
이동아

Component-based software engineering

※ This lecture note is based on materials from Ian Sommerville 2006.

Objectives

• To explain that CBSE is concerned with developing standardised components and

composing these into applications

• To describe components and component models

• To show the principal activities in the CBSE process

• To discuss approaches to component composition and problems that may arise

1

Topics covered

• Components and component models

• The CBSE process

• Component composition

2

Component-based development

• Component-based software engineering (CBSE) is an approach to software

development that relies on software reuse.

• It emerged from the failure of object-oriented development to support effective

reuse. Single object classes are too detailed and specific.

• Components are more abstract than object classes and can be considered to be

stand-alone service providers.

• CBSE essentials

– Independent components specified by their interfaces.

– Component standards to facilitate component integration.

– Middleware that provides support for component inter-operability.

– A development process that is geared to reuse.

3

CBSE and design principles

• Apart from the benefits of reuse, CBSE is based on sound software engineering

design principles:

– Components are independent so do not interfere with each other;

– Component implementations are hidden;

– Communication is through well-defined interfaces;

– Component platforms are shared and reduce development costs.

4

CBSE problems

• Component trustworthiness - how can a component with no available source

code be trusted?

• Component certification - who will certify the quality of components?

• Emergent property prediction - how can the emergent properties of component

compositions be predicted?

• Requirements trade-offs - how do we do trade-off analysis between the features

of one component and another?

5

Components

• Components provide a service without regard to where the component is

executing or its programming language

– A component is an independent executable entity that can be made up of one or more

executable objects;

– The component interface is published and all interactions are through the published

interface;

• Definitions

– Councill and Heinmann:

• A software component is a software element that conforms to a component model and can be

independently deployed and composed without modification according to a composition standard.

– Szyperski:

• A software component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and is subject

to composition by third-parties.

 6

Component as a service provider

• The component is an independent, executable entity. It does not have to be

compiled before it is used with other components.

• The services offered by a component are made available through an interface and

all component interactions take place through that interface.

7

Standardised
Component standardisation means that a component that is used in a CBSE process has to conform to some
standardised component model. This model may define component interfaces, component meta-data, docu
mentation, composition and deployment.

Independent
A component should be independent – it should be possible to compose and deploy it without having to us
e other specific components. In situations where the component needs externally provided services, these sh
ould be explicitly set out in a ‘requires’ interface specification.

Composable
For a component to be composable, all external interactions must take place through publicly defined interfa
ces. In addition, it must provide external access to information about itself such as its methods and attribute
s.

Deployable
To be deployable, a component has to be self-contained and must be able to operate as a stand-alone entit
y on some component platform that implements the component model. This usually means that the compon
ent is a binary component that does not have to be compiled before it is deployed.

Documented
Components have to be fully documented so that potential users of the component can decide whether or n
ot they meet their needs. The syntax and, ideally, the semantics of all component interfaces have to be speci
fied.

Component characteristics

Component interfaces

• Provides interface

– Defines the services that are provided by the component to other components.

• Requires interface

– Defines the services that specifies what services must be made available for the

component to execute as specified.

8

Provides int er face Requires int er face

Component
Defines the services
from the component’s
environment that it
uses

Defines the services
that are provided
by the component
to other components

A data collector component

9

Provides int er face Requires int er face

Data collector

addSensor
removeSensor
star tSensor
stopSensor
testSensor

listAll
repor t
initialise

sensorManagement

sensorData

Component models

• A component model is a definition of standards for component implementation,

documentation and deployment.

• Examples of component models

– EJB model (Enterprise Java Beans)

– COM+ model (.NET model)

– Corba Component Model

• The component model specifies how interfaces should be defined and the

elements that should be included in an interface definition.

10

Elements of a component model

Component model

Interfaces Usage
information

Deployment
and use

Interface
def inition

Specif ic
inter faces

Composition

Naming
convention

Meta-data
access

Customisation

Packaging

Documentation

Evolution
suppor t

11

Middleware support

• Component models are the basis for middleware that provides support for

executing components.

• Component model implementations provide:

– Platform services that allow components written according to the model to communicate;

– Horizontal services that are application-independent services used by different

components.

• To use services provided by a model, components are deployed in a container.

This is a set of interfaces used to access the service implementations.

12

Horizontal services

Security

Transaction
management

Concurrency

Component
management

Persistence

Resource
management

Platform services

Addressing Inter face
definition

Component
communications

Exception
management

Component development for reuse

• Components developed for a specific application usually have to be generalised

to make them reusable.

• A component is most likely to be reusable if it associated with a stable domain

abstraction (business object).

• For example, in a hospital stable domain abstractions are associated with the

fundamental purpose - nurses, patients, treatments, etc.

13

Component development for reuse

• Components for reuse may be specially constructed by generalising existing

components.

• Component reusability

– Should reflect stable domain abstractions;

– Should hide state representation;

– Should be as independent as possible;

– Should publish exceptions through the component interface.

• There is a trade-off between reusability and usability

– The more general the interface, the greater the reusability but it is then more complex

and hence less usable.

14

Changes for reusability

• Remove application-specific methods.

• Change names to make them general.

• Add methods to broaden coverage.

• Make exception handling consistent.

• Add a configuration interface for component adaptation.

• Integrate required components to reduce dependencies.

15

Legacy system components

• Existing legacy systems that fulfil a useful business function can be re-packaged

as components for reuse.

• This involves writing a wrapper component that implements provides and requires

interfaces then accesses the legacy system.

• Although costly, this can be much less expensive than rewriting the legacy system.

16

Reusable components

• The development cost of reusable components may be higher than the cost of

specific equivalents. This extra reusability enhancement cost should be an

organization rather than a project cost.

