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Specifying Software Requirements for Complex
Systems: New Techniques and Their

Application
KATHRYN L. HENINGER

Abstract-This paper concerns new techniques for making require-
ments specifications precise, concise, unambiguous, and easy to check
for completeness and consistency. The techniques are well-suited for
complex real-time software systems; they were developed to document
the requirements of existing flight software for the Navy's A-7 aircraft.
The paper outlines the information that belongs in a requirements
document and discusses the objectives behind the techniques. Each
technique is described and illustrated with examples from the A-7
document. The purpose of the paper is to introduce the A-7 document
as a model of a disciplined approach to requirements specification; the
document is available to anyone who wishes to see a fully worked-out
example of the approach.

Index Terns-Documentation techniques, functional specifications,
real-time software, requirements, requirements definition, software
requirements, specifications.

I. INTRODUCTION
MsUCH software is difficult to understand, change, and

maintain. Several software engineering techniques have
been suggested to ameliorate this situation, among them mod-
ularity and information hiding [11], [12], formal specifica-
tions [4], [9], [10], [13], [16], [20], abstract interfaces [15],
cooperating sequential processes [2], [18], [211, process syn-
chronization routines [2], [8], and resource monitors [1],
[6], [7]. System developers are reluctant to use these tech-
niques both because their usefulness has not been proven for
programs with stringent resource limitations and because there
are no fully worked-out examples of some of them. In order
to demonstrate feasibility and to provide a useful model, the
Naval Research Laboratory and the Naval Weapons Center
are using the techniques listed above to redesign and rebuild
the operational flight program for the A-7 aircraft. The new
program will undergo the acceptance tests established for the
current program, and the two programs will be compared both
for resource utilization and for ease of change.
The new program must be functionally identical to the

existing program. That is to say, the new program must meet
the same requirements as the old program. Unfortunately,
when the project started there existed no requirements docu-
mentation for the old program; procurement specifications,
which were originally sketchy, are now out-of-date. Our first
step was to produce a complete description of the A-7 pro-
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gram requirements in a form that would facilitate the develop-
ment of the new program and that could be updated easily as
the requirements continue to change.
Writing down the requirements turned out to be surprisingly

difficult in spite of the availability of a working program and
experienced maintenance personnel. None of the available
documents were entirely accurate; no single person knew the
answers to all our questions; some questions were answered
differently by different people; and some questions could not
be answered without experimentation with the existing sys-
tem. We found it necessary to develop new techniques based
on the same principles as the software design techniques listed
above to organize and document software requirements. The
techniques suggested questions, uncovered ambiguities, and
supported crosschecking for completeness and consistency.
The techniques allowed us to present the information rela-
tively concisely, condensing several shelves of documentation
into a single, 500-page document.

This paper shares some of the insights we gained from de-
veloping and applying these techniques. Our approach can be
useful for other projects, both to document unrecorded re-
quirements for existing systems and to guide software pro-
curers as they define requirements for new systems. This
paper introduces the techniques and illustrates them with
simple examples. We invite anyone interested in more detail
to look at the requirements document itself as a complete
example of the way the techniques work for a substantial
system [5].

First this paper addresses the objectives a requirements
document ought to meet. Second it outlines the general de-
sign principles that guided us as we developed techniques; the
principles helped us achieve the objectives. Finally it presents
the specific techniques, showing how they allowed us to
achieve completeness, precision, and clarity.

II. A-7 PROGRAM CHARACTERISTICS

The A-7 flight program is an operational Navy program with
tight memory and time constraints. The code is about 12 000
assembler languge instructions and runs on an IBM System 4
PI model TC-2 computer with 16K bytes of memory. We
chose this program because we wanted to demonstrate that
the run-time overhead incurred by using software engineering
principles is not prohibitive for real-time programs and because
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the maintenance personnel feel that the current program is
difficult to change.
The* A-7 flight program is part of the Navigation/Weapon

Delivery System on the A-7 aircraft. It receives input data
from sensors, cockpit switches, and a panel with which the
pilot keys in data. It controls several display devices in the
cockpit and positions several sensors. Twenty-two devices
are connected to the computer; examples include an inertial
measurement set providing velocity data and a head-up dis-
play device. The head-up display projects symbols into the
pilot's field of view, so that he sees them overlaying the world
ahead of the aircraft. The program calculates navigation in-
formation, such as present position, speed, and heading; it
also controls weapon delivery, giving the pilot steering cues
and calculating when to release weapons.

III. REQUIREMENTS DOCUMENT OBJECTIVES
For documentation to be useful and coherent, explicit

decisions must be made about the purposes it should serve.
Decisions about the following questions affect its scope,
organization, and style: 1) What kinds of questions should it
answer? 2) Who are the readers? 3) How will it be used?
4) What background knowledge does a reader need? Con-
sidering these questions, we derived the following six objec-
tives for our requirements document.

1) Specify external behavior only. A requirements docu-
ment should specify only the external behavior of a system,
without implying a particular implementation. The user or
his representative defines requirements using his knowledge
of the application area, in this case aircraft navigation and
weapons delivery. The software designer creates the imple-
mentation, using his knowledge of software engineering. When
requirements are expressed in terms of a possible implementa-
tion, they restrict the software designer too much, sometimes
preventing him from using the most effective algorithms and
data structures. In our project the requirements document
must be equally valid for two quite different implementations:
the program we build and the current program. For our pur-
poses it serves as a problem statement, outlining what the new
program must do to pass acceptance tests. For those main-
taining the current program, it fills a serious gap in their doc-
umentation: they have no other source that states exactly
what the program must do. They have pilot manuals, which
supply user-level documentation for the entire avionics sys-
tem, of which the program is only a small part. Unfortunately,
the pilot manuals make it difficult to separate the activities
performed by the computer program from those performed
by other devices and to distinguish between advice to the pilot
and restrictions enforced by the program. The maintainers
also have implementation documentation for the current pro-
gram: mathematical algorithm analyses, flowcharts, and
12 000 lines of sparsely commented assembler code. But
the implementation documents do not distinguish between
the aspects that are dictated by the requirements and those
that the software designer is free to change.
2) Specify constraints on the implementation. In addition

to defining correct program behavior, the document should

describe the constraints placed on the implementation, espe-
cially the details of the hardware interfaces. As is usually the
case with embedded systems,' we are not free to define the
interfaces to the system, but must accept them as given for
the problem. A complete requirements description should
therefore include the facts about the hardware devices that
can affect the correctness of the program.
3) Be easy to change. Because requirements change, re-

quirements documentation should be easy to change. If the
documentation is not maintained during the system life cycle,
control is lost over the software evolution; it becomes difficult
to coordinate program changes introduced by maintenance
personnel.
4) Serve as a reference tool. The primary function of the

document is to answer specific questions quickly, rather than
to explain in general what the program does. We expect the
document to serve experienced programmers who already have
a general idea about the purpose of the program. Precision
and conciseness are valued. Indispensable reference aids in-
clude a glossary, detailed table of contents, and various indices.
Since tutorial material has different characteristics, such as a
narrative style, it should be developed separately if it is needed.
5) Record forethought about the life cycle of the system.

