
PBVA
PBVB
PCVB
PCVA

Start/Stop (Signals)

S Engine

F Output

PLC

PowerSupply.PS

P
BV

X

(PLC Inputs)

Figure 6-2 :Hierarchical Decomposition of the Fuel System

158

6.1.1 Analysis in the Decomposition and Design Stage

The analysis of the Fuel System (FS) starts at functional level. The fuel system is

studied as a function that has to provide fuel to the engine when it is required. As such

the system has three failure modes: a) fuel is required, but not provided, b) fuel is not

required, but provided and c) fuel is provided when required, but the system is not fully

functional27 (i.e. a recovery action took place to by-pass a faulty component). Hence the

FLASH table for the fuel system at functional level propagates three effects as

represented in Table 6-1. These effects have different criticality levels that are indicated

in the Criticality column (i.e. Catastrophic, Critical and Negligible). The 5th column

reports recommendations that have to be considered by designers for the development of

the fuel system internal architecture. For example, recommendations for the first effect

states that the system should be fault tolerant for single failures in mechanically activated

components, additionally they require that the likelihood of this effect be smaller than 10-

6 during the mission time. For the second and third effect requirements are less

demanding, being events not as critical as the first. However their likelihood is requested

to be smaller than 10-3 during the mission.

 After the functional hazard analysis is completed, the FLASH method requests the

architecture achieving the function to be proposed. The architecture has to take into

account specifications, recommendations and derived safety requirements into the 5th

column. Such architecture is shown in Figure 6-3. It requires the failure of at least two

valves to cause the failure of the system. Figure 6-4 represents the correspondent failure

model of the fuel system drawn according to the FLASH notation. Names are given to

flows delivered by components according to the syntax defined in Chapter 4.

27 In this case a fault occurred. The system is still working properly, however any

additional fault may cause a system failure i.e. failure modes a) or b).

 159

FUEL SYSTEM

Failure event … Description Criticality 5th Column: Justification, Design Recommendations,
Derived Safety Requirements

Comments
(FMEA)

Fuel is required, but
not provided .fs
(No Flow – fuel
from the FS to the
engine)

No Flow of fuel on
the line that feeds
the engine. The
engine cannot start.
No electric power is
provided.

Catastrophic

Before design
Recommendations
The failure of the module cannot be handled. A fault tolerant architecture is
needed to prevent that single failures in mechanically activated component
will cause a system failure. The module has to be built with redundant
components.
Effect max accepted likelihood

10-6 during the mission
After design
Detection
…
Recovery
…
Recommendation
…
Max accepted likelihood for critical events in the Causes column.
…

Fuel is not required,
but provided .fs

The engine does not
stop – Electric power
is wasted

Critical

Before design
Recommendations
Single point to failures are allowed
Effect max accepted likelihood
10-3 during the mission
After design
Detection
…
Recovery
…
Recommendation
…
Max accepted likelihood for critical events in the Causes column.
…

Fuel is provided when
required, but the
system is not fully
functional .fs

The engine performs
properly, but a failure
has occurred –
Electric power is
provided

Negligible

Before design
Recommendations
Single point to failures are allowed
Effect max accepted likelihood
10-3 during the mission
After design
Detection
…
Recovery
…
Recommendation
…
Max accepted likelihood for critical events in the Causes column.
…

Table 6-1: FLASH table for the FS function, before the architecture is drawn

Electronic
Controller

(PLC)

Fuel Flow
from the

tank

Control
Valve

Block
Valve

Block
Valve

Fuel Flow
to the
engine

Process feedback

Block
Valve

Control
Valve

Figure 6-3: Architecture for the fuel system

160

Path1 = through valves BVA, CVA
Path2 = through valves BVB, CVB
Path3 = through valves BVA, BVX, CVB

BV
X

CVABVA

BVB CVB

Fuel System = FS

Fuel from tank Fuel to the engine

P BVA

P BVB

P BVA = Position Sensor valve BVA
P CVB = Position Sensor valve CVB
P BVX = Position Sensor valve BVX

Start/Stop (Signals)

S Engine

F Output

Electronic
Controller

(PLC)

PowerSupply.PS

P
BV

X

BVAo.BVA
Fuel.BVA

Fuel.CVA

Fuel.CVB

(Fuel.Fc)CVAi.Ec

CVBi.Ec

CVo.Eg

ESS.Eg

BVBi.Ec

BVBo.BVB

Fuel.BVB

BVAi.Ec

BV
Xi

.E
c

Figure 6-4:Details for the fuel system

Table 6-2 illustrates a fragment of the high-level FLASH analysis for the fuel system

after the causes column has been completed. The table records one (and perhaps the most

critical) of the functional failure modes of the system, the absence of flow in the line that

feeds the engine (No Flow – fuel to the engine). According to the analysis, this event can

be caused by an omission of the start signal (which causes a failure to start the system), a

commission of the stop signal (which causes inadvertent shut-down of the system), or a

combination of component failures that block all the available paths in the system (No

Flow-Path1, No Flow-Path2, No Flow-Path3). For simplicity and economy of space, the

table that we present here determines only the causes of failure in the third path (No

Flow – Path3). The analysis shows that the flow in this path is disrupted either by

internal failures of valves BVA, BVX, CVB or omissions of the signals that are

continuously sent by the electronic controller to maintain block valves BVA and BVX

open (Omission – DPBVA , Omission – DPBVX). The root causes of those events are

further explored in the FLASH tables for the corresponding components (i.e. the valves

and electronic controller).

 161

FUEL SYSTEM
Failure event Causes Description

No Flow – fuel from the

FS to the engine

Omission – Start OR
Commission – Stop OR

(No flow – Path1 AND
 No flow – Path2 AND
 No flow – Path3)

Where:
No flow – Path3 =
BVA failed closed OR
BVX failed closed OR
CVB failed closed OR
Omission – DPBVA OR
Omission – DPBVX

No Flow of fuel on the line
that feeds the engine. The
engine cannot start. No
electric power is provided.

It can be caused by an
omission of the start signal, a
commission of the stop signal
or because there is no flow in
the three possible paths that
can be activated by the PLC.
For simplicity, the causes of
failure in one path only
(Path3) are further explored
only

Table 6-2: Fragment of the high-level FLASH analysis

Table 6-3 presents a fragment of the analysis for valve BVA. Here we can see that the

condition BVA failed closed can be caused either by an electromechanical failure of the

valve (BVA failed to open) or because the aperture of the valve is blocked (BVA

Plugged).

Block Valve A

Failure Event Description Causes

BVA failed closed

Valve BVA is inadvertently closed due
to an internal hardware failure which
causes it to fail to open or because it is
plugged.

BVA failed to open OR BVA
plugged

Table 6-3: Fragment of the FLASH table for BVA failed closed

Table 6-4, on the other hand, contains fragments of the analysis for the electronic

controller (PLC). There we can see that the failure of the electronic controller to deliver

the valve open signal to BVA (Omission – DPBVA) can arise from different root failures in

the two states of the system that the valve is active (i.e. in states: Path1 and Path3). In

both states, the event is caused by a number of low level internal hardware failures of the

controller (electronic controller output circuit stuck at zero; electronic controller

register BVA_CVA stuck at zero; electronic controller register BVA stuck at zero;

electronic controller logical operation negated). However, in the first state and while

the system delivers fuel through the initial path, the analysis shows that the event can

also be caused by a failure of the sensor that monitors the position of valve BVA. Indeed,

if the output of that sensor is stuck at zero (Omission -PBVA), the controller will wrongly

perceive this as an indication that BVA is closed. This in turn will trigger a inadvertent

162

transition of the control sequence to the second state (Path2), the deactivation of the

initial path (including BVA) and the activation of the second path in the system.

On the other hand, if the system is in a transition towards the third state (for

example because valve BVB has failed closed) the electronic controller may fail to open

valve BVA simply because sensor PBVB has failed to detect that BVB is failed closed

(Commission – PBVB). Here, we can observe that the analysis provides some useful

pointers to particular subtle failures that may confuse the controller, corrupt the control

sequence and eventually compromise the failure detection and recovery mechanisms of

the system.

Electronic Controller (PLC)

Failure event Description Causes Contributing
Factor

Omission –
DPBVA

The PLC fails to deliver the valve open
signal to valve BVA, while the system is
in state Path1 (in other words while it
delivers fuel through valves BVA and
CVA.

It can be caused by a number of low level
PLC hardware failures, or because there is
a commission of the PBVA (sensor) signal
which causes an inadvertent exit from the
Path1 state.

PLC output circuit stuck at
zero OR
PLC register BVA_CVA stuck
at zero OR
PLC register BVA stuck at zero
OR
PLC logical operation negated
OR

Omission – PBVA

Path1

Omission –
DPBVA

The PLC fails to deliver the valve open
signal to valve BVA, while the system is
in state Path3 (in other words while it
delivers fuel through valves BVA, BVX
and CVB.

It can be caused by a number of low level
PLC hardware failures, or because there is
a commission of the PBVB (sensor) signal
which prevents the system of entering the
Path3 state.

PLC output circuit stuck at
zero OR
PLC register BVA_CVB stuck
at zero OR
PLC register BVA stuck at zero
OR
PLC logical operation negated
OR

Commission – PBVB

Transition from
Path2 to Path3

Table 6-4: Fragment of the FLASH table for the PLC

After writing causes for events propagated, it is possible to finish off the 5th column by

considering the possibility to detect, recover from, or mitigate the effect of the event

propagated, and eventually to issue recommendations for further developing lower level

components and the Maximum accepted likelihood for critical causes. Table 6-5

represents a fragment of the FLASH table for the electronic controller after the

completion of the 5th column.

 163

Electronic Controller (PLC)

Failure
event Description Causes

Contribu-
ting

Factor

5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Omission –
DPBVA

The PLC fails to deliver
the valve open signal to
valve BVA, while the
system is in state Path1
(in other words while it
delivers fuel through
valves BVA and CVA.

It can be caused by a
number of low level
PLC hardware failures,
or because there is a
commission of the PBVA
(sensor) signal which
causes an inadvertent
exit from the Path1
state.

PLC output circuit
stuck at zero OR
PLC register
BVA_CVA stuck at
zero OR
PLC register BVA
stuck at zero OR
PLC logical operation
negated OR

Omission – PBVA

Path1

Before design
Recommendations
The failure cannot be handled. It has to be
extremely unlikely
Effect max accepted likelihood
10-5 on demand
After design
This failure cannot be recovered.
Detection
Sensor off valve BVA
Recovery
Unlikely
Recommendation
Software must be developed to comply with
safety integrity level four
Max accepted likelihood for critical
events in the Causes column.
P(PLC output circuit stuck at zero t)<10-6h-1

P(PLC register BVA_CVA stuck at
 zero)<10-6h-1
P(PLC register BVA stuck at zero) <10-6h-1
P(PLC logical operation negated) <10-6h-1
P(Omission – PBVA) <10-6h-1

Omission –
DPBVA

The PLC fails to deliver
the valve open signal to
valve BVA, while the
system is in state Path3
(in other words while it
delivers fuel through
valves BVA, BVX and
CVB.

It can be caused by a
number of low level
PLC hardware failures,
or because there is a
commission of the PBVB
(sensor) signal which
prevents the system of
entering the Path3 state.

PLC output circuit
stuck at zero OR
PLC register
BVA_CVB stuck at
zero OR
PLC register BVA
stuck at zero OR
PLC logical operation
negated OR

Commission – PBVB

Transi-
tion from
Path2 to

Path3

Before design
Recommendations
The failure cannot be handled. It has to be
extremely unlikely
Effect max accepted likelihood
10-5 on demand
After design
This failure cannon be recovered.
Detection
Sensor off valve BVA
Recovery
Unlikely
Recommendation
Software must be developed to comply with
safety integrity level four
Max accepted likelihood for critical
events in the Causes column.
P(PLC output circuit stuck at zero t)<10-6h-1

P(PLC register BVA_CVB stuck at
 zero)<10-6h-1

P(PLC register BVA stuck at zero) <10-6h-1
P(PLC logical operation negated) <10-6h-1
P(Commission – PBVA) <10-6h-1

Table 6-5: Fragment of the FLASH table after completion of the 5th column

Figure 6-5 shows a fragment of the fault tree that is mechanically generated from the

hierarchy of FLASH tables for the fuel system. It can be seen how the interruption of

flow in the line that feeds the engine (No Flow – fuel to the engine) can be caused by a

combination of lower level malfunctions and basic component failure modes.

Additionally, since the tree is constructed by parsing the hierarchy of FLASH tables, its

construction validates whether the hierarchy is consistent and the required information is

in the hierarchy of tables.

164

The following section presents the FLASH analysis of the fuel system in the

integration and verification phase of the lifecycle.

No flow - Path1

OR

No flow - Path3

OR

BVA failed closed

OR

Sequential failure
of Path1, Path2

and Path3

AND

BVA failed to
open

CVB failed closedBVX failed closed Omission-DPBVX

BVA plugged

Omission -
 Start

CVB failed closedBVX failed closed Omission-DPBVX

No flow - Path2

BVA failed closed

OR

BVA failed to
open BVA plugged

Commission -
Stop

No Flow - fuel to
the engine

OR

PLC register
BVA_CVA

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path1)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Omission -
P BVA

PLC register
BVA_CVB

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path3)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Commission
- P BVA

Figure 6-5: The fault tree for the failure event “No Flow – fuel to the engine”

6.1.2 Analysis in the Integration and Verification

The aim of the FLASH analysis in the integration and verification is to confirm that each

module and component of the hierarchy meets the requirements, specifications and

recommendations entered into the FLASH tables (i.e. the 5th column). The process of

verification starts from modules at the lowest hierarchical level and proceeds towards the

top functional level. Fault trees are built for each effect and evaluated using fault tree

analysis. The structure of each tree is taken from the Causes column and by parsing

tables of included modules. The likelihood of the top event is recorded in the “FMEA

results” column as “Likelihood of the effect”.

 Among modules here considered, block valve A (BVA) and Electronic Controller

(EC) are basic components. Hence they are analysed first. The likelihood of each event

propagated by BVA can be calculated from information into Table 6-6. For example,

O_.Fuel.bva, which tree is shown in Figure 6-6, is caused by two basic events (i.e.

Fail_to_open.bva and Plugged.bva) and one incoming event (i.e. O_.BVAi.Ec). The

 165

likelihood28 of each basic event is calculated considering the mission time, the failure

probability on demand and the failure rate as reported in Table 6-6. The likelihood of

incoming event O_.BVAi.Ec, is obtained either, developing and evaluating the fault tree

with that top event (i.e. represented in Figure 6-7) or, taken from the Summary FMEA

result column in the table for the Electronic controller (i.e. Table 6-7). Hence, from

Table 6-6 and Table 6-7 we determine that, in the transition between Path2 and Path3,

P(Plugged.bva)=5*10-4, P(Fail_to_open.bva)=4.13*10-4 and P(O_.BVAi.Ec)= 7*10-5.

