
이동아

Real-time Software Design

※ This lecture note is based on materials from Ian Sommerville 2006. 1

Objectives

• To explain the concept of a real-time system and why these systems are usually

implemented as concurrent processes

• To describe a design process for real-time systems

• To explain the role of a real-time operating system

• To introduce generic process architectures for monitoring and control and data

acquisition systems

2

Topics covered

• System design

• Real-time operating systems

• Monitoring and control systems

• Data acquisition systems

3

Real-time systems

• Systems which monitor and control their environment.

• Inevitably associated with hardware devices

– Sensors: Collect data from the system environment;

– Actuators: Change (in some way) the system's environment;

• Time is critical

– Real-time systems MUST respond within specified times.

4

Definition

• A real-time system is a software system where the correct functioning of the

system depends on the results produced by the system and the time at which

these results are produced.

• A soft real-time system is a system whose operation is degraded if results are not

produced according to the specified timing requirements.

• A hard real-time system is a system whose operation is incorrect if results are not

produced according to the timing specification.

5

Stimulus/Response Systems

• Given a stimulus, the system must produce a response within a specified time.

• Periodic stimuli. Stimuli which occur at predictable time intervals

– For example, a temperature sensor may be polled 10 times per second.

• Aperiodic stimuli. Stimuli which occur at unpredictable times

– For example, a system power failure may trigger an

interrupt which must be processed by the system.

6

Architectural considerations

• Because of the need to respond to timing demands made by different

stimuli/responses, the system architecture must allow for fast switching between

stimulus handlers.

• Timing demands of different stimuli are different so a simple sequential loop is

not usually adequate.

• Real-time systems are therefore usually designed as cooperating processes with a

real-time executive controlling these processes.

7

A real-time system model

Real-time
contr ol system

ActuatorActuator ActuatorActuator

SensorSensorSensor SensorSensorSensor

8

Sensor/actuator processes

Da ta
pr ocessor

Actua tor
contr ol

Actua tor

Sensor
contr ol

Sensor

Stim ulus R esponse

9

System elements

• Sensor control processes

– Collect information from sensors. May buffer information collected in response to a

sensor stimulus.

• Data processor

– Carries out processing of collected information and computes the system response.

• Actuator control processes

– Generates control signals for the actuators.

10

Real-time programming

• Hard-real time systems may have to programmed in assembly language to ensure

that deadlines are met.

• Languages such as C allow efficient programs to be written but do not have

constructs to support concurrency or shared resource management.

• Java 2.0 is not suitable for hard RT programming but real-time versions of Java are

now available that address problems such as

– Not possible to specify thread execution time;

– Different timing in different virtual machines;

– Uncontrollable garbage collection;

– Not possible to discover queue sizes for shared resources;

– Not possible to access system hardware;

– Not possible to do space or timing analysis.

11

System design

• Design both the hardware and the software associated with system. Partition

functions to either hardware or software.

• Design decisions should be made on the basis on non-functional system

requirements.

• Hardware delivers better performance but potentially longer development and

less scope for change.

12

R-T systems design process

1. Identify the stimuli to be processed and the required responses to these stimuli.

2. For each stimulus and response, identify the timing constraints.

3. Aggregate the stimulus and response processing into concurrent processes. A

process may be associated with each class of stimulus and response.

4. Design algorithms to process each class of stimulus and response. These must

meet the given timing requirements.

5. Design a scheduling system which will ensure that processes are started in time to

meet their deadlines.

6. Integrate using a real-time operating system.

13

Timing constraints

• May require extensive simulation and experiment to ensure that these are met by

the system.

• May mean that certain design strategies such as object-oriented design cannot be

used because of the additional overhead involved.

• May mean that low-level programming language features have to be used for

performance reasons.

14

Real-time system modelling

• The effect of a stimulus in a real-time system may trigger a transition from one

state to another.

• Finite state machines can be used for modelling real-time systems.

• However, FSM models lack structure. Even simple systems can have a complex

model.

• The UML includes notations for defining state machine models

• See Chapter 8 for further examples of state machine models.

15

Petrol pump state model

Card

inser ted
into reader

T imeout

Resetting
do: display C C

error

Initialising

do: initialise
display

P aying

Stopped

Reading

do: get C C
details

W aiting

do: display
 welcome

do:
deliver fuel

do: debit
C C account

P ayment ack.

Ready Delivering

update display Nozzle
trigger on

Nozzle trigger off

Nozzle trigger on

Hose in
holster

do: validate
credit card

V alidating

Invalid card

Card removed
Card OK

Hose out of holster

T imeout

Hose in holster

16

Real-time operating systems

• Real-time operating systems are specialised operating systems which manage the

processes in the RTS.