During the requirements definition stage, we believe it is
sensible to exercise forethought about the life cycle of the
program. What types of changes are likely to occur [22]?
What functions would maintainers like to be able to remove
easily [17]? For any software product some changes are easier
to make than others; some guidance in the requirements will
help the software designer assure that the easy changes cor-
respond to the most likely changes.

6) Characterize acceptable responses to undesired events.
Undesired events [14], such as hardware failures and user
errors, should be anticipated during requirements definition.
Since the user knows the application area, he knows more
than the software designer about acceptable responses. For
example, a pilot knows better than a programmer whether
a particular response to a sensor failure will decrease or in-
crease his difficulties. Responses to undesired events should
be stated in the requirements document; they should not be
left for the programmer to invent.

IV. REQUIREMENTS DOCUMENT DESIGN PRINCIPLES
Our approach to requirements documentation can be sum-

marized by the three principles discussed below. These
principles form the basis of all the techniques we developed.

1) State questions before trying to answer them. At every
stage of writing the requirements, we concentrated first on
formulating the questions that should be answered. If this
is not done, the available material prejudices the requirements
investigation so that only the easily answered questions are
asked. First we formulated the table of contents in Fig. 1 in
order to characterize the general classes of questions that
should be answered. We wrote it before we looked at the A-7

lAn embedded system functions as a component of a significantly
larger system. Parnas [151 has a discussion of embedded system
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Chapter

O Introduction

1 Computer Characteristics

2 Hardware Interfaces

3 Software Functions

4 Timing Constraints

5 Accuracy Constraints

6 Response to Undesired
Events

7 Subsets

8 Fundamental Assumptions

9 Changes

10 Glossary

11 Sources

Contents

Organization principles; abstracts for other
sections; notation guide

If the computer is predetermined, a general
description with particular attention to its
idiosyncrasies; otherwise a siummary of its
required characteristics

Concise description of information received
or transmitted by the computer

What the software must do to meet its
requirements, in various situations and in
response to various events

How often and how fast each function must be
performed. This section is separate from
section 3 since "what" and "when" can change
independently.

How close output values must be to ideal
values to be acceptable

What the software must do if sensors go down,
the pilot keys in invalid data, etc.

What parts of the program should be easy to
remove

The characteristics of the program that will
stay the same, no matter what changes are made

The types of changes that have been made or
are expected

Most documentation is fraught with acronyms
and technical terms. At first we prepared
this guide for ourselves; as we learned the
language, we retained it for newcomers.

Annotated list of documentation and
personnel, indicating the types of questions
each can answer

Fig. 1. A-7 Requirements table of contents.

at all, basing it on our experience with other software. Then
we generated questions for the individual sections. Like any

design effort, formulating questions requires iteration: we gen-
erated questions from common sense, organized them into
forms, generated more questions by trying to fill in the blanks,
and revised the forms.
2) Separate concems. We used the principle of "separation

of concerns" [3] to organize the document so that each proj-
ect member could concentrate on a well-defined set of ques-

tions. This principle also serves the objective of making the
document easy to change, since it causes changes to be well-
confined. For example, hardware interfaces are described
without making any assumptions about the purpose of the
program; the hardware section would remain unchanged if
the behavior of the program changed. The software behavior
is described without any references to the details of the hard-
-ware devices; the software section would remain unchanged if
data were received in different formats or over different
channels.
3) Be as fornal as possible. We avoided prose and devel-

oped formal ways to present information in order-to be pre-

cise, concise, consistent, and complete.
The next two sections of the paper show how these prin-

ciples are applied to describe the hardware interfaces and the
software behavior.

V. TECHNIQUES FOR DESCRIBING
HARDWARE INTERFACES

Organization by Data Item
To organize the hardware interfaces description, we have a

separate unit, called a data item, for each input or output
that changes value independently of other inputs or outputs.
Examples of input data items include barometric altitude,
radar-measured distance to a point on the ground, the setting
of the inertial platform mode switch, and the inertial platform
ready signal. Examples of output data items include co-
ordinates for the flight path marker on the head-up display,
radar antenna steering commands, and the signal that turns
on and off the computer-failed light. The A-7 computer re-
ceives 70 input data items and transmits 95 output data items.

In order to have a consistent approach, we designed a form
to be completed for each data item. We started with an initial
set of questions that occurred to us as we read about the inter-
faces. How does the program read or write these data? What is
the bit representation of the value? Can the computer tell
whether a sensor value is valid? As we worked on specific
data items, new questions occurred to us. We added these
questions to the form, so that they would be addressed for
all data items. The form is illustrated in Figs. 2 and 3 at the
end of this section.
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Symbolic Names for Data Items and Values
The hardware section captures two kinds of information

about data items: arbitrary details that might change if a de-
vice were replaced with a similar device, and essential charac-
teristics that would be shared by similar devices. The bit
representation of a value is an arbitrary detail; the semantics
of the value is an essential characteristic. For example, any
barometric altitude sensor provides a reading from which
barometric altitude can be calculated-this information is
essential. But the resolution, representation, accuracy, and
timing might differ between two types of barometric altitude
sensors-this information is arbitrary.
Essential information must be expressed in such a way that

the rest of the document can use it without referencing the
arbitrary details. For example, each data item is given a
mnemonic name, so that it can be identified unambiguously
in the rest of the document without reference to instruction
sequences or channel numbers. If a data item is not numerical
and takes on a fixed set of possible values, the values are given
mnemonic names so that they can be used without reference
to bit encodings. For example ,-a switch might be able to take
the values "on" and "off." The physical representation of the
two values is arbitrary information that is not mentioned in
the rest of the document in case it changes. The names allow
the readers and writers of the rest of the document to ignore
the physical details of input and output, and are more visually
meaningful than the details they represent.
We bracket every mnemonic name in symbols indicating the

item type, for example /input-data-items/, f/output-data-
items//, and $nonnumeric-values$. These brackets reduce con-
fusion by identifying the item type unambiguously, so that the
reader knows where to find the precise definition. Moreover,
the brackets facilitate systematic cross referencing, either by
people or computers.