Consequently, the likelihood of event O_.Fuel.BVA (when the system is in transition

between Path2 and Path3) is P(O_.Fuel.bva)≅ 9.8*10-4.

(BVA failed Closed)
O_.Fuel.bva

O
R

Omission-DP BVA
(O_.BVAi.Ec)

Fail_to_open.
bvaPlugged.bva

Figure 6-6: Tree for the event omission Fuel from BVA

This likelihood is recorded in the FMEA result column for the event along with

information demonstrating that recommendations and constraints in the 5th column are

met. We can see that in Table 6-7, the FMEA results column reports that the detection

for the event O_.Fuel.BVA is possible from a speed sensor on the engine and from a flow

sensor on the flow to the engine. Additionally, it says that the likelihood of this event is

9.8*10-4 in both states in which it may a rise. Since recommendations and constraints are

actually met and the likelihood for the event O_.fuel.bva is less then the acceptable value

into the 5th column the analysis moves further, another event in the same table is

28 The likelihood that the event “E” happens during the mission time “∆t” is equal to the
sum of the likelihood the event happens on demand “qo” plus the likelihood the event
happens during the mission time. If it is assumed an exponential distribution with
constant rate “λE” for the event to happen, the equation for likelihood of the event

becomes 





∆
−+=∆ ∆− tE

E
Ee

t
qoP λλλ 1),tE,(.

166

analysed. When all the events in that table have been considered, the analysis moves to

another table at the same or higher hierarchical level. If all of the recommendations and

constraints are met the analysis will eventually reach the highest functional level and

validate the overall design. In any other case some modifications in the design will be

necessary.

Same level Causes Effects & Consequences Critica-
lity

5th Column
Justification, Design Recommendations, Derived Safety Requirements

Summary
FMEA
results

O_.Fuel.bva

Fail_to_open.
bva OR
O_.BVAi.ec
OR
Plugged.bva

The fuel goes through the
valve when it should not NA

Before design
Recommendations
….
Effect max accepted likelihood
The likelihood must be less than 10-3 during the mission time (100 hours)

Detection: should be possible. i.e. from a speed sensor on the engine and
from a flow sensor on the flow to the engine.
Recovery: must be possible for single failure.
Recommendations: Detection algorithm should know the status of the
system and find suitable way to detect failures and recover them.
Accepted Likelihood:
λ (Fail_to_open.bva) < 10-3 h-1
λ (O_.BVAi.ec) < 10-4 h-1
λ (Plugged.bva) < 10-3 h-1

C_.Fuel.bva

Fail_to_close.
bva OR
Severe_Int_Le
ackage.bva
OR
C_BVAi.ec

The fuel doesen't go
through the valve when it
should

NA

Before design
Recommendations
….
Effect max accepted likelihood
10-4 during the mission
Detection: should be possible. i.e. from a speed sensor on the engine and
from a flow sensor on the flow to the engine.
Recovery: must be possible for single failure.
Recommendations: Detection algorithm should know the status of the
system and find suitable way to detect failures and recover them.
Accepted Likelihood:
The likelihood must be < 3*10-5 during the mission

O_.BVAo.bva O_.BVAo.bva The sensor fails giving
output bit 0 NA

Before design
Recommendations
….
Effect max accepted likelihood
10-4 during the mission
Detection: not possible
Recovery: must be possible for single failure.
Recommendations: Detection algorithm should know the status of the
system and find suitable way to detect failures and recover them.
Accepted Likelihood:
The likelihood must be < 3*10-5 during the mission

C_.BVAo.bva C_.BVAo.bva The sensor fails giving
output bit 1 NA

Before design
Recommendations
….
Effect max accepted likelihood
10-4 during the mission
Detection: not possible
Recovery: must be possible for single failure.
Recommendations: Detection algorithm should know the status of the
system and find suitable way to detect failures and recover them.
Accepted Likelihood:
The likelihood must be < 3*10-5 during the mission

Basic Events

Reliability data Fail_to_open.bva Severe_Int_Leackage.b

va

Fail_to_close.bva Plugged.bva C_.BVAo.bva O_.BVAo.bva …

Description Fail to open
when required

 There is a major
leakage inside the

valve

The valve fails to
close

 The valve is
Plugged

The sensor
fails giving
output bit 1

 The sensor
fails giving
output bit 0

Failure Rate λ[1/h] 3e-006 3e-006 1.4e-006 5e-005 2e-007 2e-007
Repair Rate µ[1/h]
Failure Probability on
Demand [qo]

 4.1e-004 4.1e-004

Mean Time to Failure
MTTF [h]

Mission time [h] 100 100 100 100 100 100

Table 6-6: Table for the block valve BVA

 167

PLC register
BVA_CVA

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path1)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Omission -
P BVA

PLC register
BVA_CVB

stuck at zero

PLC output
circuit stuck at

zero

Omission-DP BVA
(O_.BVAi.Ec)

(Path3)
O
R

PLC register
BVA stuck at

zero

PLC logical
operation
negated

Commission
- P BVA

Figure 6-7: Trees for the event omission DP- BVA

Block Valve A
Failure
Event Causes Description Justification, Design Recommendation & Actions

Required Summary FMEA Results

BVA failed
closed
(O_.Fuel
.bva)

BVA failed to
open OR BVA
plugged
OR
O_.BVAi.ec

Valve BVA is
inadvertently
closed due to an
internal
hardware failure
which causes it
to fail to open
or because it is
plugged.

Before design
Recommendations
….
Effect max accepted likelihood
The likelihood must be less than 10-3 during the
mission time (100 hours)
Detection: should be possible. i.e. from a speed
sensor on the engine and from a flow sensor on the
flow to the engine.
Recovery: must be possible for single failure.
Recommendations: Detection algorithm should
know the status of the system and find suitable way
to detect failures and recover them.
Accepted Failure Rate:
λ (Fail_to_open.bva) < 10-3 h-1
λ (O_.BVAi.ec) < 10-4 h-1
λ (Plugged.bva) < 10-3 h-1

The detection is possible
from a speed sensor on the
engine and from a flow
sensor on the flow to the
engine.
The average likelihood that
the event O_.Fuel.bva has to
be generated by internal
events is 9.8*10-4
Likelihood is very near the
upper bound for the
acceptability.

Electronic Controller (PLC)

Failure event Causes Description Contributing
Factor

5th Column: Justification, Design
Recommendations, Derived Safety
Requirements

Summary FMEA Results

Omission –
DPBVA
(O_.BVAi
.ec)

PLC output circuit
stuck at zero OR
PLC register
BVA_CVB stuck
at zero OR
PLC register BVA
stuck at zero OR
PLC logical
operation negated
OR

Commission –
PBVB

The PLC fails to
deliver the valve
open signal to
valve BVA, while
the system is in
state Path3 (in
other words while
it delivers fuel
through valves
BVA, BVX and
CVB.

It can be caused by
a number of low
level PLC
hardware failures,
or because there is
a commission of
the PBVB (sensor)
signal which
prevents the
system of entering
the Path3 state.

Transition
from
Path2 to
Path3

Before design
Recommendations
The failure cannot be handled. It has to be
extremely unlikely
Effect max accepted likelihood
10-4 during the mission time
After design
This failure cannon be recovered.
Detection
Sensor off valve BVA
Recovery
Unlikely
Recommendation
Software must be developed to comply with
safety integrity level four
Max accepted Failure Rate for critical
events in the Causes column.
λ(PLC output circuit stuck at zero t)<10-6 h-1
λ (PLC register BVA_CVB stuck at
 zero)<10-6 h-1
λ (PLC register BVA stuck at zero) <10-6 h-1
λ (PLC logical operation negated) <10-6 h-1
λ (Commission – PBVA) <10-6 h-1

The actual likelihood is 7*10-5
during the mission. The failure
cannot be handled, however it is
extremely unlikely. The software
is developed to comply with
safety integrity level four.

Table 6-7: BVA and Ec tables after the Integration and Verification

168

6.1.3 Common Cause Failures

Common cause failures are the subset of dependent failures that cannot be treated

explicitly in the analysis. They arise when two or more events in a minimal cut set are

coupled. FLASH addresses the study of common cause failures when there is all the

information required for constructing fault trees and minimal cut sets for each tree can be

obtained. Minimal cut sets susceptible to common cause failure are subsequently

identified by comparing lifecycle information among their events. When events sharing

the same coupling code in a peer lifecycle category are found, these events are

considered coupled; hence that minimal cut set has to be considered for common cause

failure analysis.

Table 6-8 reports the list of all the minimal cut sets of the fuel system responsible

for the functional failure mode “Fuel is required, but not provided .fs”. It can be seen

that there are 96 minimal cut sets of the second order and 188 minimal cut sets of the

third order. The FLASH method requires all these minimal cut sets to be analysed to

find couplings. For example the first minimal cut sets represent the simultaneous failure

of the first timer register (i.e. T1) and block valve A (i.e. FTO_BVA = Fail to Open). An

accurate examination of Table 6-9 representing its couplings, reveals that these events

are actually uncoupled hence the likelihood of this MCS is the simple product of the

likelihood of each of its constituent events (i.e. P(FTO_BVA) * P(FTO_BVA)= 1*10-8).

On the other hand, Errore. L'origine riferimento non è stata trovata. for minimal

cut set 81 (i.e. C_BVAO_BVA; FTO_BVA) clearly shows several couplings. This

minimal cut set represents the simultaneous arising of two failure events inside the block

valve BVA: a) the fail to open of the valve and the failure of the sensor monitoring the

flow through the valve. These events are coupled since they share coupling codes in

several lifecycle categories. For instance they have the same concept and design i.e.

Design architecture=DCA1, technological material equipment type=DTM1, and

Specification=DS1, additionally, they share the same installation fitter (i.e.IIF1), finally

they the have same staff and procedures for operation (i.e. OS1 and OP1) and

maintenance (i.e. MS1 and MP1). Hence, the likelihood for this minimal cut set has to be

estimated using methods for common cause failure analysis.

 169

LIST OF MINIMAL CUTSETS SORTED VS. ORDER
Minimal Cut Sets # Minimal Cut Sets # Minimal Cut Sets # Minimal Cut Sets