• Generic components may be less space-efficient and may have longer execution

times than their specific equivalents.

17

The CBSE process

• When reusing components, it is essential to make trade-offs between ideal

requirements and the services actually provided by available components.

• This involves:

– Developing outline requirements;

– Searching for components then modifying requirements according to available

functionality.

– Searching again to find if there are better components that meet the revised

requirements.

18

The CBSE process

19

Identify candidate
components

Outline
system

r equir ements

Modify
r equir ements

accor ding to discovered
components

Identify candidate
components

Ar chitectur al
design

Compose
components to
create system

The component identification process

Component
selection

Component
search

Component
validation

20

Component identification issues

• Trust. You need to be able to trust the supplier of a component. At best, an

untrusted component may not operate as advertised; at worst, it can breach your

security.

• Requirements. Different groups of components will satisfy different requirements.

• Validation.

– The component specification may not be detailed enough to allow comprehensive tests

to be developed.

– Components may have unwanted functionality. How can you test this will not interfere

with your application?

21

Ariane launcher failure

• In 1996, the 1st test flight of the Ariane 5 rocket ended in disaster when the

launcher went out of control 37 seconds after take off.

• The problem was due to a reused component from a previous version of the

launcher (the Inertial Navigation System) that failed because assumptions made

when that component was developed did not hold for Ariane 5.

• The functionality that failed in this component was not required in Ariane 5.

22

Component composition

• The process of assembling components to create a system.

• Composition involves integrating components with each other and with the

component infrastructure.

• Normally you have to write ‘glue code’ to integrate components.

• Types of composition

– Sequential composition where the composed components are executed in sequence. This

involves composing the provides interfaces of each component.

– Hierarchical composition where one component calls on the services of another. The

provides interface of one component is composed with the requires interface of another.

– Additive composition where the interfaces of two components are put together to create

a new component.

23

Types of composition

(a)

A A

B B

A B

(b) (c)

24

Interface incompatibility

• Parameter incompatibility where operations have the same name but are of

different types.

• Operation incompatibility where the names of operations in the composed

interfaces are different.

• Operation incompleteness where the provides interface of one component is a

subset of the requires interface of another.

25

addressFinder

phoneDatabase (string command)
string location(string pn)

string owner (string pn)

string proper tyType (string pn)

mapper

mapDB (string command)
displayMap (string postCode, scale)

printMap (string postCode, scale)

Adaptor components

• Address the problem of component incompatibility by reconciling the interfaces

of the components that are composed.

• Different types of adaptor are required depending on the type of composition.

• An addressFinder and a mapper component may be composed through an

adaptor that strips the postal code from an address and passes this to the

mapper component.

26

address = addressFinder.location (phonenumber) ;
postCode = postCodeStripper.getPostCode (address) ;
mapper.displayMap(postCode, 10000)

Adaptor for data collector

Data collector

addSensor
removeSensor
star tSensor
stopSensor
testSensor

listAll
repor t
initialise

sensorManagement

sensorData

Adaptersensor

star t

getdata

stop

27

Interface semantics

• You have to rely on component documentation to decide if interfaces that are

syntactically compatible are actually compatible.

• Object Constraint Language (OCL)

– The Object Constraint Language (OCL) has been designed to define constraints that are

associated with UML models.

– It is based around the notion of pre and post condition specification - similar to the

approach used in Z.

28

-- The context keyword names the component to which the
conditions apply
context addItem

-- The preconditions specify what must be true before execution
of addItem
pre: PhotoLibrary.libSize() > 0
 PhotoLibrary.retrieve(pid) = null

-- The postconditions specify what is true after execution
post: libSize () = libSize()@pre + 1
 PhotoLibrary.retrieve(pid) = p
 PhotoLibrary.catEntry(pid) = photodesc

context delete

pre: PhotoLibrary.retrieve(pid) <> null ;

post: PhotoLibrary.retrieve(pid) = null
 PhotoLibrary.catEntry(pid)=PhotoLibrary.catEntry(pid)@pre
 PhotoLibrary.libSize() = libSize()@pre - 1

Composition trade-offs

• When composing components, you may find conflicts between functional and

non-functional requirements, and conflicts between the need for rapid delivery

and system evolution.

• You need to make decisions such as:

– What composition of components is effective for delivering the functional requirements?

– What composition of components allows for future change?

– What will be the emergent properties of the composed system?

29

(a) Data
collection

(b)

Data
management

Repor t
generator

Data
collection Data base

Repor t

Repor t

Key points

• CBSE is a reuse-based approach to defining and implementing loosely coupled

components into systems.

• A component is a software unit whose functionality and dependencies are

completely defined by its interfaces.

• A component model defines a set of standards that component providers and

composers should follow.

• During the CBSE process, the processes of requirements engineering and system

design are interleaved.

30

Key points

• Component composition is the process of ‘wiring’ components together to create

a system.

• When composing reusable components, you normally have to write adaptors to

reconcile different component interfaces.

• When choosing compositions, you have to consider required functionality, non-

functional requirements and system evolution.

31

	Component-based software engineering
	Objectives
	Topics covered
	Component-based development
	CBSE and design principles
	CBSE problems
	Components
	Component as a service provider
	Component interfaces
	A data collector component
	Component models
	Elements of a component model
	Middleware support
	Component development for reuse
	Component development for reuse
	Changes for reusability
	Legacy system components
	Reusable components
	The CBSE process
	The CBSE process
	The component identification process
	Component identification issues
	Ariane launcher failure
	Component composition
	Types of composition
	Interface incompatibility
	Adaptor components
	Adaptor for data collector
	Interface semantics
	Composition trade-offs
	Key points
	Key points