Templates for Value Descriptions
The values of the numerical data items belong to a small

set of value types, such as angles and distances. At first we
described each data item in an ad hoc fashion, usually imitat-
ing the descriptions in the documents we referenced. But
these documents were not consistent with each other and the
descriptions were not always complete. We made great prog-
ress when we developed informal templates for the value de-
scriptions, with blanks to be completed for specific data items.
For example, the template for angles might read:

angle (?) is measured from line (?) to line (?) in the (?)
direction, looking (?)
For example, magnetic heading is measured from the line

from the aircraft to magnetic north to the horizontal compo-
nent of the aircraft X axis, in the clockwise direction look-
ing down.
Although templates were not used as hard-and-fast rules,

their existence made values easier to describe, made the de-
scriptions consistent with each other, and helped us apply the
same standards of completeness to all items of the same type.

Input Data Items Described as Resources,
Independent ofSoftware Use
When describing input data items, we refrain from mention-

ing how or when the data is used by the software, to avoid
making any assumptions about the software function. In-
stead, we describe the input data items as if taking inventory
of the resources available to solve a problem. We define
numerical values in terms of what they measure. For ex-
ample, the value of the input data item called /RADALT/ is
defined as the distance above local terrain as determined by
the radar altimeter. Many nonnumerical inputs indicate
switch positions; these are described without reference to
the response the pilot expects when he changes the switch,
since the response is accomplished by the software. For ex-
ample, when the pilot changes the scale switch on the pro-
jected map display, he expects the map scale to change. Since
the response is achieved by the software, it is not mentioned
in the input data item description, which reads, "/PMSCAL/
indicates the position of a two-position toggle switch on the
projected map panel. This switch has no hardware effect on
the projected map display. "

Example ofan Input Data Item Description
Fig. 2 shows the completed form for a nonnumerical input

data item. The underlined words are the form headings.
Value encoding shows how the mnemonic value names used
in the rest of the document are mapped into specific bit
representations. "Switch nomenclature" indicates the names
of the switch positions as seen by the pilot in the cockpit.
Instruction sequence gives the TC-2 assembler language in-
structions that cause the data to be transmitted to or from
the computer. We are not usurping the programmer's job by
including the instruction sequence because there is no other
way to read in this data item-the instruction sequence is not
an implementation decision for the programmer. The channel
number is a cross reference to the computer chapter where the
general characteristics of the eight channels are described.
Data representation shows the location of the value in the
16-bit input word. Notice how the Comments section defines
the value assumed by the switch while the pilot is changing it.
This is an example of a question we asked about all switches,
once it had occurred to us about this one.

Output Data Items Described in Terms ofEffects on
Extemal Hardware
Most output data items are described in terms of their effects

on the associated devices. For example, the description of
the output data items called //STEERAZ// and //STEEREL//
shows how they are used to communicate the direction to
point the antenna of the radar. This section does not explain
how the software chooses the direction. For other output
data items we define the value the peripheral device must
receive in order to function correctly. For example, the de-
scription of the output data item called //FPANGL// shows
that the radar assumes the value will be a certain angle which
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Input Data Item: IMS Mode Switch

Acronym: /IMSMODE/

Hardware: Inertial Measurement Set

Description: /IMSMODE/ indicates the position of a six-position rotary switch
on the IMS control panel.

Switch nomenclature: OFF; GND ALIGN; NORM; INERTIAL; MAG SL;
GRID

Characteristics of Values
Value Encoding: $Offnone$

$Gndal $
$Norm$
$Iner$
$Grid$
$Magsl$

(00000)
(10000)
(01000)
(00100)
(00010)
(00001)

Instruction Sequence: READ 24 (Channel 0)

Data Representation: Bits 3-7

Comments: /IMSMODE/ = $Offnone$ when the switch is between two positions.

Fig. 2. Completed input data item form.

Output Data Item: Steering Error

Acronym: //STERROR//

Hardware: Attitude Direction Indicator (ADI)

Description: //STERROR// controls the position of the vertical needle on the
ADI. A positive value moves the pointer to the right when
looking at the display. A value of zero centers the needle.

Characteristics of Values

Unit: Degrees

Range: -2.5 to +2.5

Accuracy: + .1

Resolution: .00122

Instruction Sequence: WRITE 229 (Channel 7)
Test Carry Bit = 0 for request acknowledged
If not, restart

Data Representation: 11-bit two's complement number, bit 0 and bits 3-12
scale = 512/1.25 = 409.6
offset = 0

INDICATED VALUE
Not used 0 0 0

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15
BIT

Timing Characteristics: Digital to DC voltage conversion. See Section 1.5.7.

Comments: The pointer hits a mechanical stop at + 2.5 degrees.

Fig. 3. Completed output data item form.

it uses to determine the climb or dive angle the aircraft should
use during terrain following. We avoid giving any meaning to
an output value that is not a characteristic of the hardware.

Example ofan Output Data Item Description
Fig. 3 shows the completed form for a numerical output

data item. Notice how the value is described in terms of its
effect on a needle in a display, rather than in terms of what
the needle is supposed to communicate to the pilot. The value
is characterized by a standard set of parameters, such as range
and resolution, which are used for all numerical data items.
For Data representation, we show how the 16-bit output
word is constructed, including which bits must be zero, which
bits are ignored by the device, and which bits encode the out-

put value. Since the actual output value is not in any standard
units of measurement, we also show how it can be derived
from a value in standard units, in this case degrees. The rela-
tion between output values and values in standard units is
given by the equation

output value = scale X (standard value + offset)

Since the same equation is used for all numerical data items,
we need only provide the scale and offset values for a par-
ticular data item. Thus the output value for the data item
//STERROR// in Fig. 3 is derived from a value in degrees by
the following expression:

output value = 409.6 X (standard value + 0)
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The Timing considerations section contains a pointer to
another section; since many output data items have the same

timing characteristics, we describe them once, and include
cross references. The comment shows a physical limit of the
device.