 1 FTO_BVA T1 72 O_O_C_O200 T2 143 C_I005 O_IO10 O_R403 214 C_I001 C_I_C_I005 O_IO10
 2 FTO_BVA O_I005 73 FTO_BVA O_R405 144 C_I_C_I005 O_IO10 O_R403 215 C_I_C_I001 C_I_C_I005 O_IO10
 3 FTO_BVA O_I_C_I005 74 O_R405 PLG_BVA 145 C_ESSB1_EN O_IO10 O_R403 216 C_BVBO_BVB C_I_C_I005 O_IO10
 4 FTO_BVA O_ESSB1_EN 75 O_O200 O_R405 146 O_I005 O_IO10 O_R403 217 C_ESSB1_EN O_IO10 T3
 5 C_I_C_I006 FTO_BVA 76 O_O_C_O200 O_R405 147 O_IO10 O_I_C_I005 O_R403 218 0_R406 C_ESSB1_EN O_IO10
 6 C_ESSB2_EN FTO_BVA 77 FTO_BVA O_R402 148 O_ESSB1_EN O_IO10 O_R403 219 C_ESSB1_EN C_I001 O_IO10
 7 FTO_BVA O_I006 78 O_R402 PLG_BVA 149 C_I006 O_IO10 O_R403 220 C_ESSB1_EN C_I_C_I001 O_IO10
 8 FTO_BVA O_I_C_I006 79 O_O200 O_R402 150 C_I_C_I006 O_IO10 O_R403 221 C_BVBO_BVB C_ESSB1_EN O_IO10
 9 FTO_BVA O_ESSB2_EN 80 O_O_C_O200 O_R402 151 C_ESSB2_EN O_IO10 O_R403 222 O_I005 O_IO10 T3
 10 PLG_BVA T1 81 C_BVAO_BVA FTO_BVA 152 O_I006 O_IO10 O_R403 223 0_R406 O_I005 O_IO10
 11 O_R404 PLG_BVA 82 C_BVAO_BVA PLG_BVA 153 O_IO10 O_I_C_I006 O_R403 224 C_I001 O_I005 O_IO10
 12 C_I005 PLG_BVA 83 C_BVAO_BVA O_O200 154 O_ESSB2_EN O_IO10 O_R403 225 C_I_C_I001 O_I005 O_IO10
 13 C_I_C_I005 PLG_BVA 84 C_BVAO_BVA O_O_C_O200 155 O_R401 O_R403 T1 226 C_BVBO_BVB O_I005 O_IO10
 14 C_ESSB1_EN PLG_BVA 85 C_I000 FTO_BVA 156 O_R401 O_R403 O_R404 227 O_IO10 O_I_C_I005 T3
 15 O_I005 PLG_BVA 86 C_I000 PLG_BVA 157 C_I005 O_R401 O_R403 228 0_R406 O_IO10 O_I_C_I005
 16 C_I006 FTO_BVA 87 C_I000 O_O200 158 C_I_C_I005 O_R401 O_R403 229 C_I001 O_IO10 O_I_C_I005
 17 O_I_C_I005 PLG_BVA 88 C_I000 O_O_C_O200 159 C_ESSB1_EN O_R401 O_R403 230 C_I_C_I001 O_IO10 O_I_C_I005
 18 O_ESSB1_EN PLG_BVA 89 C_I_C_I000 FTO_BVA 160 O_I005 O_R401 O_R403 231 C_BVBO_BVB O_IO10 O_I_C_I005
 19 C_I006 PLG_BVA 90 C_I_C_I000 PLG_BVA 161 O_I_C_I005 O_R401 O_R403 232 O_ESSB1_EN O_IO10 T3
 20 C_I_C_I006 PLG_BVA 91 C_I_C_I000 O_O200 162 O_ESSB1_EN O_R401 O_R403 233 0_R406 O_ESSB1_EN O_IO10
 21 C_ESSB2_EN PLG_BVA 92 C_I_C_I000 O_O_C_O200 163 C_I006 O_R401 O_R403 234 C_I001 O_ESSB1_EN O_IO10
 22 O_I006 PLG_BVA 93 FTO_BVA O_R404 164 C_I_C_I006 O_R401 O_R403 235 C_I_C_I001 O_ESSB1_EN O_IO10
 23 O_I_C_I006 PLG_BVA 94 C_I005 FTO_BVA 165 C_ESSB2_EN O_R401 O_R403 236 C_BVBO_BVB O_ESSB1_EN O_IO10
 24 O_ESSB2_EN PLG_BVA 95 C_I_C_I005 FTO_BVA 166 O_I006 O_R401 O_R403 237 C_I006 O_IO10 T3
 25 O_O200 T1 96 C_ESSB1_EN FTO_BVA 167 O_I_C_I006 O_R401 O_R403 238 0_R406 C_I006 O_IO10
 26 O_O200 O_R404 97 C_I_C_I001 C_I_C_I005 O_R401 168 O_ESSB2_EN O_R401 O_R403 239 C_I001 C_I006 O_IO10
 27 C_I005 O_O200 98 C_BVBO_BVB C_I_C_I005 O_R401 169 FTO_BVB O_IO10 O_R403 240 C_I006 C_I_C_I001 O_IO10
 28 C_I_C_I005 O_O200 99 C_ESSB1_EN O_R401 T3 170 FTO_BVB O_R401 O_R403 241 C_BVBO_BVB C_I006 O_IO10
 29 C_ESSB1_EN O_O200 100 0_R406 C_ESSB1_EN O_R401 171 O_IO10 O_R403 PLG_BVB 242 C_I_C_I006 O_IO10 T3
 30 O_I005 O_O200 101 C_ESSB1_EN C_I001 O_R401 172 O_R401 O_R403 PLG_BVB 243 0_R406 C_I_C_I006 O_IO10
 31 O_I_C_I005 O_O200 102 C_ESSB1_EN C_I_C_I001 O_R401 173 O_IO10 O_O201 O_R403 244 C_I001 C_I_C_I006 O_IO10
 32 O_ESSB1_EN O_O200 103 C_BVBO_BVB C_ESSB1_EN O_R401 174 O_O201 O_R401 O_R403 245 C_I_C_I001 C_I_C_I006 O_IO10
 33 C_I006 O_O200 104 O_I005 O_R401 T3 175 O_IO10 O_O_C_O201 O_R403 246 C_BVBO_BVB C_I_C_I006 O_IO10
 34 C_I_C_I006 O_O200 105 C_BVBO_BVB O_I_C_I005 O_R401 176 O_O_C_O201 O_R401 O_R403 247 C_ESSB2_EN O_IO10 T3
 35 C_ESSB2_EN O_O200 106 O_ESSB1_EN O_R401 T3 177 O_IO10 O_R403 T2 248 0_R406 C_ESSB2_EN O_IO10
 36 O_I006 O_O200 107 0_R406 O_ESSB1_EN O_R401 178 O_R401 O_R403 T2 249 C_ESSB2_EN C_I001 O_IO10
 37 O_I_C_I006 O_O200 108 C_I001 O_ESSB1_EN O_R401 179 O_IO10 O_R403 O_R405 250 C_ESSB2_EN C_I_C_I001 O_IO10
 38 O_ESSB2_EN O_O200 109 C_I_C_I001 O_ESSB1_EN O_R401 180 O_R401 O_R403 O_R405 251 C_BVBO_BVB C_ESSB2_EN O_IO10
 39 O_O_C_O200 T1 110 C_BVBO_BVB O_ESSB1_EN O_R401 181 O_IO10 O_R402 O_R403 252 O_I006 O_IO10 T3
 40 O_O_C_O200 O_R404 111 C_I006 O_R401 T3 182 O_R401 O_R402 O_R403 253 0_R406 O_I006 O_IO10
 41 C_I005 O_O_C_O200 112 0_R406 C_I006 O_R401 183 C_BVAO_BVA O_IO10 O_R403 254 C_I001 O_I006 O_IO10
 42 C_I_C_I005 O_O_C_O200 113 C_I001 C_I006 O_R401 184 C_BVAO_BVA O_R401 O_R403 255 C_I_C_I001 O_I006 O_IO10
 43 C_ESSB1_EN O_O_C_O200 114 C_I006 C_I_C_I001 O_R401 185 C_I000 O_IO10 O_R403 256 C_BVBO_BVB O_I006 O_IO10
 44 O_I005 O_O_C_O200 115 C_BVBO_BVB C_I006 O_R401 186 C_I000 O_R401 O_R403 257 O_IO10 O_I_C_I006 T3
 45 O_I_C_I005 O_O_C_O200 116 C_I_C_I006 O_R401 T3 187 C_I_C_I000 O_IO10 O_R403 258 0_R406 O_IO10 O_I_C_I006
 46 O_ESSB1_EN O_O_C_O200 117 0_R406 C_I_C_I006 O_R401 188 C_I_C_I000 O_R401 O_R403 259 C_I001 O_IO10 O_I_C_I006
 47 C_I006 O_O_C_O200 118 C_I001 C_I_C_I006 O_R401 189 C_I001 O_IO10 T1 260 C_I_C_I001 O_IO10 O_I_C_I006
 48 C_I_C_I006 O_O_C_O200 119 C_I_C_I001 C_I_C_I006 O_R401 190 0_R406 O_I005 O_R401 261 C_BVBO_BVB O_IO10 O_I_C_I006
 49 C_ESSB2_EN O_O_C_O200 120 C_BVBO_BVB C_I_C_I006 O_R401 191 C_I001 O_I005 O_R401 262 O_ESSB2_EN O_IO10 T3
 50 O_I006 O_O_C_O200 121 C_ESSB2_EN O_R401 T3 192 C_I_C_I001 O_I005 O_R401 263 0_R406 O_ESSB2_EN O_IO10
 51 O_I_C_I006 O_O_C_O200 122 0_R406 C_ESSB2_EN O_R401 193 C_BVBO_BVB O_I005 O_R401 264 C_I001 O_ESSB2_EN O_IO10
 52 O_ESSB2_EN O_O_C_O200 123 C_ESSB2_EN C_I001 O_R401 194 O_I_C_I005 O_R401 T3 265 C_I_C_I001 O_ESSB2_EN O_IO10
 53 FTO_BVA FTO_BVB 124 C_ESSB2_EN C_I_C_I001 O_R401 195 0_R406 O_I_C_I005 O_R401 266 C_BVBO_BVB O_ESSB2_EN O_IO10
 54 FTO_BVB PLG_BVA 125 C_BVBO_BVB C_ESSB2_EN O_R401 196 C_I001 O_I_C_I005 O_R401 267 O_R401 T1 T3
 55 FTO_BVB O_O200 126 O_I006 O_R401 T3 197 C_I_C_I001 O_I_C_I005 O_R401 268 0_R406 O_R401 T1
 56 FTO_BVB O_O_C_O200 127 0_R406 O_I006 O_R401 198 C_BVBO_BVB O_IO10 T1 269 C_I001 O_R401 T1
 57 FTO_BVA PLG_BVB 128 C_I001 O_I006 O_R401 199 O_IO10 T1 T3 270 C_I_C_I001 O_R401 T1
 58 PLG_BVA PLG_BVB 129 C_I_C_I001 O_I006 O_R401 200 0_R406 O_IO10 T1 271 C_BVBO_BVB O_R401 T1
 59 O_O200 PLG_BVB 130 C_BVBO_BVB O_I006 O_R401 201 C_I_C_I001 O_IO10 T1 272 O_R401 O_R404 T3
 60 O_O_C_O200 PLG_BVB 131 O_I_C_I006 O_R401 T3 202 O_IO10 O_R404 T3 273 0_R406 O_R401 O_R404
 61 FTO_BVA O_O201 132 0_R406 O_I_C_I006 O_R401 203 0_R406 O_IO10 O_R404 274 C_I001 O_R401 O_R404
 62 O_O201 PLG_BVA 133 C_I001 O_I_C_I006 O_R401 204 C_I001 O_IO10 O_R404 275 C_I_C_I001 O_R401 O_R404
 63 O_O200 O_O201 134 C_I_C_I001 O_I_C_I006 O_R401 205 C_I_C_I001 O_IO10 O_R404 276 C_BVBO_BVB O_R401 O_R404
 64 O_O201 O_O_C_O200 135 C_BVBO_BVB O_I_C_I006 O_R401 206 C_BVBO_BVB O_IO10 O_R404 277 C_I005 O_R401 T3
 65 FTO_BVA O_O_C_O201 136 O_ESSB2_EN O_R401 T3 207 C_I005 O_IO10 T3 278 0_R406 C_I005 O_R401
 66 O_O_C_O201 PLG_BVA 137 0_R406 O_ESSB2_EN O_R401 208 0_R406 C_I005 O_IO10 279 C_I001 C_I005 O_R401
 67 O_O200 O_O_C_O201 138 C_I001 O_ESSB2_EN O_R401 209 C_I001 C_I005 O_IO10 280 C_I005 C_I_C_I001 O_R401
 68 O_O_C_O200 O_O_C_O201 139 C_I_C_I001 O_ESSB2_EN O_R401 210 C_I005 C_I_C_I001 O_IO10 281 C_BVBO_BVB C_I005 O_R401
 69 FTO_BVA T2 140 C_BVBO_BVB O_ESSB2_EN O_R401 211 C_BVBO_BVB C_I005 O_IO10 282 C_I_C_I005 O_R401 T3
 70 PLG_BVA T2 141 O_IO10 O_R403 T1 212 C_I_C_I005 O_IO10 T3 283 0_R406 C_I_C_I005 O_R401
71 O_O200 T2 142 O_IO10 O_R403 O_R404 213 0_R406 C_I_C_I005 O_IO10 284 C_I001 C_I_C_I005 O_R401

Table 6-8: List of the minimal cut sets generating the top event

For common cause failure analysis we will use the method proposed in chapter 5 as an

extension of the FLASH method. First of all we calculate the total likelihood of each

event during the mission, i.e. P(FTO_BVA)=1.0e-3 and P(C_BVAO_BVA)=1.0e-5.

Then, we calculate the likelihood of each lifecycle category to cause the event by

applying expression 5-2 (the whole list of probabilities is reported in Table 6-10). For

example, the likelihood of event FTO_BVA to be caused by an error in the lifecycle

category Manufacturer (i.e. MM1) of valve BVA is:

170

 P(FTO_BVAMM1) = P(FTO_BVA)* 3/100 = 3*e-5

Then, we calculate the likelihood of each coupling cause by applying expression 5.23 to

obtain the list of coupled probabilities shown in Table 6-11 (estimated by using β= 1).

Basic Events

 FTO_BVA T1
Failure Rate λ[1/h] 1e-6 1e-7
Repair Rate µ[1/h] - -

Mean Time to Failure MTTF [h] - -
Failure Probability on demand 1e-3 -

R
el

ia
bi

lit
y

 D
at

a

Mission time [h] 100 100

 Coupl.
Code

% Coupl.
Code

%

 Design
Architecture DCA1 2 DCA3 8

Concept and
Design

Technological
Materials
Equipment Type

DTM1 3 DTM3 7

 Specifications DS1 1 DS3 6
 Manufacturer MM1 3 MM3 5

Manufacturing Procedures MPD1 5 MPD3 4
 Process MPP1 1 MPP3 8

Installation/ Fitter IIF1 3 IIF3 5
Integration Procedures IIP1 6 IIP3 4
And Test Location IIL1 2 IIL3 6

 Routing IIR1 5 IIR3 7
Operation Staff OS1 4 OS3 8

 Procedures OP1 6 OP3 6
Maintenance Staff MS1 7 MS3 2

 Procedures MP1 8 MP3 3
Test Staff TS1 6 TS3 1

 Procedures TP1 8 TP3 3
Calibration Staff CS1 7 CS3 5

 Procedures CP1 6 CP3 1
 Mechanical and

Thermal EMT1 5 EMT3 3

Environmental Electrical and
Corrosion EEC1 4 EEC3 6

Li
fe

cy
cl

e
C

at
eg

or
ie

s

 Chemical and
miscellaneous ECM1 8 ECM3 2

Table 6-9: Coupling table for MCS 1 (FTO_BVA; T1)

 171

Basic Events

 FTO_BVA C_BVAO_BVA

Failure Rate λ[1/h] 1e-6 1e-7
Repair Rate µ[1/h] - -

Mean Time to Failure MTTF [h] - -
Failure Probability on demand 1e-3 - R

el
ia

bi
lit

y
 D

at
a

Mission time [h] 100 100

 Coupl. Code % Coupl. Code %
 Design Architecture DCA1 2 DCA1 8

Concept and
Design

Technological Materials
Equipment Type

 DTM1 3 DTM1 7
 Specifications DS1 1 DS1 6
 Manufacturer MM1 3 MM2 5

Manufacturing Procedures MPD1 5 MPD2 4
 Process MPP1 1 MPP2 8

Installation/ Fitter IIF1 3 IIF1 5
Integration Procedures IIP1 6 IIP2 4
And Test Location IIL1 2 IIL2 6

 Routing IIR1 5 IIR2 7
Operation Staff OS1 4 OS1 8

 Procedures OP1 6 OP1 6
Maintenance Staff MS1 7 MS1 2

 Procedures MP1 8 MP1 3
Test Staff TS1 6 TS2 1

 Procedures TP1 8 TP2 3
Calibration Staff CS1 7 CS2 5

 Procedures CP1 6 CP2 1
 Mechanical and Thermal EMT1 5 EMT2 3

Environmental Electrical and Corrosion EEC1 4 EEC2 6

Li
fe

cy
cl

e
C

at
eg

or
ie

s

 Chemical and miscellaneous ECM1 8 ECM2 2

Basic Events

 FTO_BVA C_BVAO_BVA

 Coupling
Code

Likelihood that the
Lifecycle category

causes the basic event

Coupling
Code

Likelihood that the
Lifecycle category

causes the basic event
 Design Architecture DCA1 2e-5 DCA1 8e-7

Concept and
Design

Technological Materials
Equipment Type

 DTM1 3e-5 DTM1 7e-7
 Specifications DS1 1e-5 DS1 6e-7
 Manufacturer MM1 3e-5 MM2 5e-7

Manufacturing Procedures MPD 1 5e-5 MPD 2 4e-7
 Process MPP 1 1e-5 MPP 2 8e-7

Installation/ Fitter IIF1 3e-5 IIF1 5e-7
Integration Procedures IIP1 6e-5 IIP2 4e-7
And Test Location IIL1 2e-5 IIL2 6e-7