• Responsible for process management and resource (processor and memory)

allocation.

• May be based on a standard kernel which is used unchanged or modified for a

particular application.

• Do not normally include facilities such as file management.

14
17

Operating system components

• Real-time clock

– Provides information for process scheduling.

• Interrupt handler

– Manages aperiodic requests for service.

• Scheduler

– Chooses the next process to be run.

• Resource manager

– Allocates memory and processor resources.

• Dispatcher

– Starts process execution.

18

Non-stop system components

• Configuration manager

– Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be replaced and software upgraded

without stopping the systems.

• Fault manager

– Responsible for detecting software and hardware faults and

taking appropriate actions (e.g. switching to backup disks) to ensure that the system

continues in operation.

19

Real-time OS components

Pr ocess r esour ce
r equir ements

Scheduler

Scheduling
inf or ma tion

R esour ce
mana ger

Despa tcher

R eal-time
clock

Pr ocesses
a w aiting

r esour ces

R ead y
list

Interrupt
handler

A v aila b le
r esour ce

list

Pr ocessor
list

Ex ecuting pr ocess

R ead y
pr ocesses

R eleased
r esour ces

20

Process priority

• The processing of some types of stimuli must sometimes take priority.

• Interrupt level priority. Highest priority which is allocated to processes requiring a

very fast response.

• Clock level priority. Allocated to periodic processes.

• Within these, further levels of priority may be assigned.

21

Interrupt servicing

• Control is transferred automatically to a pre-determined memory location.

• This location contains an instruction to jump to an interrupt service routine.

• Further interrupts are disabled, the interrupt serviced and control returned to the

interrupted process.

• Interrupt service routines MUST be short, simple and fast.

22

Periodic process servicing

• In most real-time systems, there will be several classes of periodic process, each

with different periods (the time between executions), execution times and

deadlines (the time by which processing must be completed).

• The real-time clock ticks periodically and each tick causes an interrupt which

schedules the process manager for periodic processes.

• The process manager selects a process which is ready for execution.

23

Process management

• Concerned with managing the set of concurrent processes.

• Periodic processes are executed at pre-specified time intervals.

• The RTOS uses the real-time clock to determine when to execute a process taking

into account:

– Process period - time between executions.

– Process deadline - the time by which processing must be complete.

R esour ce manager

Alloca te memory
and pr ocessor

Scheduler

Choose pr ocess
f or e x ecution

Despatcher

Star t e x ecution on an
a v aila b le pr ocessor

24

Process switching

• The scheduler chooses the next process to be executed by the processor. This

depends on a scheduling strategy which may take the process priority into

account.

• The resource manager allocates memory and a processor for the process to be

executed.

• The dispatcher takes the process from ready list, loads it onto a processor and

starts execution.

25

Scheduling strategies

• Non pre-emptive scheduling

– Once a process has been scheduled for execution, it runs to completion or until it is

blocked for some reason (e.g. waiting for I/O).

• Pre-emptive scheduling

– The execution of an executing processes may be stopped if a higher priority process

requires service.

• Scheduling algorithms

– Round-robin;

– Rate monotonic;

– Shortest deadline first.

26

Monitoring and control systems

• Important class of real-time systems.

• Continuously check sensors and take actions depending on sensor values.

• Monitoring systems examine sensors and report their results.

• Control systems take sensor values and control hardware actuators.

S1

S2

S3

P (S1)

P (S2)

P (S1)

Monitoring
processes

Control
processes

P (A1)

P (A2)

P (A1)

A1

A2

A3

P (A4) A4

Testing
process

Control panel
processes

27

Key points

• Real-time system correctness depends not just on what the system does but also

on how fast it reacts.

• A general RT system model involves associating processes with sensors and

actuators.

• Real-time systems architectures are usually designed as a number of concurrent

processes.

• Real-time operating systems are responsible for process and resource

management.

• Monitoring and control systems poll sensors and send control signal to actuators.

28

	Real-time Software Design
	Objectives
	Topics covered
	Real-time systems
	Definition
	Stimulus/Response Systems
	Architectural considerations
	A real-time system model
	Sensor/actuator processes
	System elements
	Real-time programming
	System design
	R-T systems design process
	Timing constraints
	Real-time system modelling
	Petrol pump state model
	Real-time operating systems
	Operating system components
	Non-stop system components
	Real-time OS components
	Process priority
	Interrupt servicing
	Periodic process servicing
	Process management
	Process switching
	Scheduling strategies
	Monitoring and control systems
	Key points