VI. TECHNIQUES FOR DESCRIBING
SOFTWARE FUNCTIONS

Organization by Functions

We describe the software as a set of functions associated
with output data items: each function determines the values
for one or more output data items and each output data item
is given values by exactly one function. Thus every function
can be described in terms of externally visible effects. For ex-

ample, the function calculating values for the output data
item //STERROR// is described in terms of its effects on a

needle in a display. The meaning conveyed to the pilot by
the needle is expressed here.
This approach, identifying functions by working backward

from output data items, works well because most A-7 out-
puts are specialized; most output data items are used for only
a small set of purposes. The approach breaks down somewhat
for a general-purpose device, such as a terminal, where the
same data items are used to express many different types of
information. We have one general-purpose device, the com-

puter panel, where the same set of thirteen seven-segment dis-
plays can display many types of information, including present
position, wind speed, and sensor status. We handled this situa-
tion by acting as if each type of information had its own panel,
each controlled by a separate function. Thus, we have forty-
eight panel functions, each described as if it always controlled
a panel, and a set of rules to determine which function con-

trols the real panel at any. given moment. This approach,
creating virtual panels, allows us to separate decisions about
what the values are from decisions about when they are dis-
played. It also causes the description to be less dependent
on the characteristics of the particular panel device than it
otherwise would be.
Software functions are classified as either demand or peri-

odic. A demand function must be requested by the occur-

rence of some event every time it is performed. For example,
the computer-failed light is turned on by a demand function
when a computer malfunction is detected. A periodic func-
tion is performed repeatedly without being requested each
time. For example, the coordinates of symbols on the head-
up display are updated by periodic functions. If a periodic
function need not be performed all the time, it is started and
stopped by specific events. For example, a symbol may be
removed from the head-up display when a certain event
occurs.

This distinction is useful because different performance and
timing information is required for demand and periodic func-
tions. To describe a demand function one must give the
events that cause it to occur; an appropriate timing question
is "What is the maximum delay that can be tolerated between
request and action?" To describe a periodic function, one

must give the events that cause it to start and stop and the

conditions that affect how it is performed after it is started;
an appropriate timing question is "What are the minimum and
maximum repetition rates for this function?"

Output Values as Functions ofConditions and Events
Originally we thought we would describe each output as a

mathematical function of input values. This turned out to be
a naive approach. We found we could seldom describe output
values directly in terms of input values; instead we had to de-
fine intermediate values that the current program calculated,
but that did not correspond to any output values. These in
turn had to be described in terms of other intermediate values.
By the time we reached input values, we would have described
an implementation.

Instead, we expressed requirements by giving output values
as functions of aircraft operating conditions. For example, the
output data item named //LATGT70// should change value
when the aircraft crosses 700 latitude; how the program detects
this event is left to the implementation. In order to describe
outputs in terms of aircraft operating conditions, we defined a
simple language of conditions and events. Conditions are pred-
icates that characterize some aspect of the system for a mea-
surable period of time. For example, /IMSMODE/ = $Gndal$
is a condition that is true when the IMS mode switch in the
cockpit is set to the GND ALIGN position (see Fig. 2). If a
pilot expects a certain display whenever the switch is in this
position, the function controlling the display is affected by
the value of /IMSMODE/. An event occurs when the value of
a condition changes from true to false or vice versa. Events
therefore specify instants of time, whereas conditions specify
intervals of time. Events start and stop periodic functions,
and they trigger demand functions. Events provide a conve-
nient way to describe functions where something is done when
a button is first pushed, but not if the pilot continues to hold
it down. Before we distinguished clearly between events and
conditions, situations of this sort were very difficult to de-
scribe simply.

Consistent Notation for Aircraft Operating Conditions
Text Macros: To keep the function descriptions concise, we

introduced over two hundred terms that serve as text macros.
The terms are bracketed in exclamation points and defined in
an alphabetical dictionary. A text macro can define a quantity
that affects an output value, but that cannot be directly ob-
tained from an input. An example is "!ground track angle!",
defined as "the angle measured from the line from the air-
craft to true north to !ground track!, measured clockwise
looking down." Although the derivation of such values is left
to the implementation, text macros provide a consistent, en-
capsulated means to refer to them while specifying function
values.
Text macros also serve as abbreviations for compound condi-

tions that are frequently used or very detailed. For example,
!Desig! is a condition that is true when the pilot has per-
formed a sequence of actions that designates a target to the
computer. The list of events defining !Desig! appears only in
the dictionary; while writing or reading the rest of the docu-
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ment, these events need not be considered. If designation pro-
cedures change, only the definition in the dictionary changes.
Another example of a text macro for a compound condition
is !IMS Reasonable!,2 which represents the following bulky,
specific condition:

!IMS total velocity! < 1440 fps AND
change of !IMS total velocity! from .2 seconds
ago < 50 fps

Even though this term is used many times in the function de-
scriptions, only one place in the document need be changed
if the reasonableness criteria change for the sensor.
The use of text macros is an application of stepwise refine-

ment: while describing functions, we give names to com-
plicated operating conditions or values, postponing the precise
definitions. As the examples above show, we continue in-
troducing new terms in the definitions themselves. This
allows us to limit the amount of detail we deal with at one
time. Furthermore, like the use of /, //, and $ brackets in
the hardware descriptions, the use of ! brackets for text
macros indicates to the reader that reference is being made
to something that is defined precisely elsewhere. This re-
duces the risk of ambiguity that usually accompanies prose
descriptions (e.g., !Desig! versus designated).
Conditions: We represent these predicates as expressions

on input data items, for example, /IMSMODE/= $Gndal$,
or expressions on quantities represented by text macros, for
example, !ground track angle! = 300. A condition can also
be represented by a text macro, such as !IMS Reasonable!.
Compound conditions can be composed by connecting simple
conditions with the logical operators AND, OR, and NOT.
For example, (!IMS Reasonable! AND /IMSMODE/=$Gndal$)
is true only when both the component conditions are true.
Events: We use the notation @T(condition 1) to denote the

occurrence of condition 1 becoming true and @F(condition 2)
to denote the occurrence of condition 2 becomingfalse.
For example, the event @T(!ground track angle! < 300) oc-

curs when the !ground track angle! value crosses the 300
threshold from a larger value. The event @T(!ground track
angle!=300) occurs when the value reaches the 300 threshold
from either direction. The event @T(/IMSMODE/ = $Gndal$)
occurs when the pilot moves the switch to the GND ALIGN
position. In some cases, an event only occurs if one condition
changes when another condition is true, denoted by

@T(condition 3) WHEN (condition 4).