 Routing IIR1 5e-5 IIR2 7e-7
Operation Staff OS1 4e-5 OS1 8e-7

 Procedures OP1 6e-5 OP1 6e-7
Maintenance Staff MS1 7e-5 MS1 2e-7

 Procedures MP1 8e-5 MP1 3e-7
Test Staff TS1 6e-5 TS2 1e-7

 Procedures TP1 8e-5 TP2 3e-7
Calibration Staff CS1 7e-5 CS2 5e-7

 Procedures CP1 6e-5 CP2 1e-7
 Mechanical and Thermal EMT1 5e-5 EMT2 3e-7

Environmental Electrical and Corrosion EEC1 4e-5 EEC2 6e-7

Li
fe

cy
cl

e
C

at
eg

or
ie

s

 Chemical and
miscellaneous

 ECM1 8e-5 ECM2 2e-7

Table 6-10: Probabilities that a coupling cause will rise an event in MCS 81

172

Terms that have to be substituted Dependent likelihood expression Likeli-
hood

P(FTO_BVADCA1)P(C_BVAO_BVADCA1)

{P(FTO_BVADCA1)
-Min[(P(FTO_BVADCA1);P(C_BVAO_BVADCA1)]}
*{P(C_BVAO_BVADCA1)
-Min[(P(FTO_BVADCA1);P(C_BVAO_BVADCA1)]}
+ Min[(P(FTO_BVADCA1);P(C_ BVAO_BVADCA1)]

≅2e-7

P(FTO_BVADTM1)P(C_BVAO_BVADTM1)

{P(FTO_BVADTM1)
-Min[P(FTO_BVADTM1);P(C_BVAO_BVADTM1)]}
*{P(C_BVAO_BVADTM1)
-Min[(P(FTO_BVADTM1);P(C_BVAO_BVADTM1)]}
+Min[(P(FTO_BVADTM1); P(C_BVAO_BVADTM1)]

≅3e-7

P(FTO_BVADS1)P(C_BVAO_BVADS1)

{P(FTO_BVADS1)
-Min[P(FTO_BVADS1);P(C_BVAO_BVADS1)]}
*{P(C_BVAO_BVADS1)
-Min[(P(FTO_BVADS1);P(C_BVAO_BVADS1)]}
+Min[(P(FTO_BVADS1);P(C_BVAO_BVADS1)]

≅1e-7

P(FTO_BVAIIF1)P(C_BVAO_BVAIIF1)

{P(FTO_BVAIIF1)
-Min[P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)]}
*{P(C_BVAO_BVAIIF1)
-Min[(P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)]}
+Min[(P(FTO_BVAIIF1);P(C_BVAO_BVAIIF1)]

≅3e-7

P(FTO_BVAOS1)P(C_BVAO_BVAOS1)

{P(FTO_BVAOS1)
-Min[P(FTO_BVAOS1);P(C_BVAO_BVAOS1)]}
*{P(C_BVAO_BVAOS1)
-Min[(P(FTO_BVAOS1);P(C_BVAO_BVAOS1)]}
+Min[(P(FTO_BVAOS1); P(C_BVAO_BVAOS1)]

≅4e-7

P(FTO_BVAOP1)P(C_BVAO_BVAOP1)

{P(FTO_BVAOP1)
-Min[P(FTO_BVAOP1);P(C_BVAO_BVAOP1)]}
*{P(C_BVAO_BVAOP1)
-Min[(P(FTO_BVAOP1);P(C_BVAO_BVAOP1)]}
+Min[(P(FTO_BVAOP1);P(C_BVAO_BVAOP1)]

≅6e-7

P(FTO_BVAMS1)P(C_BVAO_BVAMS1)

{P(FTO_BVAMS1)
-Min[P(FTO_BVAMS1);P(C_BVAO_BVAMS1)]}
*{P(C_BVAO_BVAMS1)
-Min[(P(FTO_BVAMS1);P(C_BVAO_BVAMS1)]}
+Min[(P(FTO_BVAMS1);P(C_BVAO_BVAMS1)]

≅7e-7

P(FTO_BVAMP1)P(C_BVAO_BVAMP1)

{P(FTO_BVAMP1)
-Min[P(FTO_BVAMP1);P(C_BVAO_BVAMP1)]}
*{P(C_BVAO_BVAMP1)
-Min[P(FTO_BVAMP1);P(C_BVAO_BVAMP1)]}
+Min[(P(FTO_BVAMP1);P(C_BVAO_BVAMP1)]

≅8e-7

Sum of all the dependent probabilities ≅4e-6

Table 6-11: Products that have to be substituted in equation 5-1

Substituting these values into expression 5-7, we obtain the likelihood of the minimal cut

set, which is 4e-6 during the mission time. This value is almost two orders bigger than

the likelihood calculated without considering couplings, that is 1.e-8.

Under same conditions, if we had applied the Beta factor parametric method to MCS

81 we would have obtained a likelihood of the same order (only four time bigger than it

was obtained with the FLASH method). This can be seen from the following expression.

P(FTO_BVA)*P(C_BVAO_BVA)+Beta*Min[P(FTO_BVA);P(C_BVAO_BVA)]=

≅ 1.0e-3 * 1.0e-5 + 0.1 * Min[1.0e-3,1.0e-5]

≅ 1.0e-6

 173

Hence, the FLASH method contributes studying and evaluating inter-component

dependencies since:

1) Only real couplings among events in a MCS are considered.

2) Quantitative estimation of the likelihood of MCS with coupled events is based only

on real couplings hence the figure for the likelihood of MCS is more accurate and

realistic.

3) For a given MCS and under same conditions, the FLASH method obtains a similar

value for the likelihood of the MCS as the β factor parametric model.

6.2 Computer-Assisted Braking system

6.2.1 Description

The Computer-Assisted Braking (CAB) system that we address in this section is a model

of a concept being considered for employment in modern cars to enhance braking

performance and vehicle safety. It is meant to provide three functions in addition to

traditional brakes. The Anti-lock braking, widely known as ABS, that detects the onset

of wheel lock up (which would result in skidding) and momentarily release the brakes to

allow the wheel to turn and regain grip. The Emergency stop detection and enhancement

that detects the rapid pedal movement associated with an emergency stop, and

automatically maximises the braking used. The Load-compensated braking that

measures the weight on the vehicle’s suspension to ensure that a given pressure on the

brake pedal provides the same degree of braking, regardless of how heavily the vehicle is

loaded, or how the load is distributed.

The braking system has to meet legal requirements therefore it must retain a direct

hydraulic link from the brake pedal to the brakes so that, in the event of complete failure

of the computerised parts of the system, the driver will still have minimal braking

functionality. Additionally, to allow the system to control braking individually to each

wheel, there must be four separate hydraulic lines, the pressure in each of which can be

altered (reduced as well as increased) by computer controlled actuators. This means that,

if the system fails, the actuators must be guaranteed to return to a “neutral” position,

where they are neither increasing nor decreasing the driver’s braking effort. Therefore, it

was decided to fit each hydraulic line to each wheel with a feedback pressure sensor to

allow closed-loop control. The brake pedal is to be fitted with two sensors, each

returning a value indicating how hard the pedal has been pressed. Axles of the vehicle

174

are to be fitted with two pressure transducers to measure the load on the vehicle. Finally,

each wheel is to be fitted with a rotation sensor to be used for lock-up detection for anti-

lock braking functions. The braking system context diagram is shown in Figure 6-8.

CAB

Axle load
sensors

Wheel rotation
sensor

Hydraulic lines

Actuators and
feedback sensors

Brake discs

Control lines

Brake pedal and
duplicated sensors

Figure 6-8: CAB system context diagram

Since the braking system has to be implemented in a vehicle it has to meet some basic

performance requirements that are derived from the vehicle dynamics. It has to achieve

the maximum available braking pressure in less than 400 ms, additionally, it has to

decrease the pressure delivered such that brakes are fully released from maximum

pressure in less than 200 ms. Finally, the maximum permissible latency from pedal

movement to brake effect is 20 ms.

Hence, it was decided to fit two output controllers to drive the hydraulic actuators,

each controlling the actuators for a diagonal pair of wheels. These controllers are

already designed (commercial of the shelf). Each takes required output commands over a

duplicated Controller Area Network (CAN) bus29 link, and converts these to the required

29Controller Area Network (CAN) is a high-speed local area network protocol designed to have predictable

properties, and to be suitable for control applications. In CAN, data is transmitted as a message consisting
of between 1 and 8 bytes. Messages are sent via stations, which police access to the bus. Typically, each
station can buffer a maximum of 14 incoming or outgoing messages. Each message source is assigned a
unique identifier, represented as an 11-bit number. This identifier is used to filter messages and assign
priorities to the messages. Messages have a period, or minimum inter-arrival time, which they inherit from
the sending task. If either the sender or receiver of a message detects an error, the sender station is signaled
and re-transmits the message.

See ISO Draft International Standard Road Vehicles - Interchange of Digital Information - Controller
Area Network (CAN) for High Speed Communication, ISO DIS 11898, 1992

or K. Tindell, A. Burns and A. Wellings "Calculating Controller Area Network (CAN) Message
Response Times" in Proceedings of the 1994 IFAC Workshop on Distributed Computer Control.

 175

electrical output to the actuators. Each controller works on a cyclic basis, and will only

alter its outputs once per period of the cycle. If more than one output command message

were received in a period, only the first will be used; subsequent messages will be

ignored. If no command message is received during any period, outputs will be “frozen”

at the last value received until a new command is received.

Because of the highly critical nature of the application, the manufacturer has

imposed further design constraints. The computer hardware implementing the design

must have redundancy. Additionally, the system must exhibit graceful degradation in

case of failures. In particular, there must be a “fallback” algorithm which is capable of

running independently on any of the redundant hardware units, and which is capable of

providing minimum braking functionality (i.e. pressure simply proportional to pedal

travel) on its own. Finally there must be redundancy in any communication system used

between the hardware units.

6.2.2 Analysis in the Decomposition and Design

The safety analysis of the CAB started carrying out a preliminary hazard analysis (PHA)

on the computerised braking system. The analysis concluded that any deviation from the

specified behaviour is potentially hazardous. Seven specific failure modes were

identified, and assigned criticalities as summarised in Table 6-12. Most of these failure

modes are already present in a hydraulic braking system. They are caused by loss of

hydraulic fluid or ingress of air, water or other contaminants into brake lines. Failure

modes that the PHA identified as unique to a computer-assisted system are the

unexpected application of brake (c) and uneven braking (f).

ID Effect description Risk class

A Complete lack of braking Catastrophic
B Lock up (1-4 wheels, 1-2 axles) Catastrophic
C Unexpected application / release of brakes Catastrophic
D Braking response not proportional to demand Major

E Tardy response (time from demand to brake effect, slow rate
of change in response to demand) Major

F Uneven braking (pressures vary "wildly" in response to
constant demand) Major

G Unequal braking (1-3 wheels brake less or more than required) Major
Table 6-12: CAB failure modes identified by PHA

176

Table 6-13 represents the FLASH table that corresponds to the same analysis level as the

PHA. For economy of space we have put the complete table, as it looks after the

completion of the FLASH analysis. However during the PHA only the first, third and

fourth columns are completed. It can be noticed that these columns contain the same

information as Table 6-12.

Instance = Brakes Component Type = Brakes Periodicity = Sporadic Tag = Brakes

Event propagated Causes Description Criticality
5th Column: Justification, Design

Recommendations,
Derived Safety Requirements

Comments
(FMEA)

 a_.Braking_func
.brakes

 V_.Sens_in.Sens
OR (V_.FN_RO.cab
AND
V_.FO_RN.cab)

Complete lack of
braking Catastrophic

b_.Braking_func
.brakes

V_.Sens_in.Sens OR
(V_.FN_RO.cab
AND
V_.FO_RN.cab)

Lock-up (1-4 wheels,
1-2 axles) Catastrophic

c_.Braking_func
.brakes

V_.Sens_in.Sens OR
(V_.FN_RO.cab
AND
V_.FO_RN.cab)

Unexpected
application/release
of brakes

Catastrophic

Before design
Recommendations
Sensors should be fail-safe and without
SPF.
Hardware redundancies must be implemented.
Effect max accepted likelihood
10-7 during the mission time
After design
Detection
Not possible
Recovery
The driver will try to correct with the steering
wheel
Recommendation
Software must be developed to comply with
safety integrity level four
Max accepted likelihood for critical events
in the Causes column.
The rate of V_.Sens_in.Sens must be <
.5E-7 [1/h], each V_.FN_RO.cab and
V_.FO_RN.cab rate must be <0.4E-3
[1/h].

According to the
implementation and
integration
proposed/hypothesise
d, there are no SPFs
and the expected rate
for the event is 0.6E-7
[1/h]
V_.Sens_in.Sens rate is
< 0.4E-7 [1/h]
V_.FN_RO.cab rate is <
0.1E-3 [1/h]
V_.FO_RN.cab rate is <
0.1E-3 [1/h]

d_.Braking_func
.brakes

V_.Sens_in.Sens OR
(V_.FN_RO.cab OR
V_.FO_RN.cab)

Braking response not
proportional to
demand

Major

Sensors are fail-safe
and without SPF.
d_.Braking_func.brake
s rate is < 0.3E-3 [1/h]

e_.Braking_func
.brakes

V_.Sens_in.Sens OR
FN_RO.cab OR
V_.FO_RN.cab

Tardy response (time
from demand to
brake effect, slow
rate of change in
response to demand)

Major

Sensors are fail-safe
and without SPF.
e_.Braking_func.brakes
rate is < 0.3E-3 [1/h]

f_.Braking_func
.brakes

V_.Sens_in.Sens OR
FN_RO.cab OR
V_.FO_RN.cab

Uneven braking
(pressures vary
"wildly" in response
to constant demand)

Major

Sensors are fail-safe
and without SPF.
f_.Braking_func.brakes
rate is < 0.3E-3 [1/h]

g_.Braking_func
.brakes

V_.Sens_in.Sens OR
V_.FN_RO.cab OR
V_.FO_RN.cab OR
E_.FN_RO.cab OR
E_.FO_RN.cab OR
L_.FN_RO.cab OR
L_.FO_RN.cab

Unequal braking. (1-
3 wheels brake less
or more than
required)

Major

Before design
Recommendations
Sensors should be fail-safe and without
SPF.
Effect max accepted rate
<0.4E-3 [1/h]
After design
Detection
Possible
Recovery
The driver will try to correct with the steering
wheel
Recommendation
Software must be developed to comply with
safety integrity level four
Max accepted failure rate for critical
events in the Causes column.
Each rate of: E_.FN_RO.cab,
E_.FO_RN.cab, L_.FN_RO.cab, and
L_.FO_RN.cab must be < 0.1*10-3 [1/h].