Thus, @T(/ACAIRB/= $Yes$) WHEN (/IMSMODE/=$Gndal$)
refers to the event of the aircraft becoming airborne while
the IMS mode switch is in the GND ALIGN position, while
@T(/IMSMODE/= $Gndal$) WHEN (/ACAIRB/=$Yes$) re-
fers to the event of the IMS mode being switched to GND
ALIGN while the iirplane is airborne.

2This text macro represents the condition that the values read from
the inertial measurement set are reasonable; i.e., the magnitude of the
aircraft velocity vector, calculated from inertial measurement set in-
puts, is less than or equal to 1440 feet per second and has changed less
than 50 feet per second from the magnitude 0.2 seconds ago.

UsingModes to Organize and Simplify
Although each function is affected by only a small subset

of the total set of conditions, we still need to organize con-
ditions into groups in order to keep the function descriptions
simple. To do this, we define modes or classes of system
states. Because the functions differ more between modes
than they do within a single mode, a mode-by-mode descrip-
tion is simpler than a general description. For example, by
setting three switches, deselecting guns, and keying a single
digit on the panel, the pilot can enter what is called the visual
navigation update mode. In this mode, several displays and
the radar are dedicated to helping him get a new position
estimate by sighting off a local landmark. Thus the mode
affects the correct behavior of the functions associated with
these displays. The use of modes has an additional advantage:
if something goes wrong during a flight, the pilot is much more
likely when he makes the trouble report to remember the
mode than the values of various conditions.
Each mode is given a short mnemonic name enclosed in

asterisks, for example, *DIG* for Doppler-inertial-gyrocom-
passing navigation mode. The mode name is used in the rest
of the document as an abbreviation for the conditions that
are true whenever the system is in that mode.
The current mode is defined by the history of events that

have occurred in the program. The document shows this by
giving the initial mode and the set of events that cause transi-
tions between any pair of modes. For example, the transition
list includes the entry

*DIG* TO *DI*
@T(!latitude! > 700)
@(/IMSMODE/=$Iner$) WHEN (!Doppler coupled!)

Thus the system will move from *DIG* mode to Doppler-
inertial (*DI*) mode either if the aircraft goes above 700
latitude or if the inertial platform mode switch is changed to
INERTIAL while the Doppler Radar is in use.
The table in Fig. 4 summarizes conditions that are true

whenever the system is in a particular navigation mode. Thus
in *DIG* mode the inertial platform mode switch is set to
NORM, the aircraft is airborne, the latitude is less than 70°,
and both the Doppler Radar and the inertial platform are
functioning correctly. "X" table entries mean the value of
that condition does not matter in that mode.
The mode condition tables are redundant because the in-

formation can be derived from the mode transition lists.
However, the mode condition tables present the information
in a more convenient form. Since the mode condition tables
do not contain all the mode transition information, they do
not uniquely define the current mode.

Special Tables for Precision and Completeness
In an early version of the document, function characteristics

were described in prose; this was unsatisfactory because it
was difficult to flnd answers to specific questions and because
gaps and inconsistencies did not show up. We invented two
types of tables that helped us express information precisely
and completely.
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MODE / IMSMODE/ /ACAIRB/ latitude! Other

*DIG* $Norm$ $Yes$ <700 IMS Up! AND
!Doppler Up!

*DI* $Norm$ OR $Yes$ <800 'IMS Up! AND
$Iner$ !Doppler Up! AND

!Doppler Coupled!

$Iner$ X <800 !IMS Up!

*IMS fail* X X X !IMS Down!

Fig. 4. Section from the navigation mode condition table.

Condition Table: Magnetic heading (//MAGHDGHI/) output values

MODES CONDITIONS

*DIG*, *DI*, *I* Always X
*Mag sl*,*Grid*

*IMS fail* (NOT /IMSMODE/=$Offnone$) /IMSMODE/=$Offnone$

//MAGHDGH//
value

angle defined by
/MAGHCOS/ and /MAGHSIN/

Fig. 5. Example of a condition table.

Condition tables are used to define some aspect of an out-
put value that is determined by an active mode and a condi-
tion that occurs within that mode. Fig. 5 gives an example
of a condition table. Each row corresponds to a group of one
or more modes in which this function acts alike. The rows

are mutually exclusive; only one mode affects the function
at a time. In each row are a set of mutually exclusive condi-
tions; exactly one should be true whenever the program is in
the modes denoted by the row. At the bottom of the column
is the information appropriate for the interval identified by
the mode-condition intersection. Thus to find the informa-
tion appropriate for a given mode and given condition, first
find the row corresponding to the mode, find the condition
within the row, and follow that column to the bottom of the
table. An "X" instead of a condition indicates that informa-
tion at the bottom of the column is never appropriate for
that mode.
In Fig. 5, the magnetic heading value isO when the system is in

mode *IMS fail* and the condition (/IMSMODE/=$Offnone$)
is true. Whenever the system is in *IMS fail* mode, the fol-
lowing condition is true, showing that the row is complete,

(/IMSMODE/=$Offnone$ OR(NOT /IMSMODE/=$Offnone$))

and the following statement is false, showing the row entries
are mutually exclusive.