Sensors are fail-safe
and without SPF.
g_.Braking_func.brake
s rate is <0.6*10-4 [1/h]
E_.FN_RO.cab
rate<0.7*10-4 [1/h]
E_.FO_RN.cab
rate<0.7*10-4 [1/h]
L_.FN_RO.cab
rate<0.9*10-4 [1/h]
L_.FO_RN.cab
rate<0.9*10-4 [1/h]

Table 6-13: Top level FLASH table

After the preliminary hazard analysis a system design is proposed. It consists of three

independent hardware “channels”. Each comprises a processor, with necessary memory,

hardware timer and counter registers for scheduling and accurate interval timing of

sensor input, signal processing electronics to handle the inputs from the sensors and dual

CAN bus stations. Sensor inputs are duplicated, and hard-wired to each board. The three

boards communicate only via the duplicated CAN buses, which are also used to send

output to the output controllers. Figure 6-9 shows the high level structure of the

 177

proposed braking system hardware and flows delivered by some modules. With this

information it is possible to complete the 2nd and 5th columns in Table 6-13 and begin

development and analysis of lower levels components. Table 6-14 is a fragment of the

FLASH table for the CAB device. It represents rows regarding the delivery of

commands to brakes actuators of the front near side and rear offside wheels (FN_RO).

The table shows how Omission (O), Commission (C), Early (E), Late (L) and Value (V)

failures in the output module (Output.Mod1) directly result in similar failures to be

propagated by the CAB. Whilst, value failure propagated form the CAB to the front near

side and rear offside wheels of the car (i.e. V_.FN_RO.CAB) can be caused by a fault in

both busses (V_.Busses.2B) or in the three processors (V_.Pair_1.3P). More specifically,

the failure logic underneath propagation of V_.Busses.2B and V_.Pair_1.3P is further

considered in Table 6-15 representing the so called group of events (4.2.3).

Processor 1

Processor 2

Processor 3

Output
module

1

Duplicated
CAN

buses
From
sensors

n

To front
nearside and
rear offside
actuators

2

Output
module

2
To front
offside and
rear nearside
actuators

2

FN_RO.cab

FO_RN.cab

Sens_in.Sens Pair_1.Ch1

Pair_1.Ch2

Pair_1.Ch3

Ouput.
Mod1

Bus1 Bus2

Figure 6-9: Structure of the proposed braking system hardware

The development of sub-modules proceeds. The control system of the CAB is developed

to be cyclic, with some processes running at regular intervals to provide the necessary

response characteristics. The scheduling of processes is periodic for processes that run

at regular intervals (offsets is used to control the order and time interval between process

running at the same periodic rate), while it is sporadic for tasks that run in response to

some events e.g. the arrival of a signal from another process.

178

Instance =
CAB Component Type = CAB Periodicity = Perodic Tag = CAB

Event
propagated Causes Description

5th Column: Justification,
Design Recommendations,

Derived Safety Requirements

Comments
(FMEA)

O_.
FN_RO.cab O_.Output.Mod1

Omission
braking for
2/4 wheels

This event is stopped by the
output module

According to the implementation
and integration
proposed/hypothesised the
expected rate for the event is
0.3*10-4 [1/h]

C_.
FN_RO.cab C_.Output.Mod1

Commission
braking for
2/4 wheels

This event is stopped by the
output module

The expected rate for the events is
0.3*10-4[1/h]

E_.
FN_RO.cab E_.Output.Mod1 Early braking

for 2/4 wheels

The event must exhibit a
rate < 0.3*10-3[1/h]. The
E_.Output.Mod1 rate must
be<0.1*10-3[1/h]

The expected rate for the events is
0.9*10-4[1/h]

L_.
FN_RO.cab L_.Output.Mod1 Late braking

for 2/4 wheels

The event must exhibit a
rate < 0.3*10-3[1/h]. The
L_.Output.Mod1 rate must
be<0.1*10-3[1/h].

The expected rate for the events is
0.9*10-4[1/h]

V_.
FN_RO.cab

V_.Output.Mod1
OR V_.Pair_1.3P
OR V_.Busses.2B

Wrong
braking value
for 2/4 wheels

The event must exhibit a
rate < 0.4*10-3[1/h].
V_.Output.Mod1 and
V_.Pair_1.3P must
be<0.2*10-3[1/h];
 V_.Busses.2B must be
<0.1*10-7 [1/h]

The expected rate for the event is
< 0.1*10-3[1/h]. V_.Output.
Mod1 and V.Pair_1.3P rate is
<0.5*10-4[1/h];
V_.Busses.2B is <0.9*10-8[1/h].

Table 6-14: Flash table for the CAB system

GROUPS OF EVENTS

GOE Causes Description
Justification, Design

Recommendations, Action
required

Comments
(FMEA)

V_.Pair_1.3P

V_.Pair_1.ch1
AND
V_.Pair_1.ch2
AND
V_.Pair_1.ch3

Wrong pressure value
delivered to brakes
(All three channels
fail giving the same
value to the output
module)

The event must exhibit a
rate<0.5*10-4 [1/h]
V_.Pair_1.ch1, V_.Pair_1.ch2
and V_.Pair_1.ch3 rate must
be<0.1*10-4 [1/h]

The expected
rate for the
events
(considering
common cause
failures) is
0.3*10-7[1/h]

V_.Busses.2B

(Fail_silent.Bu
s.Bus1 AND
V_.Bus.Bus2)
OR
(V_.Bus.Bus1
AND
Fail_silent.Bus
.Bus2) OR
(V_.Bus.Bus1
AND
V_.Bus.Bus2)

All data exchange are
messed up

The event must exhibit a rate <
0.1*10-7

The expected
rate for the
events
(considering
common cause
failures) is
0.9*10-8[1/h]

Table 6-15: Group of even table for FLASH Table 6-14

To meet requirement for a maximum 20 ms latency from pedal movement to brake effect,

a 10 ms period has been selected for the main periodic tasks. This ensures that a

complete iteration of the main control loop will always complete within the time limit.

The proposed top-level functional decomposition of the CAB system is shown in Figure

6-10. The notation used to show the inter-process communications is based on DORIS /

 179

DIA30, a development of MASCOT. The communications protocols used are summarised

in Table 6-16.

From
sensors

To output
modules

In

Basic

Modifier
Selection

Modifier
Addition Out

Periodic Periodic Periodic

Sporadic

Sporadic

Bus
Watcher
Sporadic

Pedal_val

All_sens

Basic_press

Sensor_feedback

All_votes

Final_press

VOTES
(All signals)

PROCESSOR 1

Modifier_values

PROCESSOR 2

PROCESSOR 3

Pair_1

Pair_2

To output
modules

In

Basic

Modifier
Selection

Modifier
Addition Out

Periodic Periodic Periodic

Sporadic

Sporadic

Bus
Watcher
Sporadic

Pedal_val

All_sens

Basic_press

Sensor_feedback

All_votes

Final_press

Modifier_values

To output
modules

In

Basic

Modifier
Selection

Modifier
Addition Out

Periodic Periodic Periodic

Sporadic

Sporadic

Bus
Watcher
Sporadic

Pedal_val

All_sens

Basic_press

Sensor_feedback

All_votes

Final_press

Modifier_values

Sens_in

Pair_1

Pair_2

Pair_1

Pair_2

Figure 6-10: Functional block diagram of the CAB system

Interaction
Name

Symbol Inputs Outputs Writer can be
held up

Reader can be
held up

Signal

One One N Y

Pool

One One or more N N

Multicast
Signal

One Many, distributed N Y

Table 6-16: Communications protocols

30 H. Simpson Methodological and Notational Conventions in DORIS Real Time

Networks British Aerospace Dynamics Division, 1994

180

In each period of the cycle, each channel (processor) calculates a basic braking value

from the pedal sensor value. The values of all the other sensors are then used to

determine whether the three modifiers (i.e. Anti-lock, Emergency stop enhancement and

Load compensation) are required in the current cycle, and calculate the necessary

changes in braking for each wheel to implement these modifiers. The three channels

then vote on which modifiers to add. For a modifier to be added, at least two of the

channels must have determined that it is required. The actual amount by which braking at

each wheel is to be increased or decreased to implement the modifiers is not

communicated, as it is so dependent on the precise value of the sensors read by each

channel. This means that, if one channel has not calculated a value for a modifier that

has been voted necessary (i.e. the other two channels require it), then this channel must

revert to the basic value initially calculated.

 The system is scheduled so that the OUT processes on the three processors should

always complete in the order Processor 1 - Processor 2 - Processor 3. In the case where

a channel has had to revert to a basic value, this will be output later than the normal

completion time of all three OUT processes, to ensure that the basic value is not used if

an enhanced value is available from another channel. This ensures that Processor 1

normally controls the braking, avoiding the possible fluctuations caused by switching

between channels, as would be the case if output order were not pre-determined. Data

types of all the flows in the design shown in Figure 6-10 are shown in Table 6-16. The

functionality of each process is reported in Table 6-18.

 The use of a pre-emptive, priority-based scheduler is proposed for the system. This

means that, if a low-priority process is executing, and a higher priority task becomes

runable, the low-priority task will be suspended until the high priority task has

completed. Figure 6-11 shows roughly what the timing of processes in one cycle of the

CAB system is expected to be.

 181

Flow name Source Destination Protocol Data Type

Sens_in Sensors IN Pool

14 Individual sensor values:
2 pedal
4 wheel rotation
4 axle load
4 pressure feedback

Sensor_
Feedback IN OUT Pool Record containing

4 pressure feedback values

All_sens IN MODIFIER_
SELECTION Pool

Record containing
pedal value
4 wheel rotation sensor values
4 axle load values

Pedal_val IN BASIC Signal Pedal value

Basic_press BASIC MODIFIER_
SELECTION Signal Record containing

4 basic braking values (1 per wheel)

Modifier_
Values

MODIFIER_
SELECTION

MODIFIER_
ADDITION Pool

Record containing
4 basic braking values (1 per wheel)
4 ABS modifier (1 per wheel)
4 Load compensation modifiers (1 per wheel)
4 Emergency stop modifiers (1 per wheel)

Votes MODIFIER_
SELECTION

BUS_
WATCHER
(On all 3
processors)

Signal Record containing 3 flags, indicating whether
each of the 3 modifiers is required

All_votes BUS_
WATCHER

MODIFIER_
ADDITION Pool Record containing 3 sets of 3 votes (i.e. one from

each processor)

Final_press MODIFIER_
ADDITION OUT Pool

Record containing
4 Braking values (1 per wheel)
Flag indicating whether modifiers have been
added successfully

Pair_1 OUT Hardware Signal Braking actuator drive values for front nearside
and rear offside wheels

Pair_2 OUT Hardware Signal Braking actuator drive values for front offside
and rear nearside wheels

Table 6-17: Data types of all flows

IN (Periodic process run at the start of each cycle)
Read all sensors
Use data from both pedal sensors to form single pedal value
Output pedal value to BASIC
Output pedal, wheel revolution and load values to pool for use by MODIFIER SELECTION
Output actuator feedback to pool for use by OUT

BASIC (Sporadic process triggered by arrival of pedal sensor data)
Calculate a basic braking pressure for each wheel based on the pedal sensor only

MODIFIER SELECTION (Sporadic process triggered by arrival of basic)
Use all sensor information to determine which modifiers are required in this cycle
Calculate modifier values and place record containing basic and modifier values in pool for use by MODIFIER
ADDITION
Broadcast votes to all BUS WATCHER processes to identify which modifiers are required

BUS WATCHER (Sporadic process triggered by arrival of votes)
Build up record of votes (i.e. which processors have determined a need for each of the modifiers)

MODIFIER ADDITION (Periodic process, with offset from start of cycle)
From record of all votes assembled by BUS WATCHER, determine which modifier(s) to add to the basic braking value
If no value is available for a required modifier, revert to basic

OUT (Periodic process, with offset from start of cycle)
If modifiers successfully added output calculated pressure immediately (adjusted according to sensor Feedback)
otherwise wait until end of period, and output basic value (adjusted according to sensor feedback)

Table 6-18: The functionality of each process

182

1 OUT
2 MODIFIER ADDITION
3 IN
4 BUS WATCHER
5 BASIC
6 MODIFIER SELECTION

Table 6-19: Order of priority tasks (1 is high)

MODIFIER
ADDITION

MODIFIER
SELECTIONBIN BASIC B B OUT INP1

OUT offset from start of cycle

Duration of one cycle

MODIFIER ADDITION offset

A B C D E F G
Figure 6-11: Timing of 1 cycle of the CAB system on processor 1

Table 6-20 represents the fragment of the FLASH analysis that regards the propagation

of Pair_1 from Channel_1. We can see that some failure events (i.e. O, C, E) are

stopped by the output module, while value failure (i.e. V_.) is propagated to brake shoes.

A value failure of Pair_1 out of Channel_1 can be due to a single failure that arise inside

Channel_1, (i.e. V_.Pair_1.Out1, V_.Sensor_feedback.In1, V_.Modifier_values.MS1,

V_.Final_press.MA1, V_.All_votes.BW1 or V_.Processor.P1), a failure of both busses

(i.e. V_.Busses.2B) or some internal failure of Channel_1 (i.e. V_.Pedal_Val.In,

V_.Basic_Press.BS1, V_.All_sens.In, V_.Votes.MS1) combined to a failure in an output

of another channel (i.e. V_.Votes.Ch2 or V_.Votes.Ch3).

The study of the CAB has continued further. However we are not reporting

tables that have been made for all the other modules in Figure 6-10 since we believe we

already have illustrated enough the FLASH process in practice.

 183

Instance =
Channel_1 Component Type = Channel Periodicity = Signal Tag = Ch1

Event
propagated Causes Description

5th Column: Justification,
Design Recommendations,

Derived Safety Requirements

O_.
Pair_1.ch1

O_.Pair_1.Out1 AND O_.Busses.2B OR
O_.Processor.P1

Omission for value
to output mod 1

This event is not
propagated. In case of
omission the output
module will use the
previous value
delivered by the system.

C_.
Pair_1.ch1

C_.Pair_1.Out1 OR C_.Busses.2B OR
C_.Processor.P1

Commission for
value to output
mod 1

This event is not
propagated. In case of
commission the output
module will use the
previous value
delivered by the system.

E_.
Pair_1.ch1

E_.Pair_1.Out1 OR E_.Busses.2B OR
E_.Processor.P1

Early for value to
output mod 1

This event is not
propagated. In case of
omission the output
module will use the
previous value
delivered by the system.

L_.
Pair_1.ch1

L_.Pair_1.Out1 OR L_.Busses.2B OR
L_.Processor.P1

Late for value to
output mod 1

This event is not
propagated. In case of
omission the output
module will use the
previous value
delivered by the system.