Event table : When AUTOCAL Light Switched on/off

MODES EVENTS

*Lautocal* | T(In mode) @F(In mode)
*Sautocal*

ACTION //AUTOCAL//:=$On$ / //AUTOCAL// :=$Off$

Fig. 6. Example of an event table.

ent time intervals; the appropriate time interval is determined
by the prevailing mode and conditions. Each row in the table
completely characterizes the intervals within a mode that are

meaningful for that function. The conditions must be mutually
exclusive, and together they must describe the entire time
the program is within the mode. These characteristics ensure

that condition tables be complete, that is, all relevant in-
tervals are indicated. They also ensure that condition tables
be unambiguous, that is, given the aircraft operating condi-
tions, the correct interval can be determined.
Event tables show when demand functions should be per-

formed or when periodic functions should be started or

stopped. Each row in an event table corresponds to a mode
or group of modes. Table entries are events that cause an

action to be taken when the system is i-n a mode associated
(/IMSMODEfr$Offnone$ AND(NOT/IMSMODE/$Offnone$)) with the row. The action to be taken is given at the bottom

of the column.
Condition tables are used in the descriptions ofperiodic func- The event table in Fig. 6 specifies that the autocalibration

tions. Periodic functions are performed differently in differ- light controlled by output data item //AUTOCAL// be turned

/ 0 (North)
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Demand Function Name: Change scale factor

Nodes in which function required:
*Lautocal*, *Sautocal*, *Landaln*, *SINSaln*, *HUDaln*, *Airaln*

Output data item: //IMSSCAL//

Function Request and Output Description:

Event Table: When the Scale Factor Is Changed

MODES EVENTS

*Lautocal* QT(In mode) WHEN X
*Landaln* (// IMSSCAL|/=$Coarse$)

*HUDaln* @T(In mode) WHEN @T(In mode) WHEN
(/IMSMODE/ = $Gndal$ (NOT (/IMSMODE/=$Gndal$)
AND //IMSSCAL//-$Coarse$) AND //IMSSCAL//=$Fine$)

*Sautocal* X @T(In mode) WHEN
*SINSaln* (//IMSSCAL//=$Fine$)
*Airaln*

ACTION / //IMSSCAL//: =$Fine$ / //IMSSCAL//:=$Coarse$

Fig. 7. Completed demand function form.

Periodic function name: Update Flight Path Marker coordinates

Modes in which function required:
*DIG*, *DI*, *1*, *Mag Sl*, *Grid*, *IMS fail*

Output Data Items: //FPMAZJ/, //FPMEL//

Initiation and Termination Events:
Start: @T(//HUDVEL// = $On$)
Stop: @T(//HUDVEL// = $Off$)

Output description:

The Flight Path Marker (FPM) symbol on the head-up display shows the
direction of the aircraft velocity vector. If the aircraft is moving straight
ahead from the nose of the aircraft, the FPM is centered on the display. The
horizontal displacement from display center shows the lateral velocity
component and elevation displacement shows the vertical velocity component.

Although the means for deriving Flight Path Marker position varies as
shown in the table below, the position is usually der-ived from the current
!System velocities!. The velocities are first resolved into forward, lateral,
and vertical components. Then FPM coordinates are derived in the following
manner:

//FPMAZ// shows Lateral velocity
Forward velocity

MODES

/IFPMEL// shows Vertical velocity
Forward velocity

Condition Table: Coordinates of the Flight Path Marker

CONDITIONS

*DIG*, *DI* X Always X

*I* /ACAIRB/ $No$ /ACAIRB/ = $Yes$ X

!ADC Up! !ADC Down!
*Mag sl*, *Grid* /ACAIRB/=$No$ AND /ACAIRB/=$Yes$ AND /ACAIRB/=$Yes$

*IMS fail* JACAIRB/=$No$ X /ACAIRB/=$Yes$

_ | , *- .7
FPM COORDINATES / /IFPMAZ//:= 0 / based on ISystem / //FPMAZ//:= 0

//FPMEL//:= 0 / velocities! / //FPMEL//:=/AOA/

Fig. 8. Completed periodic function form.

on when the two listed modes are entered and off when they represented by the mode becomes false, i.e., when the system
are exited. We use the symbol ":=" to denote assignment. changes to a different mode.
The event @T(In mode) occurs when all the conditions rep- Function Description Examples
resented by the mode become true, i.e., when the mode is Figs. 7 and 8 illustrate the forms we created for demand and
entered. @F(In mode) occurs when any one of the conditions periodic functions, respectively. All function descriptions in-
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dicate the associated output data items, thereby providing a
cross reference to the hardware description. The list of modes
gives the reader an overview of when the function is performed;
the overview is refined in the rest of the description.
The event table in Fig. 7 shows both the events that request

the function and the values output by the function at differ-
ent times. For example, if the //IMSSCAL// value is $Coarse$
when the *Landaln* mode is entered, the function assigns it
the value $Fine$. Notice how the table uses the symbolic
names introduced in the hardware section for data items and
data item values.
In Fig. 8 the initiation and termination section gives the events

that cause this periodic function to start and stop. This func-
tion starts when another output data item, //HUDVEL//, is as-
signed the value $On$, and stops when //HUDVEL// is assigned
the value $Off$. The function positions a symbol on a display
device. The position of the symbol usually represents the direc-
tion of the aircraft velocity vector, but under some conditions
the output data items are given other values. The output de-
scription consists of two parts: a brief prose description of the
usual meaning of the symbol and a condition table that shows
what will happen under different conditions. Notice that
every mode in the mode list is accounted for in the table. The
relevant conditions for this function are !ADC Up! or !ADC
Down!, (the operating status of the air data computer sensor
which provides a measurement of true airspeed) and /ACAIRB/=
$Yes$ and /ACAIRB/= $No$ (whether the aircraft is airborne).
Thus, if the system is in the inertial mode (*I*) and the air-
craft is not airborne (/ACAIRB/=$No$ is true), both coordi-
nates of the symbol are set to zero.

VII. TECHNIQUES FOR SPECIFYING UNDESIRED EVENTS
Lists of Undesired Events

In order to characterize the desired response of the system
when undesired events occur, we started with a list of unde-
sired events and interviewed pilots and maintenance program-
mers to find out both what they would like to have happen
and what they considered feasible. The key was the list of
possible undesired events. To derive this list, we used the
classification scheme shown in Fig. 9 as a guide.
For example, in the class "Resource failure-temporary," we

include the malfunctioning of each sensor since the sensors
tend to resume correct functioning; in the class "Resource
failure-permanent," we include the loss of areas of memory.

VIII. TECHNIQUES FOR CHARACTERIZING
TYPES OF CHANGES

In order to characterize types of changes, we looked through
a file of change requests and interviewed the maintainers. To
define requirements for a new system, we would have looked
at change requests for similar systems. We also made a long
list of fundamental assumptions that we thought would always
be true about the system, no matter what. In a meeting with
several maintenance system engineers and programmers, all
but four ot the fundamental assumptions were rejected; each
rejected assumption was moved to the list of possible changes!
For example, the following assumption is true about the cur-

1 Resource Failure
1.1 Teniporary
1.2 Permanent

2 Incorrect input data
2.1 Detected by examining input only
2.2 Detected by comparison with internal data
2.3 Detected by user realizing he made a mistake
2.4 Detected by user from incorrect output

3 Incorrect internal data
3.1 Detected by internal inconsistency
3.2 Detected by comparison with input data
3.3 Detected by user from incorrect output

Fig. 9. Undesired event classification derived from Parnas [19].

rent program, but may change in the future: "The computer
will perform weapon release calculations for only one target
at a time. When a target is designated, the previously desig-
nated target is forgotten." By writing two complementary
lists-possible changes and fundamental assumptions-we
thought about the problem from two directions, and we de-
tected many misunderstandings. Producing a list of funda-
mental assumptions forced us to voice some implicit assump-
tions, so that we discovered possible changes we would have
omitted otherwise. One reason for the success of this pro-
cedure is that it is much easier for a reviewer to recognize an
error than an omission.
Listed below are examples of feasible changes.
1) Assignment of devices to channels may be changed.
2) The rate of symbol movement on the display in re-

sponse to joystick displacement might be changed.
3) New sensors may be added. (This has occurred already

in the history of the program.)
4) Future weapons may require computer control after

release.
5) Computer self-test might be required in the air (at

present it is only required on the ground).
6) It may be necessary to cease certain lower priority func-

tions to free resources for higher priority functions during
stress moments. (At present the program halts if it does not
have sufficient time to perform all functions, assuming a pro-
gram error.)

IX. DISCUSSION
We expect the document to be kept up-to-date as the pro-

gram evolves because it is useful in many ways that are in-
dependent of our project. The maintainers of the current
program plan to use it to train new maintenance personnel,
since it presents the program's purpose in a consistent, sys-
tematic way. It is the only complete, up-to-date description
of their hardware interfaces. One of the problems they now
face when making changes is that they cannot tell easily if
there are other places in the code that should be changed
to preserve consistency. For example, they changed the code
in one place to turn on a display when the target is twenty-
two nautical miles away; in another place, the display is still
turned on when the target is twenty nautical miles away. The
unintended two-nautical-mile difference causes no major
problems, but it adds unnecessary complexity for the pilot
and the programmer. Inconsistencies such as this show up
conspicuously in the function tables in our document. Be-
sides using the document to check the implications of small
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changes, the maintenance staff want to modify it to document
the next version of the program. They expect major benefits
as they prepare system tests, since the document provides a
description of acceptable program behavior that is indepen-
dent of the program. In the past, testers have had to infer
what the program is supposed to do by looking at the code.
Finally they' also intend to derive test cases systematically
from the tables and mode transition charts.
The usefulness of these ideas is not limited to existing pro-

grams. They could be used during the requirements definition
phase for a new product in order to record decisions for easy
retrieval, to check new decisions for consistency with pre-
viously made decisions, and to suggest questions that ought to
be considered. However, a requirements document for a new
system would not be as specific as our document. We can de-
scribe acceptable behavior exactly because all the decisions
about the external interfaces have been made. For a new pro-
gram a requirements document describes a set of possible be-
haviors,' giving the characteristics that distinguish acceptable
from unacceptable behavior. The system designer chooses the
exact behavior for the new product. The questions are the
same for a new system; the answers are less restrictive. For
example, where we give a specific number for the accuracy
of an input, there might be a range of acceptable accuracy
values for a new program.

X. CONCLUSIONS
The requirements document for the A-7 program demon-

strates that a substantial system can be described in terms of
its external stimuli and its externally visible behavior. The
techniques discussed in this paper guided us in obtaining in-
formation, helped us to control its complexity, and allowed
us to avoid dealing with implementation details. The docu-
ment gives a headstart on the design phase of our project.
Many questions are answered precisely that usually would be
left to programmers to decide or to discover as they build the
code. Since the information is expressed systematically, we
can plan for it systematically, instead of working each detail
into the program in an ad hoc fashion.

All of the techniques described in this paper are based on
three principles: formulate questions before trying to answer
them, separate concerns, and use precise notation. From these
principles we developed a disciplined approach including the
following techniques:

symbolic names for data items and values
special brackets to indicate type of name
templates for-value descriptions
standard forms
inputs described as resources
outputs described in terms of effects
demand versus periodic functions
output values given as functions of conditions and events
consistent notation for conditions and events
modes for describing equivalence classes of system states

undesired event classification
complementary lists ofchanges and fundamental assumptions.

This paper is only an introduction to the ideas that are illus-
trated in the requirements document [5]. The document is a

fully worked-out example; no details have been left out to
simplify the problem. Developing and applying the techniques
required approximately seventeen man-months of effort. The
document is available to anyone interested in pursuing the
ideas. Most engineering is accomplished by emulating models.
We believe that our document is a good model of requirements
documentation.

ACKNOWLEDGMENT

The techniques described in this paper were developed by
the author together with D. Parnas, J. Shore, and J. Kallander.
The author thanks E. Britton, H. S. Elovitz, D. Parnas, J.
Shore, and D. Weiss for their careful and constructive reviews
of the manuscript.

REFERENCES
[1] P. Brinch Hansen, Operating Systems Principles. Englewood

Cliffs, NJ: Prentice-Hall, 1973.
[2] E. W. Dijkstra, 'Co-operating sequential processes," in Program-

ming Languages, F. Genuys, Ed. New York: Academic, 1968,
pp.43-112.

[3] -, A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1977.

[4] J. V. Guttag, "Abstract data types and the development of data
structures," Commun. Ass. Comput. Mach., vol. 20, pp. 396-
404, June 1976.

[51 K. Heninger, J. Kallander, D. L. Parnas, and J. Shore, Software
Requirements for the A-7E Aircraft, Naval Res. Lab., Washing-
ton, DC, Memo Rep. 3876, Nov. 27, 1978.