V_.
Pair_1.ch1

V_.Pair_1.Out1 OR
V_.Sensor_feedback.In1 OR
V_.Modifier_values.MS1 OR
(V_.Pedal_Val.In OR V_.Basic_Press.BS1
OR V_.All_sens.In OR V_.Votes.MS1)
AND (V_.Votes.Ch2 OR V_.Votes.Ch3)
OR V_.Final_press.MA1 OR
V_.All_votes.BW1 OR V_.Busses.2B OR
V_.Processor.P1

Wrong value to
output mod 1

The event must exhibit a
rate < 0.4*10-3 h-1

Table 6-20: FLASH table for Channel 1

6.2.3 Integration, verification and Common Cause Failures analysis

FLASH analysis in the integration and verification stage confirmed that the design meets

specifications, recommendations and derived safety requirements issued during the

decomposition and design. FLASH tables presented in the previous section (i.e. Table

6-13, Table 6-14 and Table 6-15) already showed the column Summary FMEA results

with results from the verification stage. Common cause failure analysis has not been

performed on the CAB system. It would have followed the same path as the analysis of

the Fuel System. Once minimal cut sets for critical failure modes are obtained, they are

searched for couplings. If couplings are not found, their likelihood is calculated as

product of likelihood of each event in the minimal cut set; if couplings are found, the

extension of the FLASH method presented in chapter 5 has to be applied as we did in the

first case study presented in this chapter.

184

6.3 Discussion
The overview of these case studies has highlighted how the FLASH analysis can be

integrated with the decomposition and design, and the integration and verification, stages

of the lifecycle. The FLASH process was able to provide the results expected from FHA,

HAZOP, FMEA, and FTA. Chapter 2 discussed the main problems arising in the

assessment of complex systems, when classical safety analysis techniques are applied.

These are the inconsistencies between the various analyses and the difficulty in linking

the results back to the functional hazard assessment. It is believed that FLASH has

overcome these issues. Additionally, the way FLASH decomposes a system and collects

information about events is a valuable help for considering common cause failures. It

has been shown how data gathered into FLASH tables during the lifecycle can be used to

identify minimal cut sets vulnerable to common cause failures. Coupled events and

coupled components are identified and when reliability data are known, quantitative

figures can also be derived. Hence, on the basis of the FLASH analysis, analysts and

designers can decide whether to accept a proposed system design or ask for

improvements.

FLASH can be compared with classical analysis methods on the basis of the support

it gives to development, formality, speed of analysis, keeping the analysis updated with

design and providing immediate feedback. In addition, the traceability of functional

failures to basic events becomes useful when it has to be shown that the system meets

specifications and safety requirements.

The FLASH approach is quite formal and it becomes heavier as the complexity of

the system increases. It becomes laborious and tedious when tables are compiled by

hand. However a software tool can speed up the FLASH process and make it a

competitor (we at least hope) of classical methods in terms of results obtained and

overall economy of the safety analysis. A suitable software tool will reduce to instants

the most tedious phases of the FLASH process that is consistency checking of tables and

FT construction and evaluation. We have experienced that the “FLASH schema” we

implemented into the SAM platform [McDermid, 1994], extensively helps in navigating

the FLASH hierarchy by following links among tables. This tool had helped

considerably in the writing and updating of tables for our case studies.

 185

Though FLASH is based on classical, widely diffused safety analysis techniques it

is a completely new approach and its results and benefits have to be compared with ones

achieved with the best industrial practice. The application of FLASH to a variety of

industrial cases will prove the practicability of this technique in an industrial

environment. It is believed that some changes might have to be made to the FLASH

approach to adapt this technique to some complex systems (e.g. adding new columns to

accommodate additional information). However, it is also believed that the basic

FLASH process will not need to change significantly.

186

This page is intentionally left blank

187

Chapter Seven

7Conclusions

This thesis has made a step towards integration of safety analysis techniques ordinarily

performed in sequence during the lifecycle of computer based safety critical systems.

Integration was made possible by the identification of several links amongst such

analysis techniques. We exploited those links to provide a unifying analysis technique,

supporting common cause failure assessment and continuous feedback to designers so

that we can substantiate also what is often called “design for safety”. The result is to

improve the quality of the safety analysis of moderately complex computer based safety

critical systems.

7.1 Review of Research Objectives
The research addressed some limitations and shortcomings of classical safety analysis

techniques that were pointed out in Chapter 2. These were presented in terms of the

following questions:

a) Is it possible to develop a technique that encompasses the different safety analyses

typically performed across the lifecycle?

b) Can the application of this technique result in a meaningful and easy way to perform

a collection of safety analyses which can assist the design of the system?

c) Can we ensure the consistency of the results within the assessment?

d) Can those results be represented both graphically and in tables, so that we can

combine the benefits of both representations?

e) Finally, is it possible to use this technique to systematise the identification of

common cause failures?

To answer these questions we investigated different approaches, which resulted in a

method called FLASH. This was described in Chapter 4 and was extended to enable

common cause failure analysis in Chapter 5. The method was applied in two case studies

presented in Chapter 6.

188

7.2 Contribution of the thesis
We believe that the material presented in this thesis substantiates to a large extent the

central proposition that was expressed in Chapter 1:

“It is possible to produce an integrated safety analysis framework

which can be used to produce a complete and consistent safety

analysis, including treatment of common cause failure and which can

be used to drive “a design-for-safety” process.”

The proposed safety analysis framework is founded on current industrial practice for

safety analysis and on our understanding of the similarities shared among analysis

techniques. The framework supports common cause failure analysis by providing an in-

depth and detailed screening of the real couplings amongst components and quantitative

estimation of the common cause failure contribution. Finally, design for safety is

achieved by the continuous feedback between designers and analysts that is furthered by

the proposed analysis process.

7.2.1 Theoretical Contribution

Need for Formality and Traceability throughout the design process

We started our research studying current industrial practice and saw that a number of

different techniques are used for safety analysis as the design evolves. However these

techniques are not formally linked to each other and, as a consequence, the consistency

of the analysis cannot be assured throughout the design and development process (2.2).

In a complex design it is, therefore, often difficult to trace (using the results of the safety

assessment) causes of critical malfunctions of the system in the hierarchy of subsystems

and components which comprises the design (2.4).

Need for Careful Screening of Couplings among events in minimal cut sets

We showed that there are two possible ways to prevent common cause failures, either by

eliminating (effects of) root causes or by removing coupling factors. In the first case

defences against potential root causes are considered and put in place (2.3.4). In the

second case, a high degree of diversity among components is required (2.3.5). However,

whilst there are methods that assess defences against the causes of common cause

189

failures (e.g. the cause defence matrix in 2.3.8), there are no methods that provide a

careful screening of couplings among events in the same minimal cut set.

Need for Quantification of the Common Cause Failures Likelihood

We saw that, whilst there are a number of methods for making a quantitative evaluation

of common cause failures in pure hardware systems, these methods cannot be used for

evaluating the likelihood of common cause failures in computer based safety critical

systems. The reason is that all of these methods are based on the symmetry hypothesis

which, unfortunately, cannot be accepted for minimal cut sets in computer based safety

critical systems, since probabilities of events in the same minimal cut set may span

various orders (2.3.9).

Extending Recently Proposed Techniques

To address the limitations and shortcomings that were pointed out, we investigated

various approaches. First we tried to extend software fault tree notation [Leveson, 1983]

(3.1). We merged this technique with the Cause Consequence Analysis notation

formulating what we called “Event Tree Output notation” (3.2). Then, we attempted to

extend the Master Plant Logic Diagram [Modarres, 1992] producing the MPLD*

notation (3.3). Finally, at the last stage of our early work, we introduced two other

notations: a graphical one to represent the mapping of software to hardware and a table

based one to store the detailed information that was not practical to store in the MPLD*.

However, we were not yet able to achieve the targets that we had set out for our thesis.

None of the above notations was integrated with classical techniques (i.e. FHA, HAZOP,

FMEA and FTA) nor could they be used to link those techniques (3.4).

Links amongst Classical Safety Analysis Techniques

The identification of links amongst classical safety analysis techniques and the decision

to develop an approach which encourages the top-down study of computer based safety

critical systems were the major turning points that led to the proposed method. Firstly,

we realised that the causes of failure events considered at a certain level of the analysis

can become the failure events considered in subsequent levels (4.1). Secondly, a

common syntax that formalised such causal relationships was introduced (4.2.3) and a

table suitable for supporting FHA, HAZOP, FMEA and containing information to

construct fault trees was outlined (4.2.6). Finally, the process of the FLASH analysis

190

was established both as it should be approached in the decomposition and design (4.3.1)

and in the integration and verification (4.3.2) stages of the lifecycle.

Systematic Screening of Couplings

The FLASH framework is also designed to enable the identification of couplings among

components, and to support common cause failure analysis, i.e. by means of screening of

minimal cut sets to find ones with coupled events and by quantitative evaluation of such

cut sets. In this process, events in each minimal cut set are scanned to see whether or not

they share one or more potential couplings (5.2). If any sharing is found, minimal cut

sets are considered coupled, and they are designated to undertake common cause failure

analysis. By exactly identifying actual couplings, FLASH makes it easy to propose

effective remedies.

Likelihood of Minimal Cut Sets with Coupled Events

We also provided a mathematical approach for calculating the likelihood of minimal cut

sets that considers the contribution of each actual coupling cause (5.3) as identified by

the FLASH method. We have transferred the problem of common cause failure analysis

from the minimal cut set level to a lower, more detailed, level systematising the

identification of couplings and obtaining more realistic figures. As a consequence, the

basis for the identification of couplings is transferred from “expert’s judgement” to the

list of lifecycle categories used for identifying couplings among events and its weighting

factors.

7.2.2 Practical Contribution

Integration of Safety Analyses Techniques

As we discussed in Chapters 2 and 4, the integration of safety analysis techniques

performed throughout the lifecycle offers possibilities for checking the consistency of

results of safety analysis, guaranteeing continuous feedback to designers, providing a

compact and accessible format to present safety analysis results (e.g. to certification

authorities), and finally the advantage of applying one technique instead of several. The

greater cost due to the utilisation of a more complex and articulated technique31, should

be paid back by the fact that less techniques have to be taught to the personnel and that

31 FLASH is more complex than any single technique it intends to replace.

191

the results from one level analysis are immediately available to start the following level

of analysis. Additionally, all safety analyses are immediately accessible to anyone with

the knowledge of that single technique without any conversion cost. Furthermore, costs

for the infrastructure (e.g. software packages) necessary to support the overall safety

analysis process may also be reduced, although there are issues of developing tool

support (see below).

Results both Graphical and Tabular

The provision of safety analysis results, both in tabular and graphical format, combines

the advantages of the ability to provide detailed tabular information that is easy to

access32 and an intuitive33 graphical representation. In FLASH the graphical

representation of results is taken from the tabular one. Fault trees can actually be built

starting from tables at any level of the hierarchy by parsing relationships between causes

and effects.

Industrial Practice

It is expected that FLASH will improve the industrial practice of safety analysis of

computer based safety critical systems (at least of moderate complexity34). Whilst we

have not shown that FLASH does work effectively in industry, there is evidence that it

will be useful. In particular we have found that FLASH may offer a way to comply with

guidelines that are to be released for the certification of Programmable Logic Controller

(PLC) for safety critical applications by the Italian regulatory authorities (4.5).

Automation

FLASH can be supported by a software tool that eases repetitive and error prone tasks,

helps to navigate through the hierarchy of tables, generate trees, calculate the likelihood

of events propagated and make consistency checks on the whole hierarchy. Suitable

software may automate also the scanning of minimal cut sets to find those sharing one or

more causes of coupling (5.2). We believe also that the quantitative evaluation of the

32Though tabular representation is perhaps little intuitive and difficult to understand at a

glance, it can be detailed down to any granularity.
33Graphical representation can be intuitive and easy to understand at a glance, however

when graphs extend to multiple pages, they are no longer intuitive.
34At present, FLASH is quite complex to apply, hence expensive. Therefore we reckon it

is justifiable at least for highly critical systems.

192

total failure probability for each coupled minimal cut set can be automated to a certain

extent. A preliminary software prototype with basic features has been developed and

presented in (4.4).

Providing Support to Design for Safety

The case studies discussed in the sixth chapter showed how FLASH analysis is

integrated with the decomposition and design, and the integration and verification stages

of the lifecycle. The application of this technique was able to provide the results that we

would expect from FHA, HAZOP, FMEA, and FTA. Additionally, we have shown how

the data gathered into the FLASH tables during the lifecycle can be used to identify

minimal cut sets that are vulnerable to common cause failures and to estimate the

likelihood of those cut sets. Hence, on the basis of the FLASH analysis, analysts and

designers are provided with a comprehensive and detailed view on system safety

implementation, hence they may use this information to decide whether to accept a

proposed system design or ask for improvements.

7.3 Suggestions for Further Work
We believe that this thesis is only a starting point towards integration of safety analysis

techniques. As such we can see several areas in which further work can be done. At

present there are some limitations that we believe are easy to remove, and some others

that probably require more thought. Further work on this method can be divided into two

main domains: the consolidation of the present technique and a theoretical extension.

7.3.1 Consolidation of the Technique

This work has to be done to have the technique accepted and employed as best practice

by the industry.

Automation

Often in this thesis we have stressed the problem of automation. Though FLASH can be

performed by hand, the process becomes heavier for the analyst as the complexity of the

system increases. The analyst is actually asked to perform a lot of repetitive and error

prone tasks. Our software prototype has considerably helped us to run our case studies,

but its limited potential has prevented us considering big industrial applications.

Therefore, there is the need of a more powerful tool, which automates the process

further.

193

Industrial Case Studies

Once a suitable software tool is available, it will be possible to run industrial case

studies. These should demonstrate whether or not a FLASH approach is feasible in

complex systems. At present, there is no conclusive evidence that the method supports

the design and verification of a very large system such as an aircraft, a helicopter, a

chemical or nuclear installation. The design of those systems (though they appear to be

hierarchically decomposable) is not usually approached hierarchically. As it was pointed

out in Chapter 4, FLASH could still support the development at sub-system level.

However, it still remains to be demonstrated that if a FLASH analysis is available for

each sub-system then it may be possible to link all these FLASH analyses to each other

in order to produce a FLASH model for the full system.

Validation

Though FLASH is based on classical, widely diffused, safety analysis techniques it is a

completely new approach and its results and benefits have to be compared with those

achieved with the best industrial practice. Availability of industrial case studies

performed using FLASH will allow benchmarking the method against current safety

analysis techniques, and enable to access the extent of its limitations and benefits.

FLASH can be compared with classical analysis methods on the basis of the support

it gives to development, formality, speed of analysis, keeping the analysis updated with

design and providing immediate feedback. The traceability of functional failures to basic

events, which FLASH provides, becomes useful when evidence is required that the

system meets specifications and safety requirements. It is believed that, to adapt the

technique to some complex systems, some changes might have to be made (e.g. adding

new columns to accommodate additional information). However, it is also believed that

the basic FLASH process will not change significantly.