[6] C. A. R. Hoare, "Monitors: An operating system structuring
concept," Commun. Ass. Comput. Mach., vol. 17, pp. 549-557,
Oct. 1974.

[7] J. Howard, "Proving monitors," Commun. Ass. Comput. Mach.,
vol. 19, pp. 273-279, May 1976.

[8] R. Lipton, On Synchronization Primitive Systems, Ph.D. disserta-
tion, Carnegie-Mellon Univ., Pittsburgh, PA, 1973.

[9] B. Liskov and S. Zilles, "Specification techniques for data ab-
stractions," IEEE Trans. Software Eng., vol. SE-1, pp. 7-19,
Mar. 1975.

[101 B. Liskov and V. Berzins, "An appraisal of program specifica-
tions," in Proc. Conf. on Research Directions in Software Tech-
nology, Oct. 10-12, 1977, pp. 13.1-13.24.

[11] D. L. Parnas, "Information distribution aspects of design method-
ology," in Proc. Int. Fed. Inform. Processing Congr., Aug. 1971,
vol. TA-3.

[12] -, "On the criteria to be used in decomposing systems into
modules," Commun. Ass. Comput. Mach., vol. 15, pp. 1053-
1058, Dec. 1972.

[13] D. L. Parnas and G. Handzel, More on Specification Techniques
for Software Modules, Fachbereich Informatik, Technische
Hochschule Darmstadt, Darmstadt, W. Germany, 1975.

[14] D. L. Parnas and H. Wurges, "Response to undesired events in
software systems," in Proc. 2nd Int. Conf Software Eng., 1976,
pp. 437-446.

[15] D. L. Parnas, Use of Abstract Interfaces in the Development of
Software for Embedded Computer Systems, Naval Res. Lab.,
Washington, DC, Rep. 8047, 1977.

[16] -, "The use of precise specifications in the development of
software," in Proc. Int. Fed. Inform. Processing Congr., 1977.

[171 -, "Designing software for ease of extension and contraction,"
in Proc. 3rd,Int. Conf. Software Eng., May 1978.

[18] D. L. Parnas and K. Heninger, "Implementing processes in
HAS," in Software Engineering Principles, Naval Res. Lab.,

special tables for consistency and completeness checking

12

Washington, DC, course notes, 1978, Document HAS.9.

Authorized licensed use limited to: Konkuk University. Downloaded on September 22, 2009 at 03:32 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-6, NO. 1, JANUARY 1980

[19] D. L. Parnas, "Desired system behavior in undesired situations,"
in Software Engineering Principles, Naval Res. Lab., Washington,
DC, course notes, 1978, Document UE.1.

[20] 0. Roubine and L. Robinson, SPECIAL Reference Manual,
Stanford Res. Inst., Menlo Park, CA, SRI Tech. Rep. CSL-45,
SRI project 4828, 3rd ed., 1977.

[21] A. C. Shaw, The Logical Design of Operating Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1974.

[22] D. M. Weiss, The MUDD Report: A Case Study of Navy Soft-
ware Development Practices, Naval Res. Lab., Washington, DC,
Rep. 7909, 1975.

Kathryn L. Heninger received the B.A. degree
in English from Stanford University, Stanford,
CA, in 1972, the M.S.L.S. degree in library
science in 1975 and the M.S. degree in com-
puter science in 1977, both from the Univer-
sity of North Carolina, Chapel Hill.
She is presently a Computer Scientist for the

Information Systems Staff at the Naval Re-
search Laboratory, Washington, DC. Her re-
search interests include program design meth-
odologies and parallel processing.

Notes on Type Abstraction (Version 2)
JOHN GUTTAG

Abstract-This paper, which was initially prepared to accompany a
series of lectures given at the 1978 NATO International Summer School
on Program Construction, is primarily tutorial in nature. It begins by
discussing in a general setting the role of type abstraction and the need
for formal specifications of type abstractions. It then proceeds to ex-
amine in some detail two approaches to the construction of such spec-
ifications: that proposed by Hoare in his 1972 paper "Proofs of Cor-
rectness of Data Representations," and the author's own version of
algebraic specifications. The Hoare approach is presented via a dis-
cussion of its embodiment in the programming language Euclid. The
discussion of the algebraic approach includes material abstracted from
earlier papers as well as some new material that has yet to appear. This
new material deals with parameterized types and the specification of
restrictions. The paper concludes with a brief discussion of the relative
merits of the two approaches to type abstraction.

Index Terms-Abstract data types, abstraction, algebraic axioms, pro-
gram verification, proof rules.

INTRODUCTION

A KEY problem in the development of programs is re-

A~,. ducing the amount of complexity or detail that must
be considered at any one time. Two common and effective
approaches to accomplishing this are decomposition and
abstraction.
One decomposes a task by factoring it into subtasks each of

which can be treated independently. Unfortunately, for many
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problems the smallest separable subtasks are still too complex
to be mastered in toto. The complexity of such problems
must be reduced via abstraction. By providing a mechanism
for separating those attributes that are relevant in a given con-
text from those that are not, abstraction serves to reduce the
amount of detail that one need come to grips with at any one
time.
One of the most significant aids to abstraction used in pro-

gramming is the self-contained subroutine. It performs a
specific, arbitrarily abstract, function by means of an unpre-
scribed algorithm. Thus, at the level where it is invoked, it
separates the relevant detail of "what" from the irrelevant de-
tail of "how." Similarly, at the level of the implementation,
it is usually unnecessary to complicate the "how" by consider-
ing the "why," i.e., the exact reasons for invoking a subroutine
are rarely of concern to its implementor. By nesting subrou-
tines, one may develop a hierarchy of abstractions.
Unfortunately, the nature of the abstractions that may be

conveniently achieved through the use of subroutines is
limited. Subroutines allow us to abstract single events. Their
applicability is thus limited to problems that are conveniently
decomposable into independent functional units. Type, or
data, abstraction is not amenable to such an attack. To under-
stand why, let us look briefly at the different roles played by
type and procedural abstraction in programming and program-
ming languages.

THE ROLE OF ABSTRACTION
Imperative programming languages have components dealing

with control flow, state change, and value generation. In re-
cent years, a great deal has been written about the virtues and
drawbacks of various control flow mechanisms. I will not add
to that literature. Considerably less has been written about
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