Certification

Provided that the proposed framework will “survive” the test on industrial case studies, it

might also be certified by regulatory authorities as a standard practice to conduct and

present safety analyses. Hence industries may be asked to present safety analyses in a

“FLASH format”. At present, we believe FLASH has a good chance to reach this point,

since it can trace any event to its causes and it seems it fits the forthcoming Italian

guidelines on PLCs for safety critical applications. Additionally FLASH tables have the

potential to accommodate features that may be requested by certification authorities. For

194

instance, FLASH tables may be modified to record motivations for any decision

concerning safety made during the design. Names of people responsible for such

decisions could also be recorded, hence, eventually, it could be possible to trace whoever

is liable for any (good or wrong) design decision.

7.3.2 Theoretical Extension

This is the work that can be done to extend or improve the technique itself.

Sensitivity Analysis

Another extension of FLASH could be in improving the technique itself. For example,

during the verification stage, a sensitivity analysis made on fault trees [Homma and

Saltelli, 1996] drawn for critical events could show the impact of potential improvements

even before proposing modifications to the design [Contini et al., 1999b] and performing

again the FLASH analysis. This will indeed speed up the overall analysis process.

Merging with other Approaches and Techniques

The FLASH method can potentially be usefully extended to formalise the writing and

updating of causes-effect relationships into FLASH tables. For instance it could be

evaluated whether it is feasible to include a formal algorithm, which automates the

writing of those relationships. Example of suitable algorithms are proposed in

[Papadopoulos and McDermid, 1999a-b], in [Atkinson & Carpignano, 1996] and in

[Sardella, 1995]. These enhancements may boost additional automation and formality.

7.4 Final Remarks
Closing the thesis we wish to say that our approach is a contribution towards improving

consistency, completeness and correctness in safety analysis. We have focused our

efforts towards the integration of well-established safety analysis techniques and found

an interesting way to link several safety analysis techniques35 ordinarily performed in

series during the lifecycle. We were also able to consider common cause failures both

qualitatively and quantitatively. The proposed method incorporates a number of

principles that, in theory, could enable their application in a complex system. The two

case studies we ran demonstrated the validity of the approach when applied to

35Although integration of classical techniques is the route we selected, we are aware that

perhaps other routes could be taken to achieve our goals.

195

moderately complex systems. However a conclusive evaluation of the real value and

scalability of this approach could only be achieved in a much wider and realistic context

of application.

196

This page is intentionally left blank

197

8Bibliography

[Adelard, 1994] Adelard Ltd., HAZOP Study Guidance for Equipment Containing
Programmable Electronic System: Feasibility Study Report. D/49/0076/2 v1.0,
1994.

[Amendola, 1986] Amendola A., Systems Reliability Benchmark Exercise: final report.
Euratom Report EUR 10696/I EN, 1986.

[Atkinson & Carpignano, 1996] Atkinson M. & Carpignano A., Advances with STARS.
Applications to Safety Problems. 4th Intern. Workshop on Functional Modelling of
Complex Technical Systems, (ORA/PRO 40131), 6th September 1996.

[Avizienis, 1985] Avizienis A. et al., The N-Version Approach to Fault-Tolerant Software.
IEEE Transactions on Software Engineering, SE-11(12):1491-1501, December 1985.

[Boeing, 1996] Statistical Summary of Commercial Jet Aircraft Accidents: Worldwide
operations 1959-1995, Boeing Commercial Airplane Group, Seattle, WA, 1996.

[Bondavalli and Simoncini, 1990] Bondavalli A., Simoncini L., Failure Classification with
Respect to Detection, in Predictably Dependable Computing Systems – First year
Report, Task B, Volume 2, May 1990.

[Bourne et. al., 1981] Bourne A. J., Edwards G T, Hunns D.M. Poulter D.R., Defences
against common-mode failures in redundancy systems. SRD-R-196, United Kingdom
Atomic Energy Authority, Safety and Reliability Directorate, January 1981.

[Bowen and Stavridou, 1992] Bowen J. and Stavridou V., "Safety Critical Systems, Formal
Methods and Standards", PRG-TR-5-92, Programming Research Group, Oxford
University, 3rd March 1992.

[Budgen, 1985] Budgen D., Combining MASCOT with Modula-2 to Aid the Engineering of
Real-time Systems, Software Practise and Engineering, 15(8): 767-793, 1985.

[Burns and Pitblado, 1993] Burns D. J., Pitblado R. M., A modified HAZOP methodology
for Safety Critical System Assessment, 7th meeting of the UK Safety Critical Club,
Bristol, February 1993.

[Bussolini, 1971] Bussolini J.J., High Reliability Design Techniques Applied to the Lunar
Module, Lecture Series No. 47 on Reliability on Avionics System. A.G.A.R.D.
Rome, 16-17 September. London, 20-21 September, 1971.

[Carpignano & Poucet, 1994] Carpignano A., Poucet A., Computer Assisted Fault Tree
Construction: a Review of Methods and Concerns. Rel. Engng. and System Safety,
Vol. 44-3, pp. 265-278, 1994.

[Chudleigh et al., 1995] Chudleigh M.F., Catmur J.R., Redmill F.A., A guideline for HAZOP
studies on Systems which include Programmable Electronic Systems. Proceeding of
the 14th International Conference on Computer Safety, Reliability and Security
(SAFECOM 95). Belgirate, Italy, 11-13 October 1995.

[CISHEC, 1977] CISHEC, A guide to Hazard and Operability Studies. The Chemical and
Health Council of the Chemical Industries Association Ltd, 1977.

[Cojazzi, et al, 1995] Cojazzi G., Mauri G., Sardella R., The Treatment of physical

198

dependencies and CCFs within the STARS environment: methodological framework
and applications. PSA '95, Taejon, Korea, 1995.

[Contini et al., 1999a] Contini S., Scheer S., Wilikens M., De Cola G., Cojazzi G., ASTRA:
An Integrated Tool Set for Complex Systems Dependability Studies, in: Tool Support
for System Specification, Development and Verification, R. Berghammer, Y.
Lakhnech (eds.), pp. 77 – 91. Advances in Computing Science, Springer, 1999.

[Contini, 1999b] Contini S., ASTRA, Advanced Software Tool for Reliability Analysis,
FTA: Fault Tree Analysis module PTD: Time Dependent Analysis module EUR
18727/EN, 1999.

[Dhillon and Singh, 1981] Dhillon B S, Singh C., Engineering Reliability, John Wiley and
Sons, New York, 1981.

[Dorsett and Mellor, 1993] Dorsett, Mellor, The Airbus A320 electronic flight control
system, Unpublished manuscript, 1993.

[Dugan et al., 1993] Dugan J B, S J Bavuso, M A Boyd., Fault trees and Markov models for
reliability analysis of fault-tolerant digital systems. Rel. Engng. and System Safety,
Vol. 39, Elsevier Science Publishers Ltd. England, pp291-307, 1993.

[Edwards and Watson, 1979] Edwards G T and I A Watson, A Study of Common Mode
Failures SRD-R-146, United Kingdom Atomic Energy Authority, Safety and
Reliability Directorate, July 1979.

[EPRI, 1985] EPRI NP-3837, A study of common cause failures. Phase 2: A comprehensive
classification system for component fault analysis. Los Alamos Technical
Associates, Inc. June 1985.

[Ezhilchelvan and Shrivastava, 1986] Ezhilchelvan P. D., Shrivastava S. K., A
Characterisation of Faults in Systems, in Proceedings of the 5th Symposium on
Reliability in Distributed Software and Database Systems, pages 215-22, LA United
States, 1986.

[Fenelon and McDermid, 1993] P Fenelon, J A McDermid, An Integrated Toolset For
Software Safety Analysis. Journal of Systems and Software, 1993.

[Fenelon et al., 1994] P Fenelon P, J A McDermid, D J Pumfrey, M Nicholson, Towards
Integrated Safety Analysis and Design, ACM Applied Computing Review, Vol. 2
N°1, pp21-32, August 1994.

[Fleming and Kalinowski, 1983] Fleming K. N., Kalinowski A. M.. An Extension of the Beta
Factor Method to Systems with High Levels of Redundancy. Pickard, PLG-0289,
Lowe and Garrick, Inc., USA, June 1983.

[Fleming, 1975] Fleming K. N., A Reliability Model for Common Mode Failure in
Redundant Safety Systems. Proceedings of the Sixth Annual Pittsburgh Conference
on Modelling and Simulation, GA-A13284, General Atomic Report, Pittsburgh, PA,
April, 23-25, 1975.

[Friedman, 1995] Friedman M A and J M Voas, Software Assessments: Reliability, Safety,
Testability; John Wiley and Sons, inc., 1995.

[Fussell, 1973] Fussell J. B., Synthetic Tree Model. Report ANCR 1098 Aerojet Nuclear
Company. March 1973.

[Haasl, 1965] Haasl, Advanced Concept in Fault Tree Analysis System Safety Symposium,

199

University of Washington Library, Seattle, 1965.

[Hecht and Hecht, 1986] Hecht H. and Hecht M., Fault-tolerant Software. In D.K.Pradhan,
editor, Fault-Tolerant Computing: Theory and Techniques, volume II, pages 658-
696. Prentice-Hall, 1986.

[Henley and Kumamoto, 1981] Henley J., Kumamoto H., Reliability Engineering and Risk
Assessment, Prentice Hall, Englewood Clift, NJ, 1981.

[Homma and Saltelli, 1996] Homma, T., Saltelli, A., Importance Measures in Global
Sensitivity Analysis of Nonlinear Models. Reliability Engineering & System Safety.
Vol 52, N. 1, 1996.

[Hu, Modarres, 1997] Hu Y-S, Modarres M., “Ensuring and Automating Software Assurance
Based on A Logic Model”. Center for Reliability Engineering Department of
Materials and Nuclear Engineering University of Maryland College Park, MD
207442, USA, 1997.

[Humphreyes, 1987] Humphreyes R A., Assigning a numerical value to the Beta Factor
Common Cause Evaluation. Rolls Royce Associates Limited, Derby, 1987.

[Humphreys and Johnston, 1987] Humphreyes P., Johnston B.D., Dependent Failure
Procedure Guide SRD-R-418, United Kingdom Atomic Energy Authority, Safety and
Reliability Directorate, March 1987.

[IEC 61508, 1997] International Electrotechnical Commission 65A/179-185, IEC-61508:
Functional Safety of Electrical / Electronic / Programmable Electronic Safety-related
Systems, IEC, 3 rue de Varembé CH 1211 Geneva Switzerland, 1997.

[IEEE, 1975] Guide for General Principles of Reliability Analysis of Nuclear Power
Generation Station Protection Systems (An American National Standard) ANSI N41-
4-1976, IEEE Std 352-1975 (Revision of IEEE WStd 352-1972). 1975.

[ISO, 1992] Draft International Standard Road Vehicles -Interchange of digital information-
Controller Area Network (CAN) for High Speed Communication, ISO DIS 11898,
1992.

[ISPESL-CEI, 2000] Draft “PLC Safety Critical” Linea Guida Assessment, GDL-ISPESL –
Report, 2000.

[Johnston and Crackett, 1985] Johnston B. D. and Crackett J., Common cause failure
reliability Benchmark exercise. SRD-R-383 (GD/PE-N/1329, United Kingdom
Atomic Energy Authority, Safety and Reliability Directorate, August 1985.

[Kaplan & Garrick, 1981] Kaplan S, Garrick J. “On qualitative Definition of Risk” Risk
Analysis, vol. 1, No.1., 1981.

[Kemeny, 1969] Kemeny J. G., Report of the President’s commission on the accident at Tree
Mile Island, 1969.

[King and Rudd, 1971] King C.F. and Rudd D.F., Design and maintenance of economical
failure-tolerant processes. American Institute Chemical Engineering Journal, 18,
257-69, 1971.

[Kletz, 1992] Kletz T., HAZOP and HAZAN: Identifying and Assessing Process Industry
Standards, 3rd Edition, Hemisphere Publishers, ISBN: 1-56032-276-4, 1992.

[Laprie, 1993] Laprie J., “Dependability: From Concepts to Limits”, Proc. SAFECOMP,
Poznan, Poland, pp. 157-168, 1993.

200

[Lawley, 1974] Lawley H.G., Operability Study and Hazard Analysis, Chemical Industry
Progress, 70, 45-56, 1974.

[Lawley, 1976] Lawley S, Size up plant hazard this way, Hydrocarbon Processing, 247-61,
April, 1976.

[Lees, 1980] Lees P., Loss Prevention in the Process Industries, Butterworth, London, 1980.
American Institute Chemical Engineering Journal, 18, 257-69, 1971.

[Leveson, 1983] Leveson N G, P R Harvey, Software Fault Tree Analysis Journal of System
and Software; 3:173-81, 1983.

[Leveson, 1991] Leveson N G, T J Shimeall, Safety Verification of Ada Programs using
Software Fault Trees; IEEE Software, 8(4):48-59, July 1991.

[Lievens, 1976] Lievens, Sécurité des Systèmes, Cepadeus Editions, Toulouse 1976.

[Littlewood, 1993] Littlewood B., The need for evidence from disparate sources to evaluate
software safety, 7th meeting of the UK Safety Critical Club, Bristol, February 1993.

[Maier, 1995] Maier T., FMEA and FTA to support safe design of embedded software in
safety-critical systems. Proceeding of the 12th CSR workshop and 1st ENCRESS
conference, Bruges, September 1995.

[Malhotra, 1993] Malhotra M., Specification of Dependability Models for Fault-Tolerant
Systems. PhD thesis, Graduate School of Duke University, USA, 1993.

[Marshall and Olkin, 1967] Marshall A. W., Olkin A., Multivariate Exponential Distribution.
Journal of American Statistic Association, Vol. 62, pp. 30-44, 1967.

[Mauri, 1995] Mauri G., Le dipendenze e i guasti da causa comune nella analisi di
affidabilità di un impianto complesso. Special Publication, No. I.95.15, European
Commission-ISEI/IE, Ispra, Italy, 1995.

[Mauri, 1996] Mauri G., Dependency and Common Cause/Mode Failures Analysis for Safety
Critical Systems: Field Survey and Review. First Year Qualifying Dissertation.
University of York, York, June, 1996.

[Mauri, 1997a] Mauri G., Dependency and Common Cause/Mode Failures Analysis for
Safety Critical Systems: Field Survey and Review. Thesis Prposal. University of
York, York, June, 1997.

[Mauri, 1997b] Mauri G., Integrated Hardware and Software Safety Assessment for Safety
Critical Systems. Final Report. University of York and University of Pisa, York,
December 1997.

[Mauri et al, 1998] Mauri G., McDermid J. A., Papadopoulos Y., Extension of Hazard and
Safety Analysis Techniques to Address Problems of Hierarchical Scale, in
Proceedings of IEE Colloquium on Systems Engineering of Aerospace Projects,
IEE Digest no: 98/249, pages. 4.1/4.6, London, 1998.

[McCord, Moroney, 1964] McCord J R, Moroney R M, Introduction to Probability Theory.
Collier MacMillan, London, 1964.

[McDermid, 1994] McDermid, J.A., Support for safety cases and safety arguments using
SAM, Reliability engineering and System Safety, Vol. 43, pp. 111-127, 1994.

[McDermid and Pumfrey, 1994] McDermid and Pumfrey D., A Development of Hazard
Analysis to aid Software Design. Proceeding of the 9th annual conference on

201

Computer Assurance (COMPASS 94). Gaithersburg, MD, Pp. 17-25, July 1994.

[McDermid et al., 1995] McDermid, J.A. Nicholson, Pumfrey D. & Fenelon, P., Experience
with the application of HAZOP to Computer-Based Systems. Proceeding of the 10th
annual conference on computer assurance (COMPASS 95). Gaithersburg, MD, Pp.
37-48, June 1995.

[MIL-STD-1629a, 1980] Department of Defense, Military Standard: Procedure for
Performing a Failure Mode and Effect Analysis. MIL-STD-1629a, Washington D.C.,
1980.

[MIL-STD-882, 1969] Department of Defense, Military Standard: System Safety Program
Requirements. MIL-STD-882, United States of America. 1969.

[MIL-STD-882c, 1993] Department of Defense, Military Standard: System Safety Program
Requirements. MIL-STD-882c, United States of America. 19 January 1993.

[MIL-STD-882d, 1999] Department of Defense, Military Standard: System Safety Program
Requirements. MIL-STD-882d, United States of America. July 1999.

[Minichino et al., 2000] Minichiono M., Ciancamerla E., Chiaradonna S., Bandovalli A., An
Experience of Dependability assessment of a typical Industrial safety critical
Programmable Logic Controller, 4th Symposium of Programmable Electronic
Systems in Safety Related Applications. TUV Rheinland, Cologne, 3-4 May, 2000.

[MoD 00-56, 1996] MoD., Draft Interim Defence Standard 00-56/1: a Guideline to HAZOP
studies on systems which include a programmable electronic system, UK Ministry of
Defence, 1996.

[MoD 00-58, 1995] MoD., Draft Interim Defence Standard 00-58/1: a Guideline to HAZOP
studies on systems which include a programmable electronic system, UK Ministry of
Defence, 1995.

[Modarres, 1987] Hunt R N, Modarres M., “Performing a Plant Specific PRA by Hand – A
Practical Reality”. 14th Inter-RAM Conference, Minneapolis, 1987.

[Modarres, 1992] Modarres M., “Application of the Master Plant Logic Diagram in Risk-
Based Evaluations”. Amer. Nucl. Society Topical Mtg. on Risk Management,
Boston, MA, 1992.

[Modarres, 1993] Modarres M., What Every Engineer Should Know about Reliability and
Risk Analysis. Marcel Dekker, Inc. New York, 1993.

[Mosleh et al., 1993] Mosleh A., Fleming K., Parry G., Paula H., Warledge D., Rasmusson
D., Procedures for Analysis of Common-Cause Failures in Probabilistic Safety
Analysis. NUREG/CR-5801, Vol. 1. Office of Nuclear Regulatory Research.
Washington, DC, 1993.

[Mosleh, et al., 1988] Mosleh A. et al., Procedures for Treating Common Cause Failures in
Safety and Reliability Studies. NUREG/CR-4780, Vol. 1 & 2. Office of Nuclear
Regulatory Research, Washington, DC, Cap. 2, pp. 4-8, January 1988.

[Neumann, 1987] Neumann P.G., Index for computer related risks. ACM Software
Engineering Notes, 12(1): 22-28, 1987.

[Norris, 1998] Norris J. R., Markov Chains (Statistical & Probabilistic Mathematics Series
No. 2). Cambridge Univ Pr (Pap Txt); ISBN: 0521633966- 253 pages 1 Pbk Ed
edition, August 1998.

[NUREG 2300, 1983] American Nuclear Society, IEEE. PRA procedure guide; A Guide to

202

the Performance of probabilistic Risk Assessments for Nuclear Power Plants.
NUREG/CR-2300, Vol. 1 & 2, Office of Nuclear Regulatory Research, Washington,
DC, 1983.

[NUREG 2815, 1985] American Nuclear Society, IEEE. Probabilistic Safety Analysis
Procedure Guide. NUREG/CR-2815, Vol. 1 & 2, Office of Nuclear Regulatory
Research, Washington, DC, 1985.

[NUREG 5993, 93] NRC, Brookhaven National Laboratory. Methods for Dependency
Estimation and System Unavailability Evaluation Based on Failure Data Statistics.
NUREG/CR-5993, Vol. 1 & 2, Office of Nuclear Regulatory Research, Washington,
DC, July 1993.

[NUREG 74/014, 1975] Reactor Safety. An assessment of accident risk in US commercial
nuclear power plant. Wash-1400, NUREG 74/014, US NRC, 1975.

[OREDA, 1984] Offshore Reliability Data. Oreda Participants, Harvic, Norway, 1984.

[Palady, 1995] Palady P., Failure Modes and Effects Analysis, PT Publications, ISBN: 0-
94545-617-4, 1995.

[Papadopoulos and McDermid, 1998] Papadopoulos Y., McDermid J. A., A Harmonised
Model for Safety Assessment and Certification of Safety Critical Systems,
Requirements Engineering Journal, 3(2):143-150, Springer-Verlang, 1998.

[Papadopoulos and McDermid, 1999a] Papadopoulos Y., McDermid J. A, Hierarchically
Performed Hazard Origin and Propagation Studies, in Lecture Notes in Computer
Science, 1698:139-152, Proceedings of SAFECOMP’99, the 18th International
Conference on Computer Safety, Reliability and Security, Toulouse France, Springer
Verlag, 1999.

[Papadopoulos and McDermid, 1999b] Papadopoulos Y., McDermid J.A, A new method for
Safety Analysis and the Mechanical Synthesis of Fault Trees in Complex Systems, in
Proceedings of ICSSEA ‘99, 12th International Conference on Software and Systems
Engineering and their Applications, 4(13):1-9, Paris, 1999.

[Papadopoulos, Mauri, McDermid, 2000] Papadopoulos, Y., Mauri, G., McDermid, J. A.,
Systematic Anticipation and Validation of Scenarios of Failure Propagation and
Mitigation in PLC Controlled Processes, in: Proceedings of the PLC Conference,
Cologne, 2000.

[Paula and Parry, 1990] Paula H.M., Parry G. W., A Cause Defense Approach to the
Understanding and Analysis of Common Cause Failures. NUREG/CR-5460, Vol. 1.
Office of Nuclear Regulatory Research, Washington, DC, 1990.

[Peyton and Peebles, 1987] Peyton Z. Peebles J., Probability, Random Variables and Random
Signal Principles. McGraw Hill, New York, 1987.

[Picciolo, 2000] Picciolo G., Guideline for Assessing PLCs Safety-Related Reliability, 4th
Symposium of Programmable Electronic Systems in Safety Related Applications.
TUV Rheinland, Cologne, 3-4 May, 2000.

[Poucet et al., 1987] Poucet A., Amendola A., Cacciabue P.C., Common Cause failure
Relibility Benchmark Exercise, EUR 110554 EN, JRC Commission of the European
Communities, April 1987.

[Poucet, 1990] Poucet A, STARS: Knowledge Based Tools for Safety and Reliability
Analysis, Rel. Engng. And System Safety, Vol. 31, Elsevier Science Publishers Ltd.,
England, pp65-90, 1990.

203

[Poucet et al., 1993 a] Poucet A., Carpignano A., Scheer., STARS Project: Fault Tree Editor,
version 1.1 – X11.5. Technical Notes, No. I.93.111, European Commission ISEI,
Ispra, Italy, 1993.

[Poucet et al., 1993 b] Poucet A., Carpignano A., Scheer., STARS Project: Fault Tree
Analyser, version 1.1 – X11.5. Technical Notes, No. I.93.110, European Commission
ISEI, Ispra, Italy, 1993.

[Poucet et al., 1993 c] Poucet A, J Wand & M A Wilikens., The Licensing of Safety Critical
Systems Containing Software, EUR 15341 EN, JRC Commission of the European
Communities, July 1993.

[Prasad, 1998] Prasad D. K., Dependable System Integration Using Measurement Theory and
Decision Analysis. Dphil Thesis. The University of York. United Kingdom.
Novenber, 1998.

[Rasmussen, 1992] Rasmussen Dale M., A comparison of the small and large event tree
approaches used in PRAs. Rel. Engng and System Safety, Num. 37, Elsevier Science
Publishers Ltd., England, pp. 79-90, 1992.

[Recht, 1966] Recht J.L., Failure Mode and Effect Analysis, National Safety Council, 1966.

[Ross, 1985] Ross T., Application and Extension of SADT. IEEE Transaction of Software
Engineering, April, 1985.

[SAE-ARP 4754, 1996] EUROCAE ED-79/ SAE-ARP 4754, Aerospace Recommended
Practice. Certification Considerations for Highly Integrated or Complex Aircraft
Systems. Society of Automotive Engineers, Inc., 1996.

[SAE-ARP 4761, 1996] Society of Automotive Engineers, ARP-4761: Aerospace
Recommended Practice: Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment, 12th edition, SAE,
400 Commonwealth Drive Warrendale PA United States, 1996.

[Sardella, 1995] Sardella R., A Review of Knowledge-Based Systems for Fault Tree/Event
Tree Construction. European Commission, Tech. Note No. I.95.21, 1995.

[Simpson, 1994] Simpson H., Methodological and Notational Conventions in DORIS Real
Time Networks British Aerospace Dynamics Division, 1994

[Taylor, 1982] Taylor J. R., An Algorithm for Fault tree construction. IEEE Transactions on
Reliability, R-29(1):2-9, IEEE, 1982.

[T-Book, 1992] The ATV Office, Reliability Data of Components in Nordic Nuclear Power
Plants. 3rd Edition. The ATV Office, Vattenfall AB, Sweden, 1992.

[Thisdell, 1994] Thisdell D., “The quick route to an emergency stop”, New Scientist, 5
November 1994, p.20), 1994.

[Toy, 1987] Toy W. N, Fault-Tolerant computing. M.C. Yovits, editor, Advances in
Computer-Vol26, pages 201-279. Academic Press, 1987.

[Vesely, 1981] Vesely W. E, Fault Tree Handbook, US Nuclear Regulatory Committee
Report NUREG-0492, US NRC Washington DC United States, 1981.

[Villemeur, 1991] Villemeur A., Reliability, Availability, Maintainability and Safety
Assessment; John Wiley and Sons, inc., ISBN 0 471 93 048 (v1), ISBN 0 471 93 049
(v1), 1991.

204

[Villemeur, 1992] Villemeur A., Reliability, Availability Maintainability and Safety
Assessment, John Willey and Sons Ltd, ISBN 0-471-93048-2, 1992.

[Virolainen, 1993] Virolainen R K., State of the Art of Level-1 PSA Methodology,
Committee on the Safety of Nuclear Installations (CSNI) OCDE Nuclear Energy
Agency, Issy-les-Moulineaux, France, January 1993.

[Wang et al., 1988] Wang j., Modarres M., Hunt R. N. M., Probabilistic Risk Assessment: a
look at Role of Artificial Intelligence. Nuclear Engineering and Design, Vol. 106-3,
pp. 375-387, 1988.

[Wilson & McDermid, 1995] Wilson S.P. and McDermid J.A., "Integrated analysis of
Complex Systems", The computer Journal, Special Issue on Engineering System,
1995.

[Yamada, 1977] Yamada K., Reliability Activities at Toyota Motor Company, Rep. Stat.
App. Res., JUSE, 24(3), 1977.

[Yourdon and Constantine, 1986] Yourdon E., Constantine L., Structured Design:
Fundamentals of a Discipline of Computer Program and Systems Design, Prentice
Hall, September 1986, ISBN: 0-13854-471-9, 1986.

	Title
	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Author’s Declaration
	Chapter One
	Introduction
	Life-cycle
	Fault tolerance
	Common Cause Events
	Motivation
	Central Proposition and Objectives
	Scope of Study and Methodology
	Organisation of the Thesis

	Chapter Two
	Techniques for Safety Analysis
	Introduction
	Safety Analysis
	Preliminary Hazard Analysis
	Functional Hazard Assessment
	HAZOP and HAZOP based techniques
	FMEA
	Fault tree and Event tree analyses
	Markov chains
	Master Plant Logic Diagram
	Taxonomy of Techniques for safety analysis

	Common Cause Failure Analysis
	Dependent failure events
	Common cause failure events
	Common mode failure events
	Defending against Root Cause
	Defending against couplings
	The aerospace industry
	Software domain
	Defences against common cause failures
	Common cause failures quantitative assessment

	Discussion

	Chapter Three
	Preliminary work
	Template based approach
	Event Tree Output Notation
	Master Plant Logic Diagram approach
	Discussion

	Chapter Four
	Failure Logic Analysis for System Hierarchies
	FLASH Overview
	FLASH method: tables
	Events
	Areas inside a table
	Outgoing event area: Effects
	Incoming event area: Input and Secondary events
	Generated Events area: Primary events
	Table template
	Programmable electronic modules

	FLASH method: process
	Decomposition and Design
	Integration and Verification

	Tool support
	Discussion

	Chapter Five
	Common Cause Failure
	Overview
	Identification of MCS with coupled events
	Likelihood of MCS with coupled events
	Likelihood of a generic event
	Likelihood of coupled events
	Independent and coupled probabilities

	Discussion

	Chapter Six
	Case studies
	The Fuel System
	Analysis in the Decomposition and Design Stage
	Analysis in the Integration and Verification
	Common Cause Failures

	Computer-Assisted Braking system
	Description
	Analysis in the Decomposition and Design
	Integration, verification and Common Cause Failures analysis

	Discussion

	Chapter Seven
	Conclusions
	Review of Research Objectives
	Contribution of the thesis
	Theoretical Contribution
	Practical Contribution

	Suggestions for Further Work
	Consolidation of the Technique
	Theoretical Extension

	Final Remarks

	Bibliography